Comparative Study of the Dehydrothermal Crosslinking of Electrospun Collagen Nanofibers: The Effects of Vacuum Conditions and Subsequent Chemical Crosslinking

. 2024 Aug 29 ; 16 (17) : . [epub] 20240829

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39274086

Grantová podpora
SGS22/149/OHK2/3T/12 Czech Technical University in Prague
NU20-02-00368 Ministry of Health of the Czech Republic
67985891 Institute of Rock Structure and Mechanics of The Czech Academy of Sciences

Collagen nanofibrous materials have become integral to tissue engineering due to their exceptional properties and biocompatibility. Dehydrothermal crosslinking (DHT) enhances stability and maintains structural integrity without the formation of toxic residues. The study involved the crosslinking of electrospun collagen, applying DHT with access to air and under vacuum conditions. Various DHT exposure times of up to 72 h were applied to examine the time dependance of the DHT process. The DHT crosslinked collagen was subsequently chemically crosslinked using carbodiimides. The material crosslinked in this way evinced elevated Young's modulus values and ultimate tensile strength values, a lower swelling rate and lower shrinkage ratio during crosslinking, and a higher degree of resistance to degradation than the material crosslinked solely with DHT or carbodiimides. It was shown that the crosslinking mechanism using DHT occupies different binding sites than those using chemical crosslinking. Access to air for 12 h or less did not exert a significant impact on the material properties compared to DHT under vacuum conditions. However, concerning longer exposure times, it was determined that access to air results in the deterioration of the properties of the material and that reactions take place that occupy the free bonding sites, which subsequently reduces the effectiveness of chemical crosslinking using carbodiimides.

Zobrazit více v PubMed

Dong C., Lv Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers. 2016;8:42. doi: 10.3390/polym8020042. PubMed DOI PMC

Ferreira A.M., Gentile P., Chiono V., Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012;8:3191–3200. doi: 10.1016/j.actbio.2012.06.014. PubMed DOI

Suchý T. Collagen in Bone Tissue Regeneration: Focusing on the Mechanical and Structural Constraints. 2020. [(accessed on 22 March 2022)]. Available online: https://dspace.cvut.cz/handle/10467/106899.

Cen L., Liu W., Cui L., Zhang W., Cao Y. Collagen tissue engineering: Development of novel biomaterials and applications. Pediatr. Res. 2008;63:492–496. doi: 10.1203/PDR.0b013e31816c5bc3. PubMed DOI

Sheehy E., Cunniffe G., O’Brien F. Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair. Woodhead Publishing; Duxford, UK: 2018. Collagen-based biomaterials for tissue regeneration and repair; pp. 127–150.

Blackstone B.N., Gallentine S.C., Powell H.M. Collagen-based electrospun materials for tissue engineering: A systematic review. Bioengineering. 2021;8:39. doi: 10.3390/bioengineering8030039. PubMed DOI PMC

Martins A., Araújo J.V., Reis R.L., Neves N.M. Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine. 2007;2:929–942. doi: 10.2217/17435889.2.6.929. PubMed DOI

Atala A., Lanza R., Lanza R.P. Methods of Tissue Engineering. Gulf Professional Publishing; Houston, TX, USA: 2002.

Buttafoco L., Kolkman N., Engbers-Buijtenhuijs P., Poot A., Dijkstra P., Vermes I., Feijen J. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials. 2006;27:724–734. doi: 10.1016/j.biomaterials.2005.06.024. PubMed DOI

Matthews J.A., Wnek G.E., Simpson D.G., Bowlin G.L. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–238. doi: 10.1021/bm015533u. PubMed DOI

Bahria H. Electrospinning of collagen: Formation of biomedical scaffold. Adv. Res. Text. Eng. 2017;2:1017. doi: 10.26420/advrestexteng.2017.1017. DOI

Meng L., Arnoult O., Smith M., Wnek G.E. Electrospinning of in situ crosslinked collagen nanofibers. J. Mater. Chem. 2012;22:19412–19417. doi: 10.1039/c2jm31618h. DOI

Suchý T., Šupová M., Sauerová P., Verdanova M., Sucharda Z., Rýglová S., Žaloudková M., Sedláček R., Kalbacova M.H. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds—An in vitro evaluation using mesenchymal stem cells. Biomed. Mater. 2015;10:065008. doi: 10.1088/1748-6041/10/6/065008. PubMed DOI

