Vancomycin-Loaded Collagen/Hydroxyapatite Layers Electrospun on 3D Printed Titanium Implants Prevent Bone Destruction Associated with S. epidermidis Infection and Enhance Osseointegration

. 2021 May 10 ; 9 (5) : . [epub] 20210510

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34068788

Grantová podpora
TA04010330 Technology Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000787 Ministry of Education, Youth and Sports of the Czech Republic
NV18-05-00379 Ministry of Health of the Czech Republic
Progres Q39 and Q29 Charles University Research Fund
GAUK 5070/2019 Grant Agency of the Charles University

Odkazy

PubMed 34068788
PubMed Central PMC8151920
DOI 10.3390/biomedicines9050531
PII: biomedicines9050531
Knihovny.cz E-zdroje

The aim of the study was to develop an orthopedic implant coating in the form of vancomycin-loaded collagen/hydroxyapatite layers (COLHA+V) that combine the ability to prevent bone infection with the ability to promote enhanced osseointegration. The ability to prevent bone infection was investigated employing a rat model that simulated the clinically relevant implant-related introduction of bacterial contamination to the bone during a surgical procedure using a clinical isolate of Staphylococcus epidermidis. The ability to enhance osseointegration was investigated employing a model of a minipig with terminated growth. Six weeks following implantation, the infected rat femurs treated with the implants without vancomycin (COLHA+S. epidermidis) exhibited the obvious destruction of cortical bone as evinced via a cortical bone porosity of up to 20% greater than that of the infected rat femurs treated with the implants containing vancomycin (COLHA+V+S. epidermidis) (3%) and the non-infected rat femurs (COLHA+V) (2%). The alteration of the bone structure of the infected COLHA+S. epidermidis group was further demonstrated by a 3% decrease in the average Ca/P molar ratio of the bone mineral. Finally, the determination of the concentration of vancomycin released into the blood stream indicated a negligible systemic load. Six months following implantation in the pigs, the quantified ratio of new bone indicated an improvement in osseointegration, with a two-fold bone ingrowth on the COLHA (47%) and COLHA+V (52%) compared to the control implants without a COLHA layer (27%). Therefore, it can be concluded that COLHA+V layers are able to significantly prevent the destruction of bone structure related to bacterial infection with a minimal systemic load and, simultaneously, enhance the rate of osseointegration.

Zobrazit více v PubMed

Ulrich S.D., Seyler T.M., Bennett D., Delanois R.E., Saleh K.J., Thongtrangan I., Kuskowski M., Cheng E.Y., Sharkey P.F., Parvizi J., et al. Total hip arthroplasties: What are the reasons for revision? Int. Orthop. 2008;32:597–604. doi: 10.1007/s00264-007-0364-3. PubMed DOI PMC

Inzana J.A., Schwarz E.M., Kates S.L., Awad H.A. Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials. 2016;81:58–71. doi: 10.1016/j.biomaterials.2015.12.012. PubMed DOI PMC

Suchý T., Šupová M., Klapková E., Horný L., Rýglová Š., Žaloudková M., Braun M., Sucharda Z., Ballay R., Veselý J., et al. The sustainable release of vancomycin and its degradation products from nanostructured collagen/hydroxyapatite composite layers. J. Pharm. Sci. 2016;105:1288–1294. doi: 10.1016/S0022-3549(15)00175-6. PubMed DOI

Vorndran E., Geffers M., Ewald A., Lemm M., Nies B., Gbureck U. Ready-to-use injectable calcium phosphate bone cement paste as drug carrier. Acta Biomater. 2013;9:9558–9567. doi: 10.1016/j.actbio.2013.08.009. PubMed DOI

Antoci V., King S.B., Jose B., Parvizi J., Zeiger A.R., Wickstrom E., Freeman T.A., Composto R.J., Ducheyne P., Shapiro I.M., et al. Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. J. Orthop. Res. 2007;25:858–866. doi: 10.1002/jor.20348. PubMed DOI

Lawson M.C., Bowman C.N., Anseth K.S. Vancomycin derivative photopolymerized to titanium kills S. epidermidis. Clin. Orthop. Relat. Res. 2007;461:96–105. doi: 10.1097/BLO.0b013e3180986706. PubMed DOI

