Vancomycin-Loaded Collagen/Hydroxyapatite Layers Electrospun on 3D Printed Titanium Implants Prevent Bone Destruction Associated with S. epidermidis Infection and Enhance Osseointegration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TA04010330
Technology Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000787
Ministry of Education, Youth and Sports of the Czech Republic
NV18-05-00379
Ministry of Health of the Czech Republic
Progres Q39 and Q29
Charles University Research Fund
GAUK 5070/2019
Grant Agency of the Charles University
PubMed
34068788
PubMed Central
PMC8151920
DOI
10.3390/biomedicines9050531
PII: biomedicines9050531
Knihovny.cz E-zdroje
- Klíčová slova
- Staphylococcus epidermidis, bone, collagen, hydroxyapatite, implant-related bone infection, minipig, orthopedic implant, osseointegration, rat, vancomycin,
- Publikační typ
- časopisecké články MeSH
The aim of the study was to develop an orthopedic implant coating in the form of vancomycin-loaded collagen/hydroxyapatite layers (COLHA+V) that combine the ability to prevent bone infection with the ability to promote enhanced osseointegration. The ability to prevent bone infection was investigated employing a rat model that simulated the clinically relevant implant-related introduction of bacterial contamination to the bone during a surgical procedure using a clinical isolate of Staphylococcus epidermidis. The ability to enhance osseointegration was investigated employing a model of a minipig with terminated growth. Six weeks following implantation, the infected rat femurs treated with the implants without vancomycin (COLHA+S. epidermidis) exhibited the obvious destruction of cortical bone as evinced via a cortical bone porosity of up to 20% greater than that of the infected rat femurs treated with the implants containing vancomycin (COLHA+V+S. epidermidis) (3%) and the non-infected rat femurs (COLHA+V) (2%). The alteration of the bone structure of the infected COLHA+S. epidermidis group was further demonstrated by a 3% decrease in the average Ca/P molar ratio of the bone mineral. Finally, the determination of the concentration of vancomycin released into the blood stream indicated a negligible systemic load. Six months following implantation in the pigs, the quantified ratio of new bone indicated an improvement in osseointegration, with a two-fold bone ingrowth on the COLHA (47%) and COLHA+V (52%) compared to the control implants without a COLHA layer (27%). Therefore, it can be concluded that COLHA+V layers are able to significantly prevent the destruction of bone structure related to bacterial infection with a minimal systemic load and, simultaneously, enhance the rate of osseointegration.
Biomedical Center Faculty of Medicine in Pilsen Charles University 30100 Pilsen Czech Republic
Faculty of Mechanical Engineering Czech Technical University Prague 16000 Prague 6 Czech Republic
Institute of Anatomy 1st Faculty of Medicine Charles University 12000 Prague 2 Czech Republic
ProSpon Ltd 27201 Kladno Czech Republic
R and D Department Contipro Inc 56102 Dolni Dobrouc Czech Republic
Zobrazit více v PubMed
Ulrich S.D., Seyler T.M., Bennett D., Delanois R.E., Saleh K.J., Thongtrangan I., Kuskowski M., Cheng E.Y., Sharkey P.F., Parvizi J., et al. Total hip arthroplasties: What are the reasons for revision? Int. Orthop. 2008;32:597–604. doi: 10.1007/s00264-007-0364-3. PubMed DOI PMC
Inzana J.A., Schwarz E.M., Kates S.L., Awad H.A. Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials. 2016;81:58–71. doi: 10.1016/j.biomaterials.2015.12.012. PubMed DOI PMC
