Impact of Oxidative Stress on Male Reproduction in Domestic and Wild Animals

. 2021 Jul 20 ; 10 (7) : . [epub] 20210720

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34356386

Grantová podpora
NAZV QK21010327 Národní Agentura pro Zemědělský Výzkum

Oxidative stress occurs when the levels of reactive oxygen species (ROS) overcome the antioxidant defenses of the organism, jeopardizing several biological functions, including reproduction. In the male reproductive system, oxidative stress not only impairs sperm fertility but also compromises offspring health and survival, inducing oxidative damage to lipids, proteins and nucleic acids. Although a clear link between oxidative stress and male fertility disorders has been demonstrated in humans and laboratory rodents, little information is available about the implications of impaired redox homeostasis in the male fertility of domestic and wild animals. Therefore, this review aims to provide an update regarding the intrinsic and extrinsic factors that are associated with oxidative stress in the male reproductive system and their impact on the reproductive performance of domestic and wild animals. The most recent strategies for palliating the detrimental effects of oxidative stress on male fertility are reviewed together with their potential economic and ecological implications in the livestock industry and biodiversity conservation.

Zobrazit více v PubMed

Peña F.J., O’Flaherty C., Ortiz Rodríguez J.M., Martín Cano F.E., Gaitskell-Phillips G.L., Gil M.C., Ortega Ferrusola C. Redox Regulation and Oxidative Stress: The Particular Case of the Stallion Spermatozoa. Antioxidants. 2019;8:567. doi: 10.3390/antiox8110567. PubMed DOI PMC

Costantini D. Understanding diversity in oxidative status and oxidative stress: The opportunities and challenges ahead. J. Exp. Biol. 2019;222:jeb194688. doi: 10.1242/jeb.194688. PubMed DOI

Lushchak V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014;224:164–175. doi: 10.1016/j.cbi.2014.10.016. PubMed DOI

Blount J.D., Vitikainen E.I., Stott I., Cant M.A. Oxidative shielding and the cost of reproduction. Biol. Rev. Camb. Philos. Soc. 2016;91:483–497. doi: 10.1111/brv.12179. PubMed DOI

Simmons L.W., Lovegrove M., Lymbery S.J. Dietary antioxidants, but not courtship effort, affect oxidative balance in the testes and muscles of crickets. J. Exp. Biol. 2018;221:jeb184770. doi: 10.1242/jeb.184770. PubMed DOI

Miller R.R., Jr., Sheffer C.J., Cornett C.L., McClean R., MacCallum C., Johnston S.D. Sperm membrane fatty acid composition in the Eastern grey kangaroo (Macropus giganteus), koala (Phascolarctos cinereus), and common wombat (Vombatus ursinus) and its relationship to cold shock injury and cryopreservation success. Cryobiology. 2004;49:137–148. doi: 10.1016/j.cryobiol.2004.06.002. PubMed DOI

García B.M., Fernández L.G., Ferrusola C.O., Salazar-Sandoval C., Rodríguez A.M., Martinez H.R., Tapia J.A., Morcuende D., Peña F.J. Membrane lipids of the stallion spermatozoon in relation to sperm quality and susceptibility to lipid peroxidation. Reprod. Domest. Anim. 2011;46:141–148. doi: 10.1111/j.1439-0531.2010.01609.x. PubMed DOI

Pagl R., Aurich J., Aurich C. Reactive oxygen species and their influence on stallion semen fertility-a review. Pferdeheilkunde. 2006;22:212–217. doi: 10.21836/PEM20060217. DOI

Brouwers J.F., Gadella B.M. In situ detection and localization of lipid peroxidation in individual bovine sperm cells. Free Radic. Biol. Med. 2003;35:1382–1391. doi: 10.1016/j.freeradbiomed.2003.08.010. PubMed DOI

Ahluwalia B., Holman R.T. Fatty acid composition of lipids of bull, boar, rabbit and human semen. J. Reprod. Fertil. 1969;18:431–437. doi: 10.1530/jrf.0.0180431. PubMed DOI

Baumber J., Sabeur K., Vo A., Ball B.A. Reactive oxygen species promote tyrosine phosphorylation and capacitation in equine spermatozoa. Theriogenology. 2003;60:1239–1247. doi: 10.1016/S0093-691X(03)00144-4. PubMed DOI

Rivlin J., Mendel J., Rubinstein S., Etkovitz N., Breitbart H. Role of hydrogen peroxide in sperm capacitation and acrosome reaction. Biol. Reprod. 2004;70:518–522. doi: 10.1095/biolreprod.103.020487. PubMed DOI

Roy S.C., Atreja S.K. Effect of reactive oxygen species on capacitation and associated protein tyrosine phosphorylation in buffalo (Bubalus bubalis) spermatozoa. Anim. Reprod. Sci. 2008;107:68–84. doi: 10.1016/j.anireprosci.2007.06.024. PubMed DOI

Awda B.J., Mackenzie-Bell M., Buhr M.M. Reactive oxygen species and boar sperm function. Biol. Reprod. 2009;81:553–561. doi: 10.1095/biolreprod.109.076471. PubMed DOI

Betarelli R.P., Rocco M., Yeste M., Fernández-Novell J.M., Placci A., Azevedo Pereira B., Castillo-Martín M., Estrada E., Peña A., Zangeronimo M.G., et al. The achievement of boar sperm in vitro capacitation is related to an increase of disrupted disulphide bonds and intracellular reactive oxygen species levels. Andrology. 2018;6:781–797. doi: 10.1111/andr.12514. PubMed DOI