Parvizi J., Rothman R.H., Hozack W.J., Shapiro I.M., Adams C.S., Wickstrom E., Purtill J.J., Sharkey P.F., Hickok N.J., Zeiger A.R. Frank stinchfield award: Titanium surface with biologic activity against infection. Clin. Orthop. Relat. Res. 2004;429:33–38. doi: 10.1097/01.blo.0000150116.65231.45. PubMed DOI

Lawson M.C., Hoth K.C., Deforest C.A., Bowman C.N., Anseth K.S. Inhibition of staphylococcus epidermidis biofilms using polymerizable vancomycin derivatives. Clin. Orthop. Relat. Res. 2010;468:2081–2091. doi: 10.1007/s11999-010-1266-z. PubMed DOI PMC

Antoci V., Adams C.S., Parvizi J., Ducheyne P., Shapiro I.M., Hickok N.J. Covalently attached vancomycin provides a nanoscale antibacterial surface. Clin. Orthop. Relat. Res. 2007;461:81–87. doi: 10.1097/BLO.0b013e3181123a50. PubMed DOI

Edupuganti O.P., Antoci V., King S.B., Jose B., Adams C.S., Parvizi J., Shapiro I.M., Zeiger A.R., Hickok N.J., Wickstrom E. Covalent bonding of vancomycin to Ti6Al4V alloy pins provides long-term inhibition of Staphylococcus aureus colonization. Bioorganic Med. Chem. Lett. 2007;17:2692–2696. doi: 10.1016/j.bmcl.2007.03.005. PubMed DOI

Klemm K. Gentamicin-PMMA-beads in treating bone and soft tissue infections. Zent. Chir. 1979;104:934–942. PubMed

Villalba-Rodriguez A.M., Parra-Saldivar R., Ahmed I., Karthik K., Malik Y.S., Dhama K., Iqbal H.M.N. Bio-inspired biomaterials and their drug delivery perspectives—A review. Curr. Drug Metab. 2018;18 doi: 10.2174/1389200218666170925113132. PubMed DOI

Geurts J., Chris Arts J.J., Walenkamp G.H.I.M. Bone graft substitutes in active or suspected infection. Contra-indicated or not? Injury. 2011;42 doi: 10.1016/j.injury.2011.06.189. PubMed DOI

Uskokovic V. Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit. Rev. Drug Carr. Syst. 2014;32:1–59. doi: 10.1615/critrevtherdrugcarriersyst.2014010920. PubMed DOI PMC

Alt V., Franke J., Schnettler R. Local delivery of antibiotics in the surgical treatment of bone infections. Tech. Orthop. 2015;30:230–235. doi: 10.1097/BTO.0000000000000153. DOI

Nair M., Krishnan A. Antibiotic releasing biodegradable scaffolds for osteomyelitis. Curr. Drug Deliv. 2014;11:687–700. doi: 10.2174/1567201811666140414120002. PubMed DOI

El-Husseiny M., Patel S., MacFarlane R.J., Haddad F.S. Biodegradable antibiotic delivery systems. J. Bone Jt. Surg. Br. 2011;93-B:151–157. doi: 10.1302/0301-620x.93b2.24933. PubMed DOI

Fleiter N., Walter G., Bösebeck H., Vogt S., Büchner H., Hirschberger W., Hoffmann R. Clinical use and safety of a novel gentamicin-releasing resorbable bone graft substitute in the treatment of osteomyelitis/osteitis. Bone Jt. Res. 2014;3:223–229. doi: 10.1302/2046-3758.37.2000301. PubMed DOI PMC

Manchon A., Prados-Frutos J., Rueda-Rodriguez C., Salinas-Goodier C., Alkhraisat M., Rojo R., Rodriguez-Gonzalez A., Berlanga A., Lopez-Cabarcos E. Antibiotic release from calcium phosphate materials in oral and maxillofacial surgery. molecular, cellular and pharmaceutical aspects. Curr. Pharm. Biotechnol. 2017;18:52–63. doi: 10.2174/1389201018666161114145827. PubMed DOI

Ginebra M.P., Traykova T., Planell J.A. Calcium phosphate cements as bone drug delivery systems: A review. J. Control. Release. 2006;113:102–110. doi: 10.1016/j.jconrel.2006.04.007. PubMed DOI