Song J.-H., Kim H.-E., Kim H.-W. Electrospun fibrous web of collagen–apatite precipitated nanocomposite for bone regeneration. J. Mater. Sci. Mater. Med. 2008;19:2925–2932. doi: 10.1007/s10856-008-3420-7. PubMed DOI

Jiang Y.-H., Lou Y.-Y., Li T.-H., Liu B.-Z., Chen K., Zhang D., Li T. Cross-linking methods of type I collagen-based scaffolds for cartilage tissue engineering. Am. J. Transl. Res. 2022;14:1146. PubMed PMC

Zhu J., Li Z., Zou Y., Lu G., Ronca A., D’amora U., Liang J., Fan Y., Zhang X., Sun Y. Advanced application of collagen-based biomaterials in tissue repair and restoration. J. Leather Sci. Eng. 2022;4:30. doi: 10.1186/s42825-022-00102-6. DOI

Zhu L., Yu Z.-L., Li S., Xu C.-Z., Hou Y.-J., Liao L.-X., Xu Y.-L., Zhang J.-T., Wei B.-M., Wen W., et al. Recent Advances on Collagen Biomaterial: From Extraction, Cross-Linking to Tissue Regeneration. Polym. Rev. 2024:1–29. doi: 10.1080/15583724.2024.2382128. DOI

Drexler J.W., Powell H.M. Dehydrothermal crosslinking of electrospun collagen. Tissue Eng. Part C Methods. 2011;17:9–17. doi: 10.1089/ten.tec.2009.0754. PubMed DOI

Gorham S.D., Light N.D., Diamond A.M., Willins M.J., Bailey A.J., Wess T.J., Leslie N.J. Effect of chemical modifications on the susceptibility of collagen to proteolysis. II. Dehydrothermal crosslinking. Int. J. Biol. Macromol. 1992;14:129–138. doi: 10.1016/S0141-8130(05)80002-9. PubMed DOI

Weadock K., Olson R.M., Silver F.H. Evaluation of collagen crosslinking techniques. Biomater. Med. Devices Artif. Organs. 1983;11:293–318. doi: 10.3109/10731198309118815. PubMed DOI

Damink L.H.H.O., Dijkstra P.J., Van Luyn M.J.A., Van Wachem P.B., Nieuwenhuis P., Feijen J. Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J. Mater. Sci. Mater. Med. 1995;6:460–472. doi: 10.1007/BF00123371. DOI

Huang G.P., Shanmugasundaram S., Masih P., Pandya D., Amara S., Collins G., Arinzeh T.L. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J. Biomed. Mater. Res. Part A. 2015;103:762–771. doi: 10.1002/jbm.a.35222. PubMed DOI

Eyre D.R., Wu J.-J. Collagen: Primer in Structure, Processing and Assembly. Spinger; Berlin/Heidelberg, Germany: 2005. Collagen cross-links; pp. 207–229.

Lim D.-J. Cross-linking agents for electrospinning-based bone tissue engineering. Int. J. Mol. Sci. 2022;23:5444. doi: 10.3390/ijms23105444. PubMed DOI PMC

Scialla S., Gullotta F., Izzo D., Palazzo B., Scalera F., Martin I., Sannino A., Gervaso F. Genipin-crosslinked collagen scaffolds inducing chondrogenesis: A mechanical and biological characterization. J. Biomed. Mater. Res. Part A. 2022;110:1372–1385. doi: 10.1002/jbm.a.37379. PubMed DOI

Shepherd D.V., Shepherd J.H., Ghose S., Kew S.J., Cameron R.E., Best S.M. The process of EDC-NHS cross-linking of reconstituted collagen fibres increases collagen fibrillar order and alignment. APL Mater. 2015;3:014902. doi: 10.1063/1.4900887. PubMed DOI PMC

Mekhail M., Wong K.K.H., Padavan D.T., Wu Y., O’Gorman D.B., Wan W. Genipin-cross-linked electrospun collagen fibers. J. Biomater. Sci. Polym. Ed. 2011;22:2241–2259. doi: 10.1163/092050610X538209. PubMed DOI

Adamiak K., Sionkowska A. Current methods of collagen cross-linking. Int. J. Biol. Macromol. 2020;161:550–560. doi: 10.1016/j.ijbiomac.2020.06.075. PubMed DOI

