Comparative Study of the Dehydrothermal Crosslinking of Electrospun Collagen Nanofibers: The Effects of Vacuum Conditions and Subsequent Chemical Crosslinking
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS22/149/OHK2/3T/12
Czech Technical University in Prague
NU20-02-00368
Ministry of Health of the Czech Republic
67985891
Institute of Rock Structure and Mechanics of The Czech Academy of Sciences
PubMed
39274086
PubMed Central
PMC11398025
DOI
10.3390/polym16172453
PII: polym16172453
Knihovny.cz E-zdroje
- Klíčová slova
- Collagen, EDC/NHS, chemical crosslinking, crosslinking, degradation, dehydrothermal crosslinking, swelling, uniaxial tensile tests,
- Publikační typ
- časopisecké články MeSH
Collagen nanofibrous materials have become integral to tissue engineering due to their exceptional properties and biocompatibility. Dehydrothermal crosslinking (DHT) enhances stability and maintains structural integrity without the formation of toxic residues. The study involved the crosslinking of electrospun collagen, applying DHT with access to air and under vacuum conditions. Various DHT exposure times of up to 72 h were applied to examine the time dependance of the DHT process. The DHT crosslinked collagen was subsequently chemically crosslinked using carbodiimides. The material crosslinked in this way evinced elevated Young's modulus values and ultimate tensile strength values, a lower swelling rate and lower shrinkage ratio during crosslinking, and a higher degree of resistance to degradation than the material crosslinked solely with DHT or carbodiimides. It was shown that the crosslinking mechanism using DHT occupies different binding sites than those using chemical crosslinking. Access to air for 12 h or less did not exert a significant impact on the material properties compared to DHT under vacuum conditions. However, concerning longer exposure times, it was determined that access to air results in the deterioration of the properties of the material and that reactions take place that occupy the free bonding sites, which subsequently reduces the effectiveness of chemical crosslinking using carbodiimides.
Zobrazit více v PubMed
Dong C., Lv Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers. 2016;8:42. doi: 10.3390/polym8020042. PubMed DOI PMC
Ferreira A.M., Gentile P., Chiono V., Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012;8:3191–3200. doi: 10.1016/j.actbio.2012.06.014. PubMed DOI
Suchý T. Collagen in Bone Tissue Regeneration: Focusing on the Mechanical and Structural Constraints. 2020. [(accessed on 22 March 2022)]. Available online: https://dspace.cvut.cz/handle/10467/106899.
Cen L., Liu W., Cui L., Zhang W., Cao Y. Collagen tissue engineering: Development of novel biomaterials and applications. Pediatr. Res. 2008;63:492–496. doi: 10.1203/PDR.0b013e31816c5bc3. PubMed DOI
Sheehy E., Cunniffe G., O’Brien F. Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair. Woodhead Publishing; Duxford, UK: 2018. Collagen-based biomaterials for tissue regeneration and repair; pp. 127–150.
Blackstone B.N., Gallentine S.C., Powell H.M. Collagen-based electrospun materials for tissue engineering: A systematic review. Bioengineering. 2021;8:39. doi: 10.3390/bioengineering8030039. PubMed DOI PMC
Martins A., Araújo J.V., Reis R.L., Neves N.M. Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine. 2007;2:929–942. doi: 10.2217/17435889.2.6.929. PubMed DOI
Atala A., Lanza R., Lanza R.P. Methods of Tissue Engineering. Gulf Professional Publishing; Houston, TX, USA: 2002.