Schmidmaier G., Lucke M., Wildemann B., Haas N.P., Raschke M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: A review. Injury. 2006;37:S105–S112. doi: 10.1016/j.injury.2006.04.016. PubMed DOI

Ueng S.W.N., Yuan L.J., Lee N., Lin S.S., Liu S.J., Chan E.C., Weng J.H. In vivo study of hot compressing molded 50:50 poly (DL-lactide-co-glycolide) antibiotic beads in rabbits. J. Orthop. Res. 2002;20:654–661. doi: 10.1016/S0736-0266(01)00174-7. PubMed DOI

Zhang L., Yan J., Yin Z., Tang C., Guo Y., Li D., Wei B., Xu Y., Gu Q., Wang L. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. Int. J. Nanomed. 2014:3027–3036. doi: 10.2147/IJN.S63991. PubMed DOI PMC

Ruszczak Z., Friess W. Collagen as a carrier for on-site delivery of antibacterial drugs. Adv. Drug Deliv. Rev. 2003;55:1679–1698. doi: 10.1016/j.addr.2003.08.007. PubMed DOI

Stinner D.J., Noel S.P., Haggard W.O., Watson J.T., Wenke J.C. Local antibiotic delivery using tailorable chitosan sponges: The future of infection control? J. Orthop. Trauma. 2010;24:592–597. doi: 10.1097/BOT.0b013e3181ed296c. PubMed DOI

Yu B.G., Kwon I.C., Kim Y.H., Han D.K., Park K.D., Han K., Jeong S.Y. Development of a local antibiotic delivery system using fibrin glue. J. Control. Release. 1996;39:65–70. doi: 10.1016/0168-3659(95)00139-5. DOI

Suchý T., Šupová M., Klapková E., Adamková V., Závora J., Žaloudková M., Rýglová Š., Ballay R., Denk F., Pokorný M., et al. The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. nanostructure. Eur. J. Pharm. Sci. 2017;100:219–229. doi: 10.1016/j.ejps.2017.01.032. PubMed DOI

Chen D.W., Hsu Y.-H., Liao J.-Y., Liu S.-J., Chen J.-K., Ueng S.W.-N. Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes. Int. J. Pharm. 2012;430:335–341. doi: 10.1016/j.ijpharm.2012.04.010. PubMed DOI

Lambert L., Novakova M., Lukac P., Cechova D., Sukenikova L., Hrdy J., Mlcek M., Chlup H., Suchy T., Grus T. Evaluation of the immunogenicity of a vascular graft covered with collagen derived from the european carp (cyprinus carpio) and bovine collagen. Biomed Res. Int. 2019 doi: 10.1155/2019/5301405. PubMed DOI PMC

Suchy T., Supova M., Sauerova P., Kalbacova M.H., Klapkova E., Pokorny M., Horny L., Zavora J., Ballay R., Denk F., et al. Evaluation of collagen/hydroxyapatite electrospun layers loaded with vancomycin, gentamicin and their combination: Comparison of release kinetics, antimicrobial activity and cytocompatibility. Eur. J. Pharm. Biopharm. 2019;140:50–59. doi: 10.1016/j.ejpb.2019.04.021. PubMed DOI

Lian X., Liu H., Wang X., Xu S., Cui F., Bai X. Antibacterial and biocompatible properties of vancomycin-loaded nano-hydroxyapatite/collagen/poly (lactic acid) bone substitute. Prog. Nat. Sci. Mater. Int. 2013;23:549–556. doi: 10.1016/j.pnsc.2013.11.003. DOI

Pon-On W., Charoenphandhu N., Teerapornpuntakit J., Thongbunchoo J., Krishnamra N., Tang I.-M. In vitro study of vancomycin release and osteoblast-like cell growth on structured calcium phosphate-collagen. Mater. Sci. Eng. C. 2013;33:1423–1431. doi: 10.1016/j.msec.2012.12.046. PubMed DOI

Ionita D., Bajenaru-Georgescu D., Totea G., Mazare A., Schmuki P., Demetrescu I. Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO2 nanotubes. Int. J. Pharm. 2017;517:296–302. doi: 10.1016/j.ijpharm.2016.11.062. PubMed DOI