Suchý T., Šupová M., Klapková E., Horný L., Rýglová Š., Žaloudková M., Braun M., Sucharda Z., Ballay R., Veselý J., et al. The sustainable release of vancomycin and its degradation products from nanostructured collagen/hydroxyapatite composite layers. J. Pharm. Sci. 2016;105:1288–1294. doi: 10.1016/S0022-3549(15)00175-6. PubMed DOI
Vorndran E., Geffers M., Ewald A., Lemm M., Nies B., Gbureck U. Ready-to-use injectable calcium phosphate bone cement paste as drug carrier. Acta Biomater. 2013;9:9558–9567. doi: 10.1016/j.actbio.2013.08.009. PubMed DOI
Antoci V., King S.B., Jose B., Parvizi J., Zeiger A.R., Wickstrom E., Freeman T.A., Composto R.J., Ducheyne P., Shapiro I.M., et al. Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. J. Orthop. Res. 2007;25:858–866. doi: 10.1002/jor.20348. PubMed DOI
Lawson M.C., Bowman C.N., Anseth K.S. Vancomycin derivative photopolymerized to titanium kills S. epidermidis. Clin. Orthop. Relat. Res. 2007;461:96–105. doi: 10.1097/BLO.0b013e3180986706. PubMed DOI
Parvizi J., Rothman R.H., Hozack W.J., Shapiro I.M., Adams C.S., Wickstrom E., Purtill J.J., Sharkey P.F., Hickok N.J., Zeiger A.R. Frank stinchfield award: Titanium surface with biologic activity against infection. Clin. Orthop. Relat. Res. 2004;429:33–38. doi: 10.1097/01.blo.0000150116.65231.45. PubMed DOI
Lawson M.C., Hoth K.C., Deforest C.A., Bowman C.N., Anseth K.S. Inhibition of staphylococcus epidermidis biofilms using polymerizable vancomycin derivatives. Clin. Orthop. Relat. Res. 2010;468:2081–2091. doi: 10.1007/s11999-010-1266-z. PubMed DOI PMC
Antoci V., Adams C.S., Parvizi J., Ducheyne P., Shapiro I.M., Hickok N.J. Covalently attached vancomycin provides a nanoscale antibacterial surface. Clin. Orthop. Relat. Res. 2007;461:81–87. doi: 10.1097/BLO.0b013e3181123a50. PubMed DOI
Edupuganti O.P., Antoci V., King S.B., Jose B., Adams C.S., Parvizi J., Shapiro I.M., Zeiger A.R., Hickok N.J., Wickstrom E. Covalent bonding of vancomycin to Ti6Al4V alloy pins provides long-term inhibition of Staphylococcus aureus colonization. Bioorganic Med. Chem. Lett. 2007;17:2692–2696. doi: 10.1016/j.bmcl.2007.03.005. PubMed DOI
Klemm K. Gentamicin-PMMA-beads in treating bone and soft tissue infections. Zent. Chir. 1979;104:934–942. PubMed
Villalba-Rodriguez A.M., Parra-Saldivar R., Ahmed I., Karthik K., Malik Y.S., Dhama K., Iqbal H.M.N. Bio-inspired biomaterials and their drug delivery perspectives—A review. Curr. Drug Metab. 2018;18 doi: 10.2174/1389200218666170925113132. PubMed DOI
Geurts J., Chris Arts J.J., Walenkamp G.H.I.M. Bone graft substitutes in active or suspected infection. Contra-indicated or not? Injury. 2011;42 doi: 10.1016/j.injury.2011.06.189. PubMed DOI
Uskokovic V. Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit. Rev. Drug Carr. Syst. 2014;32:1–59. doi: 10.1615/critrevtherdrugcarriersyst.2014010920. PubMed DOI PMC
Alt V., Franke J., Schnettler R. Local delivery of antibiotics in the surgical treatment of bone infections. Tech. Orthop. 2015;30:230–235. doi: 10.1097/BTO.0000000000000153. DOI
Nair M., Krishnan A. Antibiotic releasing biodegradable scaffolds for osteomyelitis. Curr. Drug Deliv. 2014;11:687–700. doi: 10.2174/1567201811666140414120002. PubMed DOI
El-Husseiny M., Patel S., MacFarlane R.J., Haddad F.S. Biodegradable antibiotic delivery systems. J. Bone Jt. Surg. Br. 2011;93-B:151–157. doi: 10.1302/0301-620x.93b2.24933. PubMed DOI
Fleiter N., Walter G., Bösebeck H., Vogt S., Büchner H., Hirschberger W., Hoffmann R. Clinical use and safety of a novel gentamicin-releasing resorbable bone graft substitute in the treatment of osteomyelitis/osteitis. Bone Jt. Res. 2014;3:223–229. doi: 10.1302/2046-3758.37.2000301. PubMed DOI PMC