Buttafoco L., Kolkman N., Engbers-Buijtenhuijs P., Poot A., Dijkstra P., Vermes I., Feijen J. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials. 2006;27:724–734. doi: 10.1016/j.biomaterials.2005.06.024. PubMed DOI
Matthews J.A., Wnek G.E., Simpson D.G., Bowlin G.L. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–238. doi: 10.1021/bm015533u. PubMed DOI
Bahria H. Electrospinning of collagen: Formation of biomedical scaffold. Adv. Res. Text. Eng. 2017;2:1017. doi: 10.26420/advrestexteng.2017.1017. DOI
Meng L., Arnoult O., Smith M., Wnek G.E. Electrospinning of in situ crosslinked collagen nanofibers. J. Mater. Chem. 2012;22:19412–19417. doi: 10.1039/c2jm31618h. DOI
Suchý T., Šupová M., Sauerová P., Verdanova M., Sucharda Z., Rýglová S., Žaloudková M., Sedláček R., Kalbacova M.H. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds—An in vitro evaluation using mesenchymal stem cells. Biomed. Mater. 2015;10:065008. doi: 10.1088/1748-6041/10/6/065008. PubMed DOI
Song J.-H., Kim H.-E., Kim H.-W. Electrospun fibrous web of collagen–apatite precipitated nanocomposite for bone regeneration. J. Mater. Sci. Mater. Med. 2008;19:2925–2932. doi: 10.1007/s10856-008-3420-7. PubMed DOI
Jiang Y.-H., Lou Y.-Y., Li T.-H., Liu B.-Z., Chen K., Zhang D., Li T. Cross-linking methods of type I collagen-based scaffolds for cartilage tissue engineering. Am. J. Transl. Res. 2022;14:1146. PubMed PMC
Zhu J., Li Z., Zou Y., Lu G., Ronca A., D’amora U., Liang J., Fan Y., Zhang X., Sun Y. Advanced application of collagen-based biomaterials in tissue repair and restoration. J. Leather Sci. Eng. 2022;4:30. doi: 10.1186/s42825-022-00102-6. DOI
Zhu L., Yu Z.-L., Li S., Xu C.-Z., Hou Y.-J., Liao L.-X., Xu Y.-L., Zhang J.-T., Wei B.-M., Wen W., et al. Recent Advances on Collagen Biomaterial: From Extraction, Cross-Linking to Tissue Regeneration. Polym. Rev. 2024:1–29. doi: 10.1080/15583724.2024.2382128. DOI
Drexler J.W., Powell H.M. Dehydrothermal crosslinking of electrospun collagen. Tissue Eng. Part C Methods. 2011;17:9–17. doi: 10.1089/ten.tec.2009.0754. PubMed DOI
Gorham S.D., Light N.D., Diamond A.M., Willins M.J., Bailey A.J., Wess T.J., Leslie N.J. Effect of chemical modifications on the susceptibility of collagen to proteolysis. II. Dehydrothermal crosslinking. Int. J. Biol. Macromol. 1992;14:129–138. doi: 10.1016/S0141-8130(05)80002-9. PubMed DOI
Weadock K., Olson R.M., Silver F.H. Evaluation of collagen crosslinking techniques. Biomater. Med. Devices Artif. Organs. 1983;11:293–318. doi: 10.3109/10731198309118815. PubMed DOI
Damink L.H.H.O., Dijkstra P.J., Van Luyn M.J.A., Van Wachem P.B., Nieuwenhuis P., Feijen J. Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J. Mater. Sci. Mater. Med. 1995;6:460–472. doi: 10.1007/BF00123371. DOI
Huang G.P., Shanmugasundaram S., Masih P., Pandya D., Amara S., Collins G., Arinzeh T.L. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J. Biomed. Mater. Res. Part A. 2015;103:762–771. doi: 10.1002/jbm.a.35222. PubMed DOI
Eyre D.R., Wu J.-J. Collagen: Primer in Structure, Processing and Assembly. Spinger; Berlin/Heidelberg, Germany: 2005. Collagen cross-links; pp. 207–229.