Lian X., Mao K., Liu X., Wang X., Cui F. In vivo osteogenesis of vancomycin loaded nanohydroxyapatite/collagen/calcium sulfate composite for treating infectious bone defect induced by chronic osteomyelitis. J. Nanomater. 2015;2015:1–8. doi: 10.1155/2015/261492. DOI

Coelho C.C., Sousa S.R., Monteiro F.J. Heparinized nanohydroxyapatite/collagen granules for controlled release of vancomycin. J. Biomed. Mater. Res. Part A. 2015;103:3128–3138. doi: 10.1002/jbm.a.35454. PubMed DOI

Faigle G., Bernstein A., Suedkamp N.P., Mayr H.O., Peters F., Huebner W.D., Seidenstuecker M. Release behavior of VAN from four types of CaP-ceramic granules using various loading methods at two different degrees of acidity. J. Mater. Sci. Mater. Med. 2018;29:12. doi: 10.1007/s10856-017-6006-4. PubMed DOI

Lian X.J., Wang X.M., Cui F.Z. In Vitro Antibacterial Properties of vancomycin-loaded nano-hydroxyapatite/collagen/calcium sulfate hemihydrates (VCM/nHAC/CSH) bone substitute. Mater. Sci. Forum. 2013;745–746:6–12. doi: 10.4028/www.scientific.net/MSF.745-746.6. DOI

Mao K., Liu J., Lian X., Wang Q., Wang X., Mei W., Mao K. Controlled release of rhbmp-2 and vancomycin from nhac/$α$-csh scaffold for treatment of chronic osteomyelitis. J. Biomater. Tissue Eng. 2015;5:294–300. doi: 10.1166/jbt.2015.1310. DOI

Pokorný M., Suchý T., Kotzianová A., Klemeš J., Denk F., Šupová M., Sucharda Z., Sedláček R., Horný L., Králík V., et al. Surface treatment of acetabular cups with a direct deposition of a composite nanostructured layer using a high electrostatic field. Molecules. 2020;25:1173. doi: 10.3390/molecules25051173. PubMed DOI PMC

Pokorny M., Rassushin V., Wolfova L., Velebny V. Increased production of nanofibrous materials by electroblowing from blends of hyaluronic acid and polyethylene oxide. Polym. Eng. Sci. 2016;56:932–938. doi: 10.1002/pen.24322. DOI

European committee for antimicrobial susceptibility testing (EUCAST) of the European society of clinical microbiology and infectious diseases (ESCMID) determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003;9:596–600. doi: 10.1046/j.1469-0691.2003.00790.x. PubMed DOI

The European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 10.0. [(accessed on 6 August 2020)];2020 Available online: http://www.eucast.org.

Ruzicka F., Hola V., Votava M., Tejkalova R., Horvat R., Heroldova M., Woznicova V. Biofilm detection and the clinical significance of Staphylococcus epidermidis isolates. Folia Microbiol. 2004;49:596–600. doi: 10.1007/BF02931540. PubMed DOI

Cannon C.Z., Kissling G.E., Goulding D.R., King-Herbert A.P., Blankenship-Paris T. Analgesic effects of tramadol, carprofen or multimodal analgesia in rats undergoing ventral laparotomy. Lab Anim. 2011;40:85–93. doi: 10.1038/laban0311-85. PubMed DOI

Babuska V., Moztarzadeh O., Kubikova T., Moztarzadeh A., Hrusak D., Tonar Z. Evaluating the osseointegration of nanostructured titanium implants in animal models: Current experimental methods and perspectives (Review) Biointerphases. 2016;11:30801. doi: 10.1116/1.4958793. PubMed DOI

Kubíková T., Bartoš M., Juhas Š., Suchý T., Sauerová P., Hubálek-Kalbáčová M., Tonar Z. Comparison of ground sections, paraffin sections and micro-CT imaging of bone from the epiphysis of the porcine femur for morphometric evaluation. Ann. Anat. Anat. Anz. 2018;220:85–96. doi: 10.1016/j.aanat.2018.07.004. PubMed DOI

Jiřík M., Bartoš M., Tomášek P., Malečková A., Kural T.T., Horáková J., Lukáš D., Suchý T., Kochová P., Hubálek Kalbáčová M., et al. Generating standardized image data for testing and calibrating quantification of volumes, surfaces, lengths, and object counts in fibrous and porous materials using X-ray microtomography. Microsc. Res. Tech. 2018;81:551–568. doi: 10.1002/jemt.23011. PubMed DOI