Manchon A., Prados-Frutos J., Rueda-Rodriguez C., Salinas-Goodier C., Alkhraisat M., Rojo R., Rodriguez-Gonzalez A., Berlanga A., Lopez-Cabarcos E. Antibiotic release from calcium phosphate materials in oral and maxillofacial surgery. molecular, cellular and pharmaceutical aspects. Curr. Pharm. Biotechnol. 2017;18:52–63. doi: 10.2174/1389201018666161114145827. PubMed DOI
Ginebra M.P., Traykova T., Planell J.A. Calcium phosphate cements as bone drug delivery systems: A review. J. Control. Release. 2006;113:102–110. doi: 10.1016/j.jconrel.2006.04.007. PubMed DOI
Schmidmaier G., Lucke M., Wildemann B., Haas N.P., Raschke M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: A review. Injury. 2006;37:S105–S112. doi: 10.1016/j.injury.2006.04.016. PubMed DOI
Ueng S.W.N., Yuan L.J., Lee N., Lin S.S., Liu S.J., Chan E.C., Weng J.H. In vivo study of hot compressing molded 50:50 poly (DL-lactide-co-glycolide) antibiotic beads in rabbits. J. Orthop. Res. 2002;20:654–661. doi: 10.1016/S0736-0266(01)00174-7. PubMed DOI
Zhang L., Yan J., Yin Z., Tang C., Guo Y., Li D., Wei B., Xu Y., Gu Q., Wang L. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. Int. J. Nanomed. 2014:3027–3036. doi: 10.2147/IJN.S63991. PubMed DOI PMC
Ruszczak Z., Friess W. Collagen as a carrier for on-site delivery of antibacterial drugs. Adv. Drug Deliv. Rev. 2003;55:1679–1698. doi: 10.1016/j.addr.2003.08.007. PubMed DOI
Stinner D.J., Noel S.P., Haggard W.O., Watson J.T., Wenke J.C. Local antibiotic delivery using tailorable chitosan sponges: The future of infection control? J. Orthop. Trauma. 2010;24:592–597. doi: 10.1097/BOT.0b013e3181ed296c. PubMed DOI
Yu B.G., Kwon I.C., Kim Y.H., Han D.K., Park K.D., Han K., Jeong S.Y. Development of a local antibiotic delivery system using fibrin glue. J. Control. Release. 1996;39:65–70. doi: 10.1016/0168-3659(95)00139-5. DOI
Suchý T., Šupová M., Klapková E., Adamková V., Závora J., Žaloudková M., Rýglová Š., Ballay R., Denk F., Pokorný M., et al. The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. nanostructure. Eur. J. Pharm. Sci. 2017;100:219–229. doi: 10.1016/j.ejps.2017.01.032. PubMed DOI
Chen D.W., Hsu Y.-H., Liao J.-Y., Liu S.-J., Chen J.-K., Ueng S.W.-N. Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes. Int. J. Pharm. 2012;430:335–341. doi: 10.1016/j.ijpharm.2012.04.010. PubMed DOI
Lambert L., Novakova M., Lukac P., Cechova D., Sukenikova L., Hrdy J., Mlcek M., Chlup H., Suchy T., Grus T. Evaluation of the immunogenicity of a vascular graft covered with collagen derived from the european carp (cyprinus carpio) and bovine collagen. Biomed Res. Int. 2019 doi: 10.1155/2019/5301405. PubMed DOI PMC
Suchy T., Supova M., Sauerova P., Kalbacova M.H., Klapkova E., Pokorny M., Horny L., Zavora J., Ballay R., Denk F., et al. Evaluation of collagen/hydroxyapatite electrospun layers loaded with vancomycin, gentamicin and their combination: Comparison of release kinetics, antimicrobial activity and cytocompatibility. Eur. J. Pharm. Biopharm. 2019;140:50–59. doi: 10.1016/j.ejpb.2019.04.021. PubMed DOI
Lian X., Liu H., Wang X., Xu S., Cui F., Bai X. Antibacterial and biocompatible properties of vancomycin-loaded nano-hydroxyapatite/collagen/poly (lactic acid) bone substitute. Prog. Nat. Sci. Mater. Int. 2013;23:549–556. doi: 10.1016/j.pnsc.2013.11.003. DOI
Pon-On W., Charoenphandhu N., Teerapornpuntakit J., Thongbunchoo J., Krishnamra N., Tang I.-M. In vitro study of vancomycin release and osteoblast-like cell growth on structured calcium phosphate-collagen. Mater. Sci. Eng. C. 2013;33:1423–1431. doi: 10.1016/j.msec.2012.12.046. PubMed DOI