Weadock K.S., Miller E.J., Bellincampi L.D., Zawadsky J.P., Dunn M.G. Physical crosslinking of collagen fibers: Comparison of ultraviolet irradiation and dehydrothermal treatment. J. Biomed. Mater. Res. 1995;29:1373–1379. doi: 10.1002/jbm.820291108. PubMed DOI

Tihăuan B.-M., Pircalabioru G.G., Bucos M.A., Marinaș I.C., Nicoară A.-C., Măruțescu L., Oprea O., Matei E., Maier S.S. Crosslinked collagenic scaffold behavior evaluation by physico-chemical, mechanical and biological assessments in an in vitro microenvironment. Polymers. 2022;14:2430. doi: 10.3390/polym14122430. PubMed DOI PMC

Haugh M.G., Jaasma M.J., O’Brien F.J. The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2009;89:363–369. doi: 10.1002/jbm.a.31955. PubMed DOI

Suchý T., Vištejnová L., Šupová M., Klein P., Bartoš M., Kolinko Y., Blassová T., Tonar Z., Pokorný M., Sucharda Z., et al. Vancomycin-loaded collagen/hydroxyapatite layers electrospun on 3D printed titanium implants prevent bone destruction associated with S. epidermidis infection and enhance osseointegration. Biomedicines. 2021;9:531. doi: 10.3390/biomedicines9050531. PubMed DOI PMC

Suchý T., Šupová M., Sauerová P., Kalbáčová M.H., Klapková E., Pokorný M., Horný L., Závora J., Ballay R., Denk F., et al. Evaluation of collagen/hydroxyapatite electrospun layers loaded with vancomycin, gentamicin and their combination: Comparison of release kinetics, antimicrobial activity and cytocompatibility. Eur. J. Pharm. Biopharm. 2019;140:50–59. doi: 10.1016/j.ejpb.2019.04.021. PubMed DOI

Suchý T., Šupová M., Klapková E., Adamková V., Závora J., Žaloudková M., Rýglová Š., Ballay R., Denk F., Pokorný M., et al. The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. nanostructure. Eur. J. Pharm. Sci. 2017;100:219–229. doi: 10.1016/j.ejps.2017.01.032. PubMed DOI

Pokorný M., Suchý T., Kotzianová A., Klemeš J., Denk F., Šupová M., Sucharda Z., Sedláček R., Horný L., Králík V., et al. Surface treatment of acetabular cups with a direct deposition of a composite nanostructured layer using a high electrostatic field. Molecules. 2020;25:1173. doi: 10.3390/molecules25051173. PubMed DOI PMC

Rýglová Š., Braun M., Suchý T. Collagen and Its Modifications—Crucial Aspects with Concern to Its Processing and Analysis. Macromol. Mater. Eng. 2017;302:1600460. doi: 10.1002/mame.201600460. DOI

Salvatore L., Calò E., Bonfrate V., Pedone D., Gallo N., Natali M.L., Sannino A., Madaghiele M. Exploring the effects of the crosslink density on the physicochemical properties of collagen-based scaffolds. Polym. Test. 2021;93:106966. doi: 10.1016/j.polymertesting.2020.106966. DOI

Riaz T., Zeeshan R., Zarif F., Ilyas K., Muhammad N., Safi S.Z., Rahim A., Rizvi S.A.A., Rehman I.U. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev. 2018;53:703–746. doi: 10.1080/05704928.2018.1426595. DOI

Jackson M., Choo L.-P., Watson P.H., Halliday W.C., Mantsch H.H. Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 1995;1270:1–6. doi: 10.1016/0925-4439(94)00056-V. PubMed DOI

Rabotyagova O.S., Cebe P., Kaplan D.L. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater. Sci. Eng. C. 2008;28:1420–1429. doi: 10.1016/j.msec.2008.03.012. PubMed DOI PMC

Szymanski Herman A. Infrared Band Hand-Book. Volume 2 Plenum Press; New York, NY, USA: 1970.