Kourkoumelis N., Balatsoukas I., Tzaphlidou M. Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J. Biol. Phys. 2012;38:279–291. doi: 10.1007/s10867-011-9247-3. PubMed DOI PMC

Melichercik P., Klapkova E., Landor I., Judl T., Sibek M., Jahoda D. The effect of Vancomycin degradation products in the topical treatment of osteomyelitis. Bratisl. Lek. Listy. 2014;115:796–799. doi: 10.4149/bll_2014_154. PubMed DOI

Roldán J.C., Detsch R., Schaefer S., Chang E., Kelantan M., Waiss W., Reichert T.E., Gurtner G.C., Deisinger U. Bone formation and degradation of a highly porous biphasic calcium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model. J. Cranio-Maxillofac. Surg. 2010;38:423–430. doi: 10.1016/j.jcms.2010.01.003. PubMed DOI

Bigi A., Cojazzi G., Panzavolta S., Ripamonti A., Roveri N., Romanello M., Suarez K.N., Moro L. Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J. Inorg. Biochem. 1997;68:45–51. doi: 10.1016/S0162-0134(97)00007-X. PubMed DOI

Termine J.D., Eanes E.D., Greenfield D.J., Nylen M.U., Harper R.A. Hydrazine-deproteinated bone mineral. Calcif. Tissue Res. 1973;12:73–90. doi: 10.1007/BF02013723. PubMed DOI

Kazemzadeh-Narbat M., Noordin S., Masri B.A., Garbuz D.S., Duncan C.P., Hancock R.E.W., Wang R. Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012;100B:1344–1352. doi: 10.1002/jbm.b.32701. PubMed DOI

Tang T., Ao H., Yang S., Wang Y., Lin W., Yu Z., Yang Y. In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants. Int. J. Nanomed. 2016:2223–2234. doi: 10.2147/IJN.S102752. PubMed DOI PMC

Zhou J., Zhou X.G., Wang J.W., Zhou H., Dong J. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/$β$-tricalcium phosphate composite scaffold. Bone Jt. Res. 2018;7:46–57. doi: 10.1302/2046-3758.71.BJR-2017-0129.R2. PubMed DOI PMC

Zaichick S., Zaichick V. Neutron activation analysis of Ca, Cl, Mg, Na, and P content in human bone affected by osteomyelitis or osteogenic sarcoma. J. Radioanal. Nucl. Chem. 2012;293:241–246. doi: 10.1007/s10967-012-1645-x. DOI

Fiore E., Levi M., Gianesella M., Benazzi C., Morgante M., Beltrame A., Vaccaro C., Gentile A. Epiphysitis in fattening bulls: Radiological and pathologic findings. Large Anim. Rev. 2016;22:43–45.

Henderson B., Nair S.P. Hard labour: Bacterial infection of the skeleton. Trends Microbiol. 2003;11:570–577. doi: 10.1016/j.tim.2003.10.005. PubMed DOI

Brady R.A., Leid J.G., Calhoun J.H., Costerton J.W., Shirtliff M.E. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol. Med. Microbiol. 2008;52:13–22. doi: 10.1111/j.1574-695X.2007.00357.x. PubMed DOI

Esmonde-White K.A., Esmonde-White F.W.L., Holmes C.M., Morris M.D., Roessler B.J. Alterations to bone mineral composition as an early indication of osteomyelitis in the diabetic foot. Diabetes Care. 2013;36:3652–3654. doi: 10.2337/dc13-0510. PubMed DOI PMC

Loc-Carrillo C., Wang C., Canden A., Burr M., Agarwal J. Local intramedullary delivery of vancomycin can prevent the development of long bone Staphylococcus aureus infection. PLoS ONE. 2016;11:e0160187. doi: 10.1371/journal.pone.0160187. PubMed DOI PMC

Raphel J., Holodniy M., Goodman S.B.S.B., Heilshorn S.C.S.C. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials. 2016;84:301–314. doi: 10.1016/j.biomaterials.2016.01.016. PubMed DOI PMC

Alghamdi H.S., van Oirschot B.A.J.A., Bosco R., van den Beucken J.J.J.P., Aldosari A.A.F., Anil S., Jansen J.A. Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clin. Oral Implant. Res. 2013;24:475–483. doi: 10.1111/j.1600-0501.2011.02409.x. PubMed DOI