Lim D.-J. Cross-linking agents for electrospinning-based bone tissue engineering. Int. J. Mol. Sci. 2022;23:5444. doi: 10.3390/ijms23105444. PubMed DOI PMC
Scialla S., Gullotta F., Izzo D., Palazzo B., Scalera F., Martin I., Sannino A., Gervaso F. Genipin-crosslinked collagen scaffolds inducing chondrogenesis: A mechanical and biological characterization. J. Biomed. Mater. Res. Part A. 2022;110:1372–1385. doi: 10.1002/jbm.a.37379. PubMed DOI
Shepherd D.V., Shepherd J.H., Ghose S., Kew S.J., Cameron R.E., Best S.M. The process of EDC-NHS cross-linking of reconstituted collagen fibres increases collagen fibrillar order and alignment. APL Mater. 2015;3:014902. doi: 10.1063/1.4900887. PubMed DOI PMC
Mekhail M., Wong K.K.H., Padavan D.T., Wu Y., O’Gorman D.B., Wan W. Genipin-cross-linked electrospun collagen fibers. J. Biomater. Sci. Polym. Ed. 2011;22:2241–2259. doi: 10.1163/092050610X538209. PubMed DOI
Adamiak K., Sionkowska A. Current methods of collagen cross-linking. Int. J. Biol. Macromol. 2020;161:550–560. doi: 10.1016/j.ijbiomac.2020.06.075. PubMed DOI
Weadock K.S., Miller E.J., Bellincampi L.D., Zawadsky J.P., Dunn M.G. Physical crosslinking of collagen fibers: Comparison of ultraviolet irradiation and dehydrothermal treatment. J. Biomed. Mater. Res. 1995;29:1373–1379. doi: 10.1002/jbm.820291108. PubMed DOI
Tihăuan B.-M., Pircalabioru G.G., Bucos M.A., Marinaș I.C., Nicoară A.-C., Măruțescu L., Oprea O., Matei E., Maier S.S. Crosslinked collagenic scaffold behavior evaluation by physico-chemical, mechanical and biological assessments in an in vitro microenvironment. Polymers. 2022;14:2430. doi: 10.3390/polym14122430. PubMed DOI PMC
Haugh M.G., Jaasma M.J., O’Brien F.J. The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2009;89:363–369. doi: 10.1002/jbm.a.31955. PubMed DOI
Suchý T., Vištejnová L., Šupová M., Klein P., Bartoš M., Kolinko Y., Blassová T., Tonar Z., Pokorný M., Sucharda Z., et al. Vancomycin-loaded collagen/hydroxyapatite layers electrospun on 3D printed titanium implants prevent bone destruction associated with S. epidermidis infection and enhance osseointegration. Biomedicines. 2021;9:531. doi: 10.3390/biomedicines9050531. PubMed DOI PMC
Suchý T., Šupová M., Sauerová P., Kalbáčová M.H., Klapková E., Pokorný M., Horný L., Závora J., Ballay R., Denk F., et al. Evaluation of collagen/hydroxyapatite electrospun layers loaded with vancomycin, gentamicin and their combination: Comparison of release kinetics, antimicrobial activity and cytocompatibility. Eur. J. Pharm. Biopharm. 2019;140:50–59. doi: 10.1016/j.ejpb.2019.04.021. PubMed DOI
Suchý T., Šupová M., Klapková E., Adamková V., Závora J., Žaloudková M., Rýglová Š., Ballay R., Denk F., Pokorný M., et al. The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. nanostructure. Eur. J. Pharm. Sci. 2017;100:219–229. doi: 10.1016/j.ejps.2017.01.032. PubMed DOI
Pokorný M., Suchý T., Kotzianová A., Klemeš J., Denk F., Šupová M., Sucharda Z., Sedláček R., Horný L., Králík V., et al. Surface treatment of acetabular cups with a direct deposition of a composite nanostructured layer using a high electrostatic field. Molecules. 2020;25:1173. doi: 10.3390/molecules25051173. PubMed DOI PMC
Rýglová Š., Braun M., Suchý T. Collagen and Its Modifications—Crucial Aspects with Concern to Its Processing and Analysis. Macromol. Mater. Eng. 2017;302:1600460. doi: 10.1002/mame.201600460. DOI
Salvatore L., Calò E., Bonfrate V., Pedone D., Gallo N., Natali M.L., Sannino A., Madaghiele M. Exploring the effects of the crosslink density on the physicochemical properties of collagen-based scaffolds. Polym. Test. 2021;93:106966. doi: 10.1016/j.polymertesting.2020.106966. DOI
Riaz T., Zeeshan R., Zarif F., Ilyas K., Muhammad N., Safi S.Z., Rahim A., Rizvi S.A.A., Rehman I.U. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev. 2018;53:703–746. doi: 10.1080/05704928.2018.1426595. DOI
Jackson M., Choo L.-P., Watson P.H., Halliday W.C., Mantsch H.H. Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 1995;1270:1–6. doi: 10.1016/0925-4439(94)00056-V. PubMed DOI
Rabotyagova O.S., Cebe P., Kaplan D.L. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater. Sci. Eng. C. 2008;28:1420–1429. doi: 10.1016/j.msec.2008.03.012. PubMed DOI PMC
Szymanski Herman A. Infrared Band Hand-Book. Volume 2 Plenum Press; New York, NY, USA: 1970.