Ionita D., Bajenaru-Georgescu D., Totea G., Mazare A., Schmuki P., Demetrescu I. Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO2 nanotubes. Int. J. Pharm. 2017;517:296–302. doi: 10.1016/j.ijpharm.2016.11.062. PubMed DOI
Lian X., Mao K., Liu X., Wang X., Cui F. In vivo osteogenesis of vancomycin loaded nanohydroxyapatite/collagen/calcium sulfate composite for treating infectious bone defect induced by chronic osteomyelitis. J. Nanomater. 2015;2015:1–8. doi: 10.1155/2015/261492. DOI
Coelho C.C., Sousa S.R., Monteiro F.J. Heparinized nanohydroxyapatite/collagen granules for controlled release of vancomycin. J. Biomed. Mater. Res. Part A. 2015;103:3128–3138. doi: 10.1002/jbm.a.35454. PubMed DOI
Faigle G., Bernstein A., Suedkamp N.P., Mayr H.O., Peters F., Huebner W.D., Seidenstuecker M. Release behavior of VAN from four types of CaP-ceramic granules using various loading methods at two different degrees of acidity. J. Mater. Sci. Mater. Med. 2018;29:12. doi: 10.1007/s10856-017-6006-4. PubMed DOI
Lian X.J., Wang X.M., Cui F.Z. In Vitro Antibacterial Properties of vancomycin-loaded nano-hydroxyapatite/collagen/calcium sulfate hemihydrates (VCM/nHAC/CSH) bone substitute. Mater. Sci. Forum. 2013;745–746:6–12. doi: 10.4028/www.scientific.net/MSF.745-746.6. DOI
Mao K., Liu J., Lian X., Wang Q., Wang X., Mei W., Mao K. Controlled release of rhbmp-2 and vancomycin from nhac/$α$-csh scaffold for treatment of chronic osteomyelitis. J. Biomater. Tissue Eng. 2015;5:294–300. doi: 10.1166/jbt.2015.1310. DOI
Pokorný M., Suchý T., Kotzianová A., Klemeš J., Denk F., Šupová M., Sucharda Z., Sedláček R., Horný L., Králík V., et al. Surface treatment of acetabular cups with a direct deposition of a composite nanostructured layer using a high electrostatic field. Molecules. 2020;25:1173. doi: 10.3390/molecules25051173. PubMed DOI PMC
Pokorny M., Rassushin V., Wolfova L., Velebny V. Increased production of nanofibrous materials by electroblowing from blends of hyaluronic acid and polyethylene oxide. Polym. Eng. Sci. 2016;56:932–938. doi: 10.1002/pen.24322. DOI
European committee for antimicrobial susceptibility testing (EUCAST) of the European society of clinical microbiology and infectious diseases (ESCMID) determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003;9:596–600. doi: 10.1046/j.1469-0691.2003.00790.x. PubMed DOI
The European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 10.0. [(accessed on 6 August 2020)];2020 Available online: http://www.eucast.org.
Ruzicka F., Hola V., Votava M., Tejkalova R., Horvat R., Heroldova M., Woznicova V. Biofilm detection and the clinical significance of Staphylococcus epidermidis isolates. Folia Microbiol. 2004;49:596–600. doi: 10.1007/BF02931540. PubMed DOI
Cannon C.Z., Kissling G.E., Goulding D.R., King-Herbert A.P., Blankenship-Paris T. Analgesic effects of tramadol, carprofen or multimodal analgesia in rats undergoing ventral laparotomy. Lab Anim. 2011;40:85–93. doi: 10.1038/laban0311-85. PubMed DOI
Babuska V., Moztarzadeh O., Kubikova T., Moztarzadeh A., Hrusak D., Tonar Z. Evaluating the osseointegration of nanostructured titanium implants in animal models: Current experimental methods and perspectives (Review) Biointerphases. 2016;11:30801. doi: 10.1116/1.4958793. PubMed DOI
Kubíková T., Bartoš M., Juhas Š., Suchý T., Sauerová P., Hubálek-Kalbáčová M., Tonar Z. Comparison of ground sections, paraffin sections and micro-CT imaging of bone from the epiphysis of the porcine femur for morphometric evaluation. Ann. Anat. Anat. Anz. 2018;220:85–96. doi: 10.1016/j.aanat.2018.07.004. PubMed DOI