Zhang Z., Zhang S., Li Z., Li S., Liu J., Zhang C. Osseointegration effect of biomimetic intrafibrillarly mineralized collagen applied simultaneously with titanium implant: A pilot in vivo study. Clin. Oral Implant. Res. 2019;30:637–648. doi: 10.1111/clr.13449. PubMed DOI

Feng L., Zhang L., Cui Y., Song T.-X., Qiu Z.-Y., Wang X.-M., Tan B.-S. Clinical evaluations of mineralized collagen in the extraction sites preservation. Regen. Biomater. 2016;3:41–48. doi: 10.1093/rb/rbv027. PubMed DOI PMC

Hu C., Zilm M., Wei M. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure. J. Biomed. Mater. Res. A. 2016;104:1153–1161. doi: 10.1002/jbm.a.35649. PubMed DOI

Jang C.H., Lee H., Kim M., Kim G.H. Accelerated osteointegration of the titanium-implant coated with biocomponents, collagen/hydroxyapatite/bone morphogenetic protein-2, for bone-anchored hearing aid. J. Ind. Eng. Chem. 2018;63:230–236. doi: 10.1016/j.jiec.2018.02.019. DOI

Lee S.-W., Hahn B.-D., Kang T.Y., Lee M.-J., Choi J.-Y., Kim M.-K., Kim S.-G. Hydroxyapatite and collagen combination-coated dental implants display better bone formation in the peri-implant area than the same combination plus bone morphogenetic protein-2–coated implants, hydroxyapatite only coated implants, and uncoated implants. J. Oral Maxillofac. Surg. 2014;72:53–60. doi: 10.1016/j.joms.2013.08.031. PubMed DOI

Hahn B.-D., Lee J.-M., Park D.-S., Choi J.-J., Ryu J., Yoon W.-H., Lee B.-K., Shin D.-S., Kim H.-E. Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 2009;5:3205–3214. doi: 10.1016/j.actbio.2009.05.005. PubMed DOI

Lucke M., Wildemann B., Sadoni S., Surke C., Schiller R., Stemberger A., Raschke M., Haas N.P., Schmidmaier G. Systemic versus local application of gentamicin in prophylaxis of implant-related osteomyelitis in a rat model. Bone. 2005;36:770–778. doi: 10.1016/j.bone.2005.01.008. PubMed DOI

Zhuang Y., Ren L., Zhang S., Wei X., Yang K., Dai K. Antibacterial effect of a copper-containing titanium alloy against implant-associated infection induced by methicillin-resistant Staphylococcus aureus. Acta Biomater. 2021;119:472–484. doi: 10.1016/j.actbio.2020.10.026. PubMed DOI

Søe N.H., Jensen N.V., Jensen A.L., Koch J., Poulsen S.S., Pier G.B., Johansen H.K. Active and passive immunization against Staphylococcus aureus periprosthetic osteomyelitis in rats. In Vivo. 2017;31:45–50. doi: 10.21873/invivo.11023. PubMed DOI PMC

Tran P.A., O’Brien-Simpson N., Palmer J.A., Bock N., Reynolds E.C., Webster T.J., Deva A., Morrison W.A., O’Connor A.J. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: In vitro and in vivo assessment. Int. J. Nanomed. 2019;14:4613–4624. doi: 10.2147/IJN.S197737. PubMed DOI PMC

Gomes F., Teixeira P., Oliveira R. Mini-review: Staphylococcus epidermidis as the most frequent cause of nosocomial infections: Old and new fighting strategies. Biofouling. 2014;30:131–141. doi: 10.1080/08927014.2013.848858. PubMed DOI

Viney M., Riley E.M. The immunology of wild rodents: Current status and future prospects. Front. Immunol. 2017;8:1481. doi: 10.3389/fimmu.2017.01481. PubMed DOI PMC

Lovati A.B., Romanò C.L., Bottagisio M., Monti L., De Vecchi E., Previdi S., Accetta R., Drago L. Modeling staphylococcus epidermidis-induced non-unions: Subclinical and clinical evidence in rats. PLoS ONE. 2016;11:e0147447. doi: 10.1371/journal.pone.0147447. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...