Guthrie H.D., Welch G.R. Effects of reactive oxygen species on sperm function. Theriogenology. 2012;78:1700–1708. doi: 10.1016/j.theriogenology.2012.05.002. PubMed DOI

da Rosa Filho R.R., Angrimani D.S.R., Brito M.M., Nichi M., Vannucchi C.I., Lucio C.F. Susceptibility of epididymal sperm against reactive oxygen species in dogs. Anim. Biotechnol. 2021;32:92–99. doi: 10.1080/10495398.2019.1657126. PubMed DOI

Martínez-Pastor F., Aisen E., Fernández-Santos M.R., Esteso M.C., Maroto-Morales A., García-Alvarez O., Garde J.J. Reactive oxygen species generators affect quality parameters and apoptosis markers differently in red deer spermatozoa. Reproduction. 2009;137:225–235. doi: 10.1530/REP-08-0357. PubMed DOI

Vieira N.M.G., Losano J.D.A., Angrimani D.S.R., Kawai G.K.V., Bicudo L.C., Rui B.R., da Silva B.D.C.S., Assumpção M.E.O.D., Nichi M. Induced sperm oxidative stress in dogs: Susceptibility against different reactive oxygen species and protective role of seminal plasma. Theriogenology. 2018;108:39–45. doi: 10.1016/j.theriogenology.2017.11.020. PubMed DOI

Mesa A.M., Roberson R.L., Chun R.I., Mortensen C.J. Stallion semen incubated with hydrogen peroxide decreased DNA fragmentation as measured by the TUNEL assay. J. Equine Vet. Sci. 2017;49:81–86. doi: 10.1016/j.jevs.2016.09.007. DOI

Peris S.I., Bilodeau J.F., Dufour M., Bailey J.L. Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram sperm. Mol. Reprod. Dev. 2007;74:878–892. doi: 10.1002/mrd.20686. PubMed DOI

Leahy T., Celi P., Bathgate R., Evans G., Maxwell W.M., Marti J.I. Flow-sorted ram spermatozoa are highly susceptible to hydrogen peroxide damage but are protected by seminal plasma and catalase. Reprod. Fertil. Dev. 2010;22:1131–1140. doi: 10.1071/RD09286. PubMed DOI

Alonso-Alvarez C., Bertrand S., Devevey G., Prost J., Faivre B., Sorci G. Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecol. Lett. 2004;7:363–368. doi: 10.1111/j.1461-0248.2004.00594.x. DOI

Romero-Haro A.A., Sorci G., Alonso-Alvarez C. The oxidative cost of reproduction depends on early development oxidative stress and sex in a bird species. Proc. Biol. Sci. 2016;283:20160842. doi: 10.1098/rspb.2016.0842. PubMed DOI PMC

Sharick J.T., Vazquez-Medina J.P., Ortiz R.M., Crocker D.E. Oxidative stress is a potential cost of breeding in male and female northern elephant seals. Funct. Ecol. 2015;29:367–376. doi: 10.1111/1365-2435.12330. PubMed DOI PMC

van de Crommenacker J., Hammers M., van der Woude J., Louter M., Santema P., Richardson D.S., Komdeur J. Oxidative status and fitness components in the Seychelles warbler. Funct. Ecol. 2017;31:1210–1219. doi: 10.1111/1365-2435.12861. DOI

Criscuolo F., Font-Sala C., Bouillaud F., Poulin N., Trabalon M. Increased ROS production: A component of the longevity equation in the male mygalomorph, Brachypelma albopilosa. PLoS ONE. 2010;5:e13104. doi: 10.1371/journal.pone.0013104. PubMed DOI PMC

Ritchie C., Ko E.Y. Oxidative stress in the pathophysiology of male infertility. Andrologia. 2021;53:e13581. doi: 10.1111/and.13581. PubMed DOI

Tosic J., Walton A. Formation of hydrogen peroxide by spermatozoa and its inhibitory effect of respiration. Nature. 1946;4014:485. doi: 10.1038/158485a0. PubMed DOI

Tosic J., Walton A. Metabolism of spermatozoa. The formation and elimination of hydrogen peroxide by spermatozoa and effects on motility and survival. Biochem. J. 1950;47:199–212. doi: 10.1042/bj0470199. PubMed DOI PMC

Ball B.A., Vo A.T., Baumber J. Generation of reactive oxygen species by equine spermatozoa. Am. J. Vet. Res. 2001;62:508–515. doi: 10.2460/ajvr.2001.62.508. PubMed DOI

Koppers A.J., De Iuliis G.N., Finnie J.M., McLaughlin E.A., Aitken R.J. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J. Clin. Endocrinol. Metab. 2008;93:3199–3207. doi: 10.1210/jc.2007-2616. PubMed DOI

Moraes C.R., Meyers S. The sperm mitochondrion: Organelle of many functions. Anim. Reprod. Sci. 2018;194:71–80. doi: 10.1016/j.anireprosci.2018.03.024. PubMed DOI

Sabeur K., Ball B.A. Detection of superoxide anion generation by equine spermatozoa. Am. J. Vet. Res. 2006;67:701–706. doi: 10.2460/ajvr.67.4.701. PubMed DOI

Shannon P., Curson B. Site of aromatic L-amino acid oxidase in dead bovine spermatozoa and determination of between-bull differences in the percentage of dead spermatozoa by oxidase activity. J. Reprod. Fertil. 1982;64:469–473. doi: 10.1530/jrf.0.0640469. PubMed DOI