Jiřík M., Bartoš M., Tomášek P., Malečková A., Kural T.T., Horáková J., Lukáš D., Suchý T., Kochová P., Hubálek Kalbáčová M., et al. Generating standardized image data for testing and calibrating quantification of volumes, surfaces, lengths, and object counts in fibrous and porous materials using X-ray microtomography. Microsc. Res. Tech. 2018;81:551–568. doi: 10.1002/jemt.23011. PubMed DOI
Kourkoumelis N., Balatsoukas I., Tzaphlidou M. Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J. Biol. Phys. 2012;38:279–291. doi: 10.1007/s10867-011-9247-3. PubMed DOI PMC
Melichercik P., Klapkova E., Landor I., Judl T., Sibek M., Jahoda D. The effect of Vancomycin degradation products in the topical treatment of osteomyelitis. Bratisl. Lek. Listy. 2014;115:796–799. doi: 10.4149/bll_2014_154. PubMed DOI
Roldán J.C., Detsch R., Schaefer S., Chang E., Kelantan M., Waiss W., Reichert T.E., Gurtner G.C., Deisinger U. Bone formation and degradation of a highly porous biphasic calcium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model. J. Cranio-Maxillofac. Surg. 2010;38:423–430. doi: 10.1016/j.jcms.2010.01.003. PubMed DOI
Bigi A., Cojazzi G., Panzavolta S., Ripamonti A., Roveri N., Romanello M., Suarez K.N., Moro L. Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J. Inorg. Biochem. 1997;68:45–51. doi: 10.1016/S0162-0134(97)00007-X. PubMed DOI
Termine J.D., Eanes E.D., Greenfield D.J., Nylen M.U., Harper R.A. Hydrazine-deproteinated bone mineral. Calcif. Tissue Res. 1973;12:73–90. doi: 10.1007/BF02013723. PubMed DOI
Kazemzadeh-Narbat M., Noordin S., Masri B.A., Garbuz D.S., Duncan C.P., Hancock R.E.W., Wang R. Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012;100B:1344–1352. doi: 10.1002/jbm.b.32701. PubMed DOI
Tang T., Ao H., Yang S., Wang Y., Lin W., Yu Z., Yang Y. In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants. Int. J. Nanomed. 2016:2223–2234. doi: 10.2147/IJN.S102752. PubMed DOI PMC
Zhou J., Zhou X.G., Wang J.W., Zhou H., Dong J. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/$β$-tricalcium phosphate composite scaffold. Bone Jt. Res. 2018;7:46–57. doi: 10.1302/2046-3758.71.BJR-2017-0129.R2. PubMed DOI PMC
Zaichick S., Zaichick V. Neutron activation analysis of Ca, Cl, Mg, Na, and P content in human bone affected by osteomyelitis or osteogenic sarcoma. J. Radioanal. Nucl. Chem. 2012;293:241–246. doi: 10.1007/s10967-012-1645-x. DOI
Fiore E., Levi M., Gianesella M., Benazzi C., Morgante M., Beltrame A., Vaccaro C., Gentile A. Epiphysitis in fattening bulls: Radiological and pathologic findings. Large Anim. Rev. 2016;22:43–45.
Henderson B., Nair S.P. Hard labour: Bacterial infection of the skeleton. Trends Microbiol. 2003;11:570–577. doi: 10.1016/j.tim.2003.10.005. PubMed DOI
Brady R.A., Leid J.G., Calhoun J.H., Costerton J.W., Shirtliff M.E. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol. Med. Microbiol. 2008;52:13–22. doi: 10.1111/j.1574-695X.2007.00357.x. PubMed DOI
Esmonde-White K.A., Esmonde-White F.W.L., Holmes C.M., Morris M.D., Roessler B.J. Alterations to bone mineral composition as an early indication of osteomyelitis in the diabetic foot. Diabetes Care. 2013;36:3652–3654. doi: 10.2337/dc13-0510. PubMed DOI PMC
Loc-Carrillo C., Wang C., Canden A., Burr M., Agarwal J. Local intramedullary delivery of vancomycin can prevent the development of long bone Staphylococcus aureus infection. PLoS ONE. 2016;11:e0160187. doi: 10.1371/journal.pone.0160187. PubMed DOI PMC
Raphel J., Holodniy M., Goodman S.B.S.B., Heilshorn S.C.S.C. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials. 2016;84:301–314. doi: 10.1016/j.biomaterials.2016.01.016. PubMed DOI PMC