Coates J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; John Wiley & Sons Ltd, Chichester, UK, 2000

Vrandečić N.S., Erceg M., Jakić M., Klarić I. Kinetic analysis of thermal degradation of poly (ethylene glycol) and poly (ethylene oxide) s of different molecular weight. Thermochim. Acta. 2010;498:71–80. doi: 10.1016/j.tca.2009.10.005. DOI

Prystupa D., Donald A. Infrared study of gelatin conformations in the gel and sol states. Polym. Gels Netw. 1996;4:87–110. doi: 10.1016/0966-7822(96)00003-2. DOI

Payne K., Veis A. Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolym. Orig. Res. Biomol. 1988;27:1749–1760. doi: 10.1002/bip.360271105. PubMed DOI

Zhang X., Xu L., Huang X., Wei S., Zhai M. Structural study and preliminary biological evaluation on the collagen hydrogel crosslinked by γ-irradiation. J. Biomed. Mater. Res. Part A. 2012;100:2960–2969. doi: 10.1002/jbm.a.34243. PubMed DOI

Sionkowska A., Skopinska-Wisniewska J., Gawron M., Kozlowska J., Planecka A. Chemical and thermal cross-linking of collagen and elastin hydrolysates. Int. J. Biol. Macromol. 2010;47:570–577. doi: 10.1016/j.ijbiomac.2010.08.004. PubMed DOI

Sommer A., Dederko-Kantowicz P., Staroszczyk H., Sommer S., Michalec M. Enzymatic and chemical cross-linking of bacterial cellulose/fish collagen composites—A comparative study. Int. J. Mol. Sci. 2021;22:3346. doi: 10.3390/ijms22073346. PubMed DOI PMC

Barnes C.P., Sell S.A., Boland E.D., Simpson D.G., Bowlin G.L. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 2007;59:1413–1433. doi: 10.1016/j.addr.2007.04.022. PubMed DOI

Kužma J.S.T., Horný L. Studentská Tvůrčí Činnost 2017. ČVUT v Praze—Fakulta Strojní; Praha, Czech Republic: 2017. Effect of Cross-Linking Agent Concentration on Mechanical Properties of Collagen-CaP Nanostructured Composite.

Kužma J., Horný L., Suchý T., Šupová M., Sucharda Z. Mediterranean Conference on Medical and Biological Engineering and Computing. Springer; Berlin/Heidelberg, Germany: 2019. Electrospun Collagen Variability Characterized by Tensile Testing.

Fathima N.N. Hydration and Shrinkage Phenomena in Native and Crosslinked Collagen. Proc. Indian Natn Sci. Acad. 2011;77:283–294.

Kume M., Hirano A., Ochiai B., Endo T. Copolymers containing a spiro orthoester moiety that undergo no shrinkage during cationic crosslinking. J. Polym. Sci. Part A Polym. Chem. 2006;44:3666–3673. doi: 10.1002/pola.21462. DOI

Chen X., Zhou L., Xu H., Yamamoto M., Shinoda M., Kishimoto M., Tanaka T., Yamane H. Effect of the Application of a Dehydrothermal Treatment on the Structure and the Mechanical Properties of Collagen Film. Materials. 2020;13:377. doi: 10.3390/ma13020377. PubMed DOI PMC

Gao J., Guo H., Zhao L., Zhao X., Wang L. Water-stability and biological behavior of electrospun collagen/PEO fibers by environmental friendly crosslinking. Fibers Polym. 2017;18:1496–1503.

Mingche W., Pins G.D., Silver F.H. Collagen fibres with improved strength for the repair of soft tissue injuries. Biomaterials. 1994;15:507–512. doi: 10.1016/0142-9612(94)90016-7. PubMed DOI

Gaar J., Naffa R., Brimble M. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org. Chem. Front. 2020;7:2789–2814. doi: 10.1039/D0QO00624F. DOI

Bella J., Brodsky B., Berman H.M. Hydration structure of a collagen peptide. Structure. 1995;3:893–906. doi: 10.1016/S0969-2126(01)00224-6. PubMed DOI

Shchotkina N. Aspects of Lyophilization of Cardiac Bioimplant. Innov. Biosyst. Bioeng. 2021;5:200–206. doi: 10.20535/ibb.2021.5.4.239725. DOI

Katrilaka C., Karipidou N., Petrou N., Manglaris C., Katrilakas G., Tzavellas A.N., Pitou M., Tsiridis E.E., Choli-Papadopoulou T., Aggeli A. Freeze-Drying Process for the Fabrication of Collagen-Based Sponges as Medical Devices in Biomedical Engineering. Materials. 2023;16:4425. doi: 10.3390/ma16124425. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...