Upreti G.C., Jensen K., Munday R., Duganzich D.M., Vishwanath R., Smith J.F. Studies on aromatic amino acid oxidase activity in ram spermatozoa: Role of pyruvate as an antioxidant. Anim. Reprod. Sci. 1998;51:275–287. doi: 10.1016/S0378-4320(98)00082-7. PubMed DOI

Aitken J.B., Naumovski N., Curry B., Grupen C.G., Gibb Z., Aitken R.J. Characterization of an L-amino acid oxidase in equine spermatozoa. Biol. Reprod. 2015;92:125. doi: 10.1095/biolreprod.114.126052. PubMed DOI

Kadlec M., Ros-Santaella J.L., Pintus E. The Roles of NO and H2S in Sperm Biology: Recent Advances and New Perspectives. Int. J. Mol. Sci. 2020;21:2174. doi: 10.3390/ijms21062174. PubMed DOI PMC

Serrano R., Garrido N., Céspedes J.A., González-Fernández L., García-Marín L.J., Bragado M.J. Molecular Mechanisms Involved in the Impairment of Boar Sperm Motility by Peroxynitrite-Induced Nitrosative Stress. Int. J. Mol. Sci. 2020;21:1208. doi: 10.3390/ijms21041208. PubMed DOI PMC

Baumber J., Vo A., Sabeur K., Ball B.A. Generation of reactive oxygen species by equine neutrophils and their effect on motility of equine spermatozoa. Theriogenology. 2002;57:1025–1033. doi: 10.1016/S0093-691X(01)00710-5. PubMed DOI

Roca J., Martinez-Alborcia M.J., Gil M.A., Parrilla I., Martinez E.A. Dead spermatozoa in raw semen samples impair in vitro fertilization outcomes of frozen-thawed spermatozoa. Fertil. Steril. 2013;100:875–881. doi: 10.1016/j.fertnstert.2013.05.020. PubMed DOI

Pukazhenthi B.S., Neubauer K., Jewgenow K., Howard J., Wildt D.E. The impact and potential etiology of teratospermia in the domestic cat and its wild relatives. Theriogenology. 2006;66:112–121. doi: 10.1016/j.theriogenology.2006.03.020. PubMed DOI

Gibb Z., Lambourne S.R., Aitken R.J. The paradoxical relationship between stallion fertility and oxidative stress. Biol. Reprod. 2014;91:77. doi: 10.1095/biolreprod.114.118539. PubMed DOI

Oghbaei H., Rastgar Rezaei Y., Nikanfar S., Zarezadeh R., Sadegi M., Latifi Z., Nouri M., Fattahi A., Ahmadi Y., Bleisinger N. Effects of bacteria on male fertility: Spermatogenesis and sperm function. Life Sci. 2020;256:117891. doi: 10.1016/j.lfs.2020.117891. PubMed DOI

Collodel G., Moretti E., Brecchia G., Kuželová L., Arruda J., Mourvaki E., Castellini C. Cytokines release and oxidative status in semen samples from rabbits treated with bacterial lipopolysaccharide. Theriogenology. 2015;83:1233–1240. doi: 10.1016/j.theriogenology.2015.01.008. PubMed DOI

Duracka M., Lukac N., Kacaniova M., Kantor A., Hleba L., Ondruska L., Tvrda E. Antibiotics Versus Natural Biomolecules: The Case of In Vitro Induced Bacteriospermia by Enterococcus Faecalis in Rabbit Semen. Molecules. 2019;24:4329. doi: 10.3390/molecules24234329. PubMed DOI PMC

Gao H., Gao Y., Yang C., Dong D., Yang J., Peng G., Peng J., Wang Y., Pan C., Dong W. Influence of outer membrane vesicles of Proteus mirabilis isolated from boar semen on sperm function. Vet. Microbiol. 2018;224:34–42. doi: 10.1016/j.vetmic.2018.08.017. PubMed DOI

Aziz N., Saleh R.A., Sharma R.K., Lewis-Jones I., Esfandiari N., Thomas A.J., Jr., Agarwal A. Novel association between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index. Fertil. Steril. 2004;81:349–354. doi: 10.1016/j.fertnstert.2003.06.026. PubMed DOI

Nichi M., Goovaerts I.G., Cortada C.N., Barnabe V.H., De Clercq J.B., Bols P.E. Roles of lipid peroxidation and cytoplasmic droplets on in vitro fertilization capacity of sperm collected from bovine epididymides stored at 4 and 34 degrees C. Theriogenology. 2007;67:334–340. doi: 10.1016/j.theriogenology.2006.08.002. PubMed DOI

Matás C., Sansegundo M., Ruiz S., García-Vázquez F.A., Gadea J., Romar R., Coy P. Sperm treatment affects capacitation parameters and penetration ability of ejaculated and epididymal boar spermatozoa. Theriogenology. 2010;74:1327–1340. doi: 10.1016/j.theriogenology.2010.06.002. PubMed DOI

Angrimani D.S., Losano J.D., Lucio C.F., Veiga G.A., Pereda M.C., Nichi M., Vannucchi C.I. Role of residual cytoplasm on oxidative status during sperm maturation in dogs. Anim. Reprod. Sci. 2014;151:256–261. doi: 10.1016/j.anireprosci.2014.10.023. PubMed DOI

Angrimani D.S., Lucio C.F., Veiga G.A., Silva L.C., Regazzi F.M., Nichi M., Vannucchi C.I. Sperm maturation in dogs: Sperm profile and enzymatic antioxidant status in ejaculated and epididymal spermatozoa. Andrologia. 2014;46:814–849. doi: 10.1111/and.12154. PubMed DOI