Alghamdi H.S., van Oirschot B.A.J.A., Bosco R., van den Beucken J.J.J.P., Aldosari A.A.F., Anil S., Jansen J.A. Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clin. Oral Implant. Res. 2013;24:475–483. doi: 10.1111/j.1600-0501.2011.02409.x. PubMed DOI
Zhang Z., Zhang S., Li Z., Li S., Liu J., Zhang C. Osseointegration effect of biomimetic intrafibrillarly mineralized collagen applied simultaneously with titanium implant: A pilot in vivo study. Clin. Oral Implant. Res. 2019;30:637–648. doi: 10.1111/clr.13449. PubMed DOI
Feng L., Zhang L., Cui Y., Song T.-X., Qiu Z.-Y., Wang X.-M., Tan B.-S. Clinical evaluations of mineralized collagen in the extraction sites preservation. Regen. Biomater. 2016;3:41–48. doi: 10.1093/rb/rbv027. PubMed DOI PMC
Hu C., Zilm M., Wei M. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure. J. Biomed. Mater. Res. A. 2016;104:1153–1161. doi: 10.1002/jbm.a.35649. PubMed DOI
Jang C.H., Lee H., Kim M., Kim G.H. Accelerated osteointegration of the titanium-implant coated with biocomponents, collagen/hydroxyapatite/bone morphogenetic protein-2, for bone-anchored hearing aid. J. Ind. Eng. Chem. 2018;63:230–236. doi: 10.1016/j.jiec.2018.02.019. DOI
Lee S.-W., Hahn B.-D., Kang T.Y., Lee M.-J., Choi J.-Y., Kim M.-K., Kim S.-G. Hydroxyapatite and collagen combination-coated dental implants display better bone formation in the peri-implant area than the same combination plus bone morphogenetic protein-2–coated implants, hydroxyapatite only coated implants, and uncoated implants. J. Oral Maxillofac. Surg. 2014;72:53–60. doi: 10.1016/j.joms.2013.08.031. PubMed DOI
Hahn B.-D., Lee J.-M., Park D.-S., Choi J.-J., Ryu J., Yoon W.-H., Lee B.-K., Shin D.-S., Kim H.-E. Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 2009;5:3205–3214. doi: 10.1016/j.actbio.2009.05.005. PubMed DOI
Lucke M., Wildemann B., Sadoni S., Surke C., Schiller R., Stemberger A., Raschke M., Haas N.P., Schmidmaier G. Systemic versus local application of gentamicin in prophylaxis of implant-related osteomyelitis in a rat model. Bone. 2005;36:770–778. doi: 10.1016/j.bone.2005.01.008. PubMed DOI
Zhuang Y., Ren L., Zhang S., Wei X., Yang K., Dai K. Antibacterial effect of a copper-containing titanium alloy against implant-associated infection induced by methicillin-resistant Staphylococcus aureus. Acta Biomater. 2021;119:472–484. doi: 10.1016/j.actbio.2020.10.026. PubMed DOI
Søe N.H., Jensen N.V., Jensen A.L., Koch J., Poulsen S.S., Pier G.B., Johansen H.K. Active and passive immunization against Staphylococcus aureus periprosthetic osteomyelitis in rats. In Vivo. 2017;31:45–50. doi: 10.21873/invivo.11023. PubMed DOI PMC
Tran P.A., O’Brien-Simpson N., Palmer J.A., Bock N., Reynolds E.C., Webster T.J., Deva A., Morrison W.A., O’Connor A.J. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: In vitro and in vivo assessment. Int. J. Nanomed. 2019;14:4613–4624. doi: 10.2147/IJN.S197737. PubMed DOI PMC
Gomes F., Teixeira P., Oliveira R. Mini-review: Staphylococcus epidermidis as the most frequent cause of nosocomial infections: Old and new fighting strategies. Biofouling. 2014;30:131–141. doi: 10.1080/08927014.2013.848858. PubMed DOI
Viney M., Riley E.M. The immunology of wild rodents: Current status and future prospects. Front. Immunol. 2017;8:1481. doi: 10.3389/fimmu.2017.01481. PubMed DOI PMC
Lovati A.B., Romanò C.L., Bottagisio M., Monti L., De Vecchi E., Previdi S., Accetta R., Drago L. Modeling staphylococcus epidermidis-induced non-unions: Subclinical and clinical evidence in rats. PLoS ONE. 2016;11:e0147447. doi: 10.1371/journal.pone.0147447. PubMed DOI PMC