Coates J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; John Wiley & Sons Ltd, Chichester, UK, 2000
Vrandečić N.S., Erceg M., Jakić M., Klarić I. Kinetic analysis of thermal degradation of poly (ethylene glycol) and poly (ethylene oxide) s of different molecular weight. Thermochim. Acta. 2010;498:71–80. doi: 10.1016/j.tca.2009.10.005. DOI
Prystupa D., Donald A. Infrared study of gelatin conformations in the gel and sol states. Polym. Gels Netw. 1996;4:87–110. doi: 10.1016/0966-7822(96)00003-2. DOI
Payne K., Veis A. Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolym. Orig. Res. Biomol. 1988;27:1749–1760. doi: 10.1002/bip.360271105. PubMed DOI
Zhang X., Xu L., Huang X., Wei S., Zhai M. Structural study and preliminary biological evaluation on the collagen hydrogel crosslinked by γ-irradiation. J. Biomed. Mater. Res. Part A. 2012;100:2960–2969. doi: 10.1002/jbm.a.34243. PubMed DOI
Sionkowska A., Skopinska-Wisniewska J., Gawron M., Kozlowska J., Planecka A. Chemical and thermal cross-linking of collagen and elastin hydrolysates. Int. J. Biol. Macromol. 2010;47:570–577. doi: 10.1016/j.ijbiomac.2010.08.004. PubMed DOI
Sommer A., Dederko-Kantowicz P., Staroszczyk H., Sommer S., Michalec M. Enzymatic and chemical cross-linking of bacterial cellulose/fish collagen composites—A comparative study. Int. J. Mol. Sci. 2021;22:3346. doi: 10.3390/ijms22073346. PubMed DOI PMC
Barnes C.P., Sell S.A., Boland E.D., Simpson D.G., Bowlin G.L. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 2007;59:1413–1433. doi: 10.1016/j.addr.2007.04.022. PubMed DOI
Kužma J.S.T., Horný L. Studentská Tvůrčí Činnost 2017. ČVUT v Praze—Fakulta Strojní; Praha, Czech Republic: 2017. Effect of Cross-Linking Agent Concentration on Mechanical Properties of Collagen-CaP Nanostructured Composite.
Kužma J., Horný L., Suchý T., Šupová M., Sucharda Z. Mediterranean Conference on Medical and Biological Engineering and Computing. Springer; Berlin/Heidelberg, Germany: 2019. Electrospun Collagen Variability Characterized by Tensile Testing.
Fathima N.N. Hydration and Shrinkage Phenomena in Native and Crosslinked Collagen. Proc. Indian Natn Sci. Acad. 2011;77:283–294.
Kume M., Hirano A., Ochiai B., Endo T. Copolymers containing a spiro orthoester moiety that undergo no shrinkage during cationic crosslinking. J. Polym. Sci. Part A Polym. Chem. 2006;44:3666–3673. doi: 10.1002/pola.21462. DOI
Chen X., Zhou L., Xu H., Yamamoto M., Shinoda M., Kishimoto M., Tanaka T., Yamane H. Effect of the Application of a Dehydrothermal Treatment on the Structure and the Mechanical Properties of Collagen Film. Materials. 2020;13:377. doi: 10.3390/ma13020377. PubMed DOI PMC
Gao J., Guo H., Zhao L., Zhao X., Wang L. Water-stability and biological behavior of electrospun collagen/PEO fibers by environmental friendly crosslinking. Fibers Polym. 2017;18:1496–1503.
Mingche W., Pins G.D., Silver F.H. Collagen fibres with improved strength for the repair of soft tissue injuries. Biomaterials. 1994;15:507–512. doi: 10.1016/0142-9612(94)90016-7. PubMed DOI
Gaar J., Naffa R., Brimble M. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org. Chem. Front. 2020;7:2789–2814. doi: 10.1039/D0QO00624F. DOI
Bella J., Brodsky B., Berman H.M. Hydration structure of a collagen peptide. Structure. 1995;3:893–906. doi: 10.1016/S0969-2126(01)00224-6. PubMed DOI
Shchotkina N. Aspects of Lyophilization of Cardiac Bioimplant. Innov. Biosyst. Bioeng. 2021;5:200–206. doi: 10.20535/ibb.2021.5.4.239725. DOI
Katrilaka C., Karipidou N., Petrou N., Manglaris C., Katrilakas G., Tzavellas A.N., Pitou M., Tsiridis E.E., Choli-Papadopoulou T., Aggeli A. Freeze-Drying Process for the Fabrication of Collagen-Based Sponges as Medical Devices in Biomedical Engineering. Materials. 2023;16:4425. doi: 10.3390/ma16124425. PubMed DOI PMC