Trevizan J.T., Carreira J.T., Carvalho I.R., Kipper B.H., Nagata W.B., Perri S.H.V., Franco Oliveira M.E., Pierucci J.C., Koivisto M.B. Does lipid peroxidation and oxidative DNA damage differ in cryopreserved semen samples from young, adult and aged Nellore bulls? Anim. Reprod. Sci. 2018;195:8–15. doi: 10.1016/j.anireprosci.2018.04.071. PubMed DOI

Darr C.R., Moraes L.E., Scanlan T.N., Baumber-Skaife J., Loomis P.R., Cortopassi G.A., Meyers S.A. Sperm mitochondrial function is affected by stallion age and predicts post-thaw motility. J. Equine Vet. Sci. 2017;50:52–61. doi: 10.1016/j.jevs.2016.10.015. DOI

Kelso K.A., Redpath A., Noble R.C., Speake B.K. Lipid and antioxidant changes in spermatozoa and seminal plasma throughout the reproductive period of bulls. J. Reprod. Fertil. 1997;109:1–6. doi: 10.1530/jrf.0.1090001. PubMed DOI

Vince S., Žura Žaja I., Samardžija M., Majić Balić I., Vilić M., Đuričić D., Valpotić H., Marković F., Milinković-Tur S. Age-related differences of semen quality, seminal plasma, and spermatozoa antioxidative and oxidative stress variables in bulls during cold and warm periods of the year. Animal. 2018;12:559–568. doi: 10.1017/S1751731117001811. PubMed DOI

Noguera J.C., Dean R., Isaksson C., Velando A., Pizzari T. Age-specific oxidative status and the expression of pre- and postcopulatory sexually selected traits in male red junglefowl, Gallus gallus. Ecol. Evol. 2012;2:2155–2167. doi: 10.1002/ece3.300. PubMed DOI PMC

Fuente-Lara A., Hesser A., Christensen B., Gonzales K., Meyers S. Effects from aging on semen quality of fresh and cryopreserved semen in Labrador Retrievers. Theriogenology. 2019;132:164–171. doi: 10.1016/j.theriogenology.2019.04.013. PubMed DOI

Domoslawska A., Zdunczyk S., Franczyk M., Kankofer M., Janowski T. Total antioxidant capacity and protein peroxidation intensity in seminal plasma of infertile and fertile dogs. Reprod. Domest. Anim. 2019;54:252–257. doi: 10.1111/rda.13345. PubMed DOI

Morte M.I., Rodrigues A.M., Soares D., Rodrigues A.S., Gamboa S., Ramalho-Santos J. The quantification of lipid and protein oxidation in stallion spermatozoa and seminal plasma: Seasonal distinctions and correlations with DNA strand breaks, classical seminal parameters and stallion fertility. Anim. Reprod. Sci. 2008;106:36–47. doi: 10.1016/j.anireprosci.2007.03.020. PubMed DOI

Ortega Ferrusola C., González Fernández L., Macías García B., Salazar-Sandoval C., Morillo Rodríguez A., Rodríguez Martinez H., Tapia J.A., Peña F.J. Effect of cryopreservation on nitric oxide production by stallion spermatozoa. Biol. Reprod. 2009;81:1106–1111. doi: 10.1095/biolreprod.109.078220. PubMed DOI

Morrell J.M., Winblad C., Georgakas A., Stuhtmann G., Humblot P., Johannisson A. Reactive oxygen species in stallion semen can be affected by season and colloid centrifugation. Anim. Reprod. Sci. 2013;140:62–69. doi: 10.1016/j.anireprosci.2013.05.006. PubMed DOI

Ortega Ferrusola C., González Fernández L., Morrell J.M., Salazar Sandoval C., Macías García B., Rodríguez-Martinez H., Tapia J.A., Peña F.J. Lipid peroxidation, assessed with BODIPY-C11, increases after cryopreservation of stallion spermatozoa, is stallion-dependent and is related to apoptotic-like changes. Reproduction. 2009;138:55–63. doi: 10.1530/REP-08-0484. PubMed DOI

Li J., Barranco I., Tvarijonaviciute A., Molina M.F., Martinez E.A., Rodriguez-Martinez H., Parrilla I., Roca J. Seminal plasma antioxidants are directly involved in boar sperm cryotolerance. Theriogenology. 2018;107:27–35. doi: 10.1016/j.theriogenology.2017.10.035. PubMed DOI

Satitmanwiwat S., Promthep K., Buranaamnuay K., Mahasawangkul S., Saikhun K. Lipid and protein oxidation levels in spermatozoa and seminal plasma of Asian Elephants (Elephas maximus) and their relationship with semen parameters. Reprod. Domest. Anim. 2017;52:283–288. doi: 10.1111/rda.12900. PubMed DOI

Helfenstein F., Losdat S., Møller A.P., Blount J.D., Richner H. Sperm of colourful males are better protected against oxidative stress. Ecol. Lett. 2010;13:213–222. doi: 10.1111/j.1461-0248.2009.01419.x. PubMed DOI

Rojas Mora A., Meniri M., Glauser G., Vallat A., Helfenstein F. Badge size reflects sperm oxidative status within social groups in the House Sparrow Passer domesticus. Front. Ecol. Evol. 2016;4:67. doi: 10.3389/fevo.2016.00067. DOI

Martínez-Lendech N., Golab M.J., Osorio-Beristain M., Contreras-Garduño J. Sexual signals reveal males’ oxidative stress defences: Testing this hypothesis in an invertebrate. Funct. Ecol. 2018;32:937–947. doi: 10.1111/1365-2435.13051. DOI

Tomášek O., Albrechtová J., Němcová M., Opatová P., Albrecht T. Trade-off between carotenoid-based sexual ornamentation and sperm resistance to oxidative challenge. Proc. Biol. Sci. 2017;284:20162444. doi: 10.1098/rspb.2016.2444. PubMed DOI PMC

Mora A.R., Firth A., Blareau S., Vallat A., Helfenstein F. Oxidative stress affects sperm performance and ejaculate redox status in subordinate house sparrows. J. Exp. Biol. 2017;220:2577–2588. doi: 10.1242/jeb.154799. PubMed DOI

Rojas Mora A., Meniri M., Gning O., Glauser G., Vallat A., Helfenstein F. Antioxidant allocation modulates sperm quality across changing social environments. PLoS ONE. 2017;12:e0176385. doi: 10.1371/journal.pone.0176385. PubMed DOI PMC

Tirpák F., Greifová H., Lukáč N., Stawarz R., Massányi P. Exogenous factors affecting the functional integrity of male reproduction. Life. 2021;11:213. doi: 10.3390/life11030213. PubMed DOI PMC

Beaulieu M., Costantini D. Biomarkers of oxidative status: Missing tools in conservation physiology. Conserv. Physiol. 2014;2:cou014. doi: 10.1093/conphys/cou014. PubMed DOI PMC

Boni R. Heat stress, a serious threat to reproductive function in animals and humans. Mol. Reprod. Dev. 2019;86:1307–1323. doi: 10.1002/mrd.23123. PubMed DOI

Parisi C., Guerriero G. Antioxidative Defense and Fertility Rate in the Assessment of Reprotoxicity Risk Posed by Global Warming. Antioxidants. 2019;8:622. doi: 10.3390/antiox8120622. PubMed DOI PMC

Ahmad Para I., Ahmad Dar P., Ahmad Malla B., Punetha M., Rautela A., Maqbool I., Mohd A., Shah M.A., War Z.A., Ishaaq R., et al. Impact of heat stress on the reproduction of farm animals and strategies to ameliorate it. Biol. Rhythm Res. 2020;51:616–632. doi: 10.1080/09291016.2018.1548870. DOI

Morrell J.M. Heat stress and bull fertility. Theriogenology. 2020;153:62–67. PubMed

Rahman M.B., Vandaele L., Rijsselaere T., Maes D., Hoogewijs M., Frijters A., Noordman J., Granados A., Dernelle E., Shamsuddin M., et al. Scrotal insulation and its relationship to abnormal morphology, chromatin protamination and nuclear shape of spermatozoa in Holstein-Friesian and Belgian Blue bulls. Theriogenology. 2011;76:1246–1257. doi: 10.1016/j.theriogenology.2011.05.031. PubMed DOI

Sabés-Alsina M., Lundeheim N., Johannisson A., López-Béjar M., Morrell J.M. Relationships between climate and sperm quality in dairy bull semen: A retrospective analysis. J. Dairy Sci. 2019;102:5623–5633. PubMed

Valeanu S., Johannisson A., Lundeheim N., Morrell J.M. Seasonal variation in sperm quality parameters in Swedish red dairy bulls used for artificial insemination. Livest. Sci. 2015;173:111–118. doi: 10.1016/j.livsci.2014.12.005. DOI

Mislei B., Bucci D., Malama E., Bollwein H., Mari G. Seasonal changes in ROS concentrations and sperm quality in unfrozen and frozen-thawed stallion semen. Theriogenology. 2020;144:89–97. doi: 10.1016/j.theriogenology.2019.12.016. PubMed DOI

Zan-Bar T., Bartoov B., Segal R., Yehuda R., Lavi R., Lubart R., Avtalion R.R. Influence of visible light and ultraviolet irradiation on motility and fertility of mammalian and fish sperm. Photomed. Laser Surg. 2005;23:549–555. doi: 10.1089/pho.2005.23.549. PubMed DOI

Yeste M., Castillo-Martín M., Bonet S., Rodríguez-Gil J.E. Impact of light irradiation on preservation and function of mammalian spermatozoa. Anim. Reprod. Sci. 2018;194:19–32. doi: 10.1016/j.anireprosci.2018.02.004. PubMed DOI

Ghosh S., Serafini R., Love C.C., Teague S.R., Hernández-Avilés C., LaCaze K.A., Varner D.D. Effects of media and promoters on different lipid peroxidation assays in stallion sperm. Anim. Reprod. Sci. 2019;211:106199. doi: 10.1016/j.anireprosci.2019.106199. PubMed DOI

Møller A.P., Nishiumi I., Suzuki H., Ueda K., Mousseau T.A. Differences in effects of radiation on abundance of animals in Fukushima and Chernobyl. Ecol. Indic. 2013;24:75–81. doi: 10.1016/j.ecolind.2012.06.001. DOI

Bonisoli-Alquati A., Møller A.P., Rudolfsen G., Saino N., Caprioli M., Ostermiller S., Mousseau T.A. The effects of radiation on sperm swimming behavior depend on plasma oxidative status in the barn swallow (Hirundo rustica) Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2011;159:105–112. doi: 10.1016/j.cbpa.2011.01.018. PubMed DOI

Komatsu K., Iwasaki T., Murata K., Yamashiro H., Goh V.S.T., Nakayama R., Fujishima Y., Ono T., Kino Y., Simizu Y., et al. Morphological reproductive characteristics of testes and fertilization capacity of cryopreserved sperm after the Fukushima accident in raccoon (Procyon lotor) Reprod. Domest. Anim. 2021;56:484–497. doi: 10.1111/rda.13887. PubMed DOI

Yamashiro H., Abe Y., Fukuda T., Kino Y., Kawaguchi I., Kuwahara Y., Fukumoto M., Takahashi S., Suzuki M., Kobayashi J., et al. Effects of radioactive caesium on bull testes after the Fukushima nuclear plant accident. Sci. Rep. 2013;3:2850. doi: 10.1038/srep02850. PubMed DOI PMC

Mousseau T.A., Møller A.P. Genetic and ecological studies of animals in Chernobyl and Fukushima. J. Hered. 2014;105:704–709. doi: 10.1093/jhered/esu040. PubMed DOI

Tirpak F., Slanina T., Tomka M., Zidek R., Halo M., Jr., Ivanic P., Gren A., Formicki G., Stachanczyk K., Lukac N., et al. Exposure to non-ionizing electromagnetic radiation of public risk prevention instruments threatens the quality of spermatozoids. Reprod. Domest. Anim. 2019;54:150–159. doi: 10.1111/rda.13338. PubMed DOI

Raap T., Casasole G., Costantini D., AbdElgawad H., Asard H., Pinxten R., Eens M. Artificial light at night affects body mass but not oxidative status in free-living nestling songbirds: An experimental study. Sci. Rep. 2016;6:35626. doi: 10.1038/srep35626. PubMed DOI PMC

Tvrdá E., Kňažická Z., Lukáčová J., Schneidgenová M., Goc Z., Greń A., Szabó C., Massányi P., Lukáč N. The impact of lead and cadmium on selected motility, prooxidant and antioxidant parameters of bovine seminal plasma and spermatozoa. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2013;48:1292–1300. doi: 10.1080/10934529.2013.777243. PubMed DOI

Wang L., Xu T., Lei W.W., Liu D.M., Li Y.J., Xuan R.J., Ma J.J. Cadmium-induced oxidative stress and apoptotic changes in the testis of freshwater crab, Sinopotamon henanense. PLoS ONE. 2011;6:e27853. doi: 10.1371/journal.pone.0027853. PubMed DOI PMC

Massányi P., Massányi M., Madeddu R., Stawarz R., Lukáč N. Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics. 2020;8:94. doi: 10.3390/toxics8040094. PubMed DOI PMC

Williams R.J., Holladay S.D., Williams S.M., Gogal R.M., Jr. Environmental Lead and Wild Birds: A Review. Rev. Environ. Contam. Toxicol. 2018;245:157–180. PubMed

Gonsioroski A., Mourikes V.E., Flaws J.A. Endocrine Disruptors in Water and Their Effects on the Reproductive System. Int. J. Mol. Sci. 2020;21:1929. doi: 10.3390/ijms21061929. PubMed DOI PMC

Mathieu-Denoncourt J., Wallace S.J., de Solla S.R., Langlois V.S. Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen. Comp. Endocrinol. 2015;219:74–88. doi: 10.1016/j.ygcen.2014.11.003. PubMed DOI

Kocabaş M., Kutluyer F., Çakir Sahilli Y., Aksu Ö. Cellular responses of spirlin Alburnoides bipunctatus spermatozoa exposed to Bisphenol A: Biochemical response and sperm quality alterations evaluation. Hum. Ecol. Risk Assess. 2021;27:368–377. doi: 10.1080/10807039.2020.1715784. DOI

Tartu S., Fisk A.T., Götsch A., Kovacs K.M., Lydersen C., Routti H. First assessment of pollutant exposure in two balaenopterid whale populations sampled in the Svalbard Archipelago, Norway. Sci. Total Environ. 2020;718:137327. doi: 10.1016/j.scitotenv.2020.137327. PubMed DOI

Zhang L., Meng Z., Chen L., Zhang G., Zhang W., Tian Z., Wang Z., Yu S., Zhou Z., Diao J. Perfluorooctanoic acid exposure impact a trade-off between self-maintenance and reproduction in lizards (Eremias argus) in a gender-dependent manner. Environ. Pollut. 2020;262:114341. doi: 10.1016/j.envpol.2020.114341. PubMed DOI

Oseguera-López I., Pérez-Cerezales S., Ortiz-Sánchez P.B., Mondragon-Payne O., Sánchez-Sánchez R., Jiménez-Morales I., Fierro R., González-Márquez H. Perfluorooctane Sulfonate (PFOS) and Perfluorohexane Sulfonate (PFHxS) Alters Protein Phosphorylation, Increase ROS Levels and DNA Fragmentation during In Vitro Capacitation of Boar Spermatozoa. Animals. 2020;10:1934. doi: 10.3390/ani10101934. PubMed DOI PMC

Bejder L., Samuels A., Whitehead H., Gales N., Mann J., Connor R., Heithaus M., Watson-Capps J., Flaherty C., Krützen M. Decline in relative abundance of bottlenose dolphins exposed to long-term disturbance. Conserv. Biol. 2006;20:1791–1798. doi: 10.1111/j.1523-1739.2006.00540.x. PubMed DOI

Ellenberg U., Setiawan A.N., Cree A., Houston D.M., Seddon P.J. Elevated hormonal stress response and reduced reproductive output in Yellow-eyed penguins exposed to unregulated tourism. Gen. Comp. Endocrinol. 2007;152:54–63. doi: 10.1016/j.ygcen.2007.02.022. PubMed DOI

French S.S., González-Suárez M., Young J.K., Durham S., Gerber L.R. Human disturbance influences reproductive success and growth rate in California sea lions (Zalophus californianus) PLoS ONE. 2011;6:e17686. doi: 10.1371/journal.pone.0017686. PubMed DOI PMC

Maréchal L., Semple S., Majolo B., Qarro M., Heistermann M., MacLarnon A. Impacts of tourism on anxiety and physiological stress levels in wild male Barbary macaques. Biol. Conserv. 2011;144:2188–2193. doi: 10.1016/j.biocon.2011.05.010. DOI

French S.S., Neuman-Lee L.A., Terletzky P.A., Kiriazis N.M., Taylor E.N., DeNardo D.F. Too much of a good thing? Human disturbance linked to ecotourism has a “dose-dependent” impact on innate immunity and oxidative stress in marine iguanas, Amblyrhynchus cristatus. Biol. Conserv. 2017;210:37–47. doi: 10.1016/j.biocon.2017.04.006. DOI

Aitken R.J., Drevet J.R. The Importance of Oxidative Stress in Determining the Functionality of Mammalian Spermatozoa: A Two-Edged Sword. Antioxidants. 2020;9:111. doi: 10.3390/antiox9020111. PubMed DOI PMC

Baldi E., Tamburrino L., Muratori M., Degl’Innocenti S., Marchiani S. Adverse effects of in vitro manipulation of spermatozoa. Anim. Reprod. Sci. 2020;220:106314. doi: 10.1016/j.anireprosci.2020.106314. PubMed DOI

Balao da Silva C.M., Ortega-Ferrusola C., Morrell J.M., Rodriguez Martínez H., Peña F.J. Flow Cytometric Chromosomal Sex Sorting of Stallion Spermatozoa Induces Oxidative Stress on Mitochondria and Genomic DNA. Reprod. Domest. Anim. 2016;51:18–25. doi: 10.1111/rda.12640. PubMed DOI

Darr C.R., Cortopassi G.A., Datta S., Varner D.D., Meyers S.A. Mitochondrial oxygen consumption is a unique indicator of stallion spermatozoal health and varies with cryopreservation media. Theriogenology. 2016;86:1382–1392. doi: 10.1016/j.theriogenology.2016.04.082. PubMed DOI

Chatterjee S., Gagnon C. Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing. Mol. Reprod. Dev. 2001;59:451–458. doi: 10.1002/mrd.1052. PubMed DOI

Ahmad M., Ahmad N., Riaz A., Anzar M. Sperm survival kinetics in different types of bull semen: Progressive motility, plasma membrane integrity, acrosomal status and reactive oxygen species generation. Reprod. Fertil. Dev. 2015;27:784–793. doi: 10.1071/RD13400. PubMed DOI

Gürler H., Malama E., Heppelmann M., Calisici O., Leiding C., Kastelic J.P., Bollwein H. Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology. 2016;86:562–571. doi: 10.1016/j.theriogenology.2016.02.007. PubMed DOI

Mostek A., Dietrich M.A., Słowińska M., Ciereszko A. Cryopreservation of bull semen is associated with carbonylation of sperm proteins. Theriogenology. 2017;92:95–102. doi: 10.1016/j.theriogenology.2017.01.011. PubMed DOI

Cheuquemán C., Faúndez R., Sánchez R., Risopatrón J. Changes in sperm function and structure after freezing in domestic cat spermatozoa. Andrologia. 2018;50:e13080. doi: 10.1111/and.13080. PubMed DOI

Kim S., Lee Y.J., Kim Y.J. Changes in sperm membrane and ROS following cryopreservation of liquid boar semen stored at 15 °C. Anim. Reprod. Sci. 2011;124:118–124. doi: 10.1016/j.anireprosci.2011.01.014. PubMed DOI

Yeste M., Flores E., Estrada E., Bonet S., Rigau T., Rodríguez-Gil J.E. Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze-thawing by stabilising disulfide bonds. Reprod. Fertil. Dev. 2013;25:1036–1050. doi: 10.1071/RD12230. PubMed DOI

Yeste M., Estrada E., Casas I., Bonet S., Rodríguez-Gil J.E. Good and bad freezability boar ejaculates differ in the integrity of nucleoprotein structure after freeze-thawing but not in ROS levels. Theriogenology. 2013;79:929–939. doi: 10.1016/j.theriogenology.2013.01.008. PubMed DOI

Zhang B., Wang Y., Wu C., Qiu S., Chen X., Cai B., Xie H. Freeze-thawing impairs the motility, plasma membrane integrity and mitochondria function of boar spermatozoa through generating excessive ROS. BMC Vet. Res. 2021;17:127. doi: 10.1186/s12917-021-02804-1. PubMed DOI PMC

Neagu V.R., García B.M., Rodríguez A.M., Ferrusola C.O., Bolaños J.M., Fernández L.G., Tapia J.A., Peña F.J. Determination of glutation peroxidase and superoxide dismutase activities in canine seminal plasma and its relation with sperm quality and lipid peroxidation post thaw. Theriogenology. 2011;75:10–16. doi: 10.1016/j.theriogenology.2010.07.004. PubMed DOI

Lucio C.F., Regazzi F.M., Silva L.C.G., Angrimani D.S.R., Nichi M., Vannucchi C.I. Oxidative stress at different stages of two-step semen cryopreservation procedures in dogs. Theriogenology. 2016;85:1568–1575. doi: 10.1016/j.theriogenology.2016.01.016. PubMed DOI

Kadirvel G., Kumar S., Kumaresan A. Lipid peroxidation, mitochondrial membrane potential and DNA integrity of spermatozoa in relation to intracellular reactive oxygen species in liquid and frozen-thawed buffalo semen. Anim. Reprod. Sci. 2009;114:125–134. doi: 10.1016/j.anireprosci.2008.10.002. PubMed DOI

Lone S.A., Prasad J.K., Ghosh S.K., Das G.K., Balamurugan B., Verma M.R. Study on correlation of sperm quality parameters with antioxidant and oxidant status of buffalo bull semen during various stages of cryopreservation. Andrologia. 2018;50:e12970. doi: 10.1111/and.12970. PubMed DOI

Partyka A., Lukaszewicz E., Niżański W., Twardoń J. Detection of lipid peroxidation in frozen-thawed avian spermatozoa using C(11)-BODIPY(581/591) Theriogenology. 2011;75:1623–1629. doi: 10.1016/j.theriogenology.2011.01.002. PubMed DOI

Slowinska M., Liszewska E., Judycka S., Konopka M., Ciereszko A. Mitochondrial membrane potential and reactive oxygen species in liquid stored and cryopreserved turkey (Meleagris gallopavo) spermatozoa. Poult. Sci. 2018;97:3709–3717. doi: 10.3382/ps/pey209. PubMed DOI

Gómez-Fernández J., Gómez-Izquierdo E., Tomás C., Mocé E., de Mercado E. Is sperm freezability related to the post-thaw lipid peroxidation and the formation of reactive oxygen species in boars? Reprod. Domest. Anim. 2013;48:177–182. doi: 10.1111/j.1439-0531.2012.02126.x. PubMed DOI

Llavanera M., Delgado-Bermúdez A., Fernandez-Fuertes B., Recuero S., Mateo Y., Bonet S., Barranco I., Yeste M. GSTM3, but not IZUMO1, is a cryotolerance marker of boar sperm. J. Anim. Sci. Biotechnol. 2019;10:61. doi: 10.1186/s40104-019-0370-5. PubMed DOI PMC

Ball B.A., Vo A. Detection of lipid peroxidation in equine spermatozoa based upon the lipophilic fluorescent dye C1l-BODIPY581/591. J. Androl. 2002;23:259–269. PubMed

Menegat M.B., Mellagi A.P., Bortolin R.C., Menezes T.A., Vargas A.R., Bernardi M.L., Wentz I., Gelain D.P., Moreira J.C., Bortolozzo F.P. Sperm quality and oxidative status as affected by homogenization of liquid-stored boar semen diluted in short- and long-term extenders. Anim. Reprod. Sci. 2017;179:67–79. doi: 10.1016/j.anireprosci.2017.02.003. PubMed DOI

Falchi L., Galleri G., Zedda M.T., Pau S., Bogliolo L., Ariu F., Ledda S. Liquid storage of ram semen for 96 h: Effects on kinematic parameters, membranes and DNA integrity, and ROS production. Livest. Sci. 2018;207:1–6. doi: 10.1016/j.livsci.2017.11.001. DOI

Liu T., Han Y., Zhou T., Zhang R., Chen H., Chen S., Zhao H. Mechanisms of ROS-induced mitochondria-dependent apoptosis underlying liquid storage of goat spermatozoa. Aging. 2019;11:7880–7898. doi: 10.18632/aging.102295. PubMed DOI PMC

Angrimani D., Nagai K.K., Rui B.R., Bicudo L.C., Losano J., Brito M.M., Francischini M., Nichi M. Spermatic and oxidative profile of domestic cat (Felis catus) epididymal sperm subjected to different cooling times (24, 48 and 72 hours) Reprod. Domest. Anim. 2018;53:163–170. doi: 10.1111/rda.13086. PubMed DOI

Balamurugan B., Ghosh S.K., Lone S.A., Prasad J.K., Das G.K., Katiyar R., Mustapha A.R., Kumar A., Verma M.R. Partial deoxygenation of extender improves sperm quality, reduces lipid peroxidation and reactive oxygen species during cryopreservation of buffalo (Bubalus bubalis) semen. Anim. Reprod. Sci. 2018;189:60–68. doi: 10.1016/j.anireprosci.2017.12.008. PubMed DOI

Taşdemir U., Büyükleblebici S., Tuncer P.B., Coşkun E., Ozgürtaş T., Aydın F.N., Büyükleblebici O., Gürcan I.S. Effects of various cryoprotectants on bull sperm quality, DNA integrity and oxidative stress parameters. Cryobiology. 2013;66:38–42. doi: 10.1016/j.cryobiol.2012.10.006. PubMed DOI

Burnaugh L., Ball B.A., Sabeur K., Thomas A.D., Meyers S.A. Osmotic stress stimulates generation of superoxide anion by spermatozoa in horses. Anim. Reprod. Sci. 2010;117:249–260. doi: 10.1016/j.anireprosci.2009.05.014. PubMed DOI

Santiani A., Evangelista S., Sepúlveda N., Risopatrón J., Villegas J., Sánchez R. Addition of superoxide dismutase mimics during cooling process prevents oxidative stress and improves semen quality parameters in frozen/thawed ram spermatozoa. Theriogenology. 2014;82:884–889. doi: 10.1016/j.theriogenology.2014.07.002. PubMed DOI

Evangelista-Vargas S., Santiani A. Detection of intracellular reactive oxygen species (superoxide anion and hydrogen peroxide) and lipid peroxidation during cryopreservation of alpaca spermatozoa. Reprod. Domest. Anim. 