Surface Treatment of Acetabular Cups with a Direct Deposition of a Composite Nanostructured Layer Using a High Electrostatic Field

. 2020 Mar 05 ; 25 (5) : . [epub] 20200305

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32150982

Grantová podpora
TA04010330 Technologická Agentura České Republiky

A composite nanofibrous layer containing collagen and hydroxyapatite was deposited on selected surface areas of titanium acetabular cups. The layer was deposited on the irregular surface of these 3D objects using a specially developed electrospinning system designed to ensure the stability of the spinning process and to produce a layer approximately 100 micrometers thick with an adequate thickness uniformity. It was verified that the layer had the intended nanostructured morphology throughout its entire thickness and that the prepared layer sufficiently adhered to the smooth surface of the model titanium implants even after all the post-deposition sterilization and stabilization treatments were performed. The resulting layers had an average thickness of (110 ± 30) micrometers and an average fiber diameter of (170 ± 49) nanometers. They were produced using a relatively simple and cost-effective technology and yet they were verifiably biocompatible and structurally stable. Collagen- and hydroxyapatite-based composite nanostructured surface modifications represent promising surface treatment options for metal implants.

Zobrazit více v PubMed

Suchanek W., Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 1998;13:94–117. doi: 10.1557/JMR.1998.0015. DOI

Moore B., Asadi E., Lewis G. Deposition Methods for Microstructured and Nanostructured Coatings on Metallic Bone Implants: A Review. Adv. Mater. Sci. Eng. 2017;2017:1–9. doi: 10.1155/2017/5812907. DOI

Dehghanghadikolaei A., Fotovvati B. Coating Techniques for Functional Enhancement of Metal Implants for Bone Replacement: A Review. Mater. 2019;12:1795. doi: 10.3390/ma12111795. PubMed DOI PMC

Jang C.H., Lee H., Kim M., Kim G.H. Accelerated osteointegration of the titanium-implant coated with biocomponents, collagen/hydroxyapatite/bone morphogenetic protein-2, for bone-anchored hearing aid. J. Ind. Eng. Chem. 2018;63:230–236. doi: 10.1016/j.jiec.2018.02.019. DOI

Wu H.-C., Wang T.-W., Sun J.-S., Lee Y.-H., Shen M.-H., Tsai Z.-R., Chen C.-Y., Hsu H.-C. Development and Characterization of a Bioinspired Bone Matrix with Aligned Nanocrystalline Hydroxyapatite on Collagen Nanofibers. Materials. 2016;9:198. doi: 10.3390/ma9030198. PubMed DOI PMC

Wingender B., Bradley P., Saxena N., Ruberti J., Gower L. Biomimetic organization of collagen matrices to template bone-like microstructures. Matrix Boil. 2016;52:384–396. doi: 10.1016/j.matbio.2016.02.004. PubMed DOI

Bak S.Y., Yoon G.J., Lee S.W., Kim H.W. Effect of humidity and benign solvent composition on electrospinning of collagen nanofibrous sheets. Mater. Lett. 2016;181:136–139. doi: 10.1016/j.matlet.2016.06.019. DOI

Dippold D., Cai A., Hardt M., Boccaccini A.R., Horch R., Beier J.P., Schubert D.W. Novel approach towards aligned PCL-Collagen nanofibrous constructs from a benign solvent system. Mater. Sci. Eng. C. 2017;72:278–283. doi: 10.1016/j.msec.2016.11.045. PubMed DOI

Barrientos I.J.H., Paladino E., Szabó P., Brozio S., Hall P.J., Oseghale C.I., Passarelli M.K., Moug S.J., Black R.A., Wilson C.G., et al. Electrospun collagen-based nanofibres: A sustainable material for improved antibiotic utilisation in tissue engineering applications. Int. J. Pharm. 2017;531:67–79. doi: 10.1016/j.ijpharm.2017.08.071. PubMed DOI

Zhang X., Tang K., Zheng X. Electrospinning and crosslinking of COL/PVA Nanofiber-microsphere Containing Salicylic Acid for Drug Delivery. J. Bionic Eng. 2016;13:143–149. doi: 10.1016/S1672-6529(14)60168-2. DOI

Kotzianova A., Klemes J., Zidek O., Mlynar Z., Pokorny M., Velebny V. Effect of different emitter types on the production of nanofibrous tubular structures: Thickness uniformity and productivity. AIP Adv. 2019;9:025036. doi: 10.1063/1.5088078. DOI

Pokorny M., Klemes J., Kotzianova A., Kohoutek T., Velebný V. Increased thickness uniformity of large-area nanofibrous layers by electrodynamic spinning. AIP Adv. 2017;7:105214. doi: 10.1063/1.4998489. DOI

Zhang D., Chang J. Electrospinning of Three-Dimensional Nanofibrous Tubes with Controllable Architectures. Nano Lett. 2008;8:3283–3287. doi: 10.1021/nl801667s. PubMed DOI

Iafisco M., Foltran I., Sabbatini S., Tosi G., Roveri N. Electrospun Nanostructured Fibers of Collagen-Biomimetic Apatite on Titanium Alloy. Bioinorg. Chem. Appl. 2012;2012:1–8. doi: 10.1155/2012/123953. PubMed DOI PMC

Ravichandran R., Ng C.C., Liao S., Pliszka D., Raghunath M., Ramakrishna S., Chan C.K. Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomed. Mater. 2011;7 doi: 10.1088/1748-6041/7/1/015001. PubMed DOI

Wang H. Modification of root form dental implants for accelerated tissue regeneration. Application No. 14/158,291. U.S. Patent. 2014 Jul 24

Khandaker M., Shahram R. Method and apparatus to coat a metal implant with electrospun nanofiber matrix. No. 9,809,906. U.S. Patent. 2017 Nov 7;

Suchý T., Šupová M., Klapková E., Adámková V., Závora J., Žaloudková M., Rýglová Š, Ballay R., Denk F., Pokorny M., et al. The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. nanostructure. Eur. J. Pharm. Sci. 2017;100:219–229. PubMed

Suchý T., Šupová M., Sauerová P., Hubálek Kalbáčová M., Klapková E., Pokorný M., Horný L., Závora J., Ballay R., Denk F., et al. Evaluation of collagen/hydroxyapatite electrospun layers loaded with vancomycin, gentamicin and their combination: Comparison of release kinetics, antimicrobial activity and cytocompatibility. Eur. J. Pharm. Biopharm. 2019;140:50–59. doi: 10.1016/j.ejpb.2019.04.021. PubMed DOI

Malyshev B., Salganik R. The strength of adhesive joints using the theory of cracks. Int. J. Fract. 1965;1 doi: 10.1007/BF00186749. DOI

Frushour B.G., Koenig J.L. Raman scattering of collagen, gelatin, and elastin. Biopolymers. 1975;14:379–391. doi: 10.1002/bip.1975.360140211. PubMed DOI

Walters M., Leung Y., Blumenthal N., Konsker K., LeGeros R. A Raman and infrared spectroscopic investigation of biological hydroxyapatite. J. Inorg. Biochem. 1990;39:193–200. doi: 10.1016/0162-0134(90)84002-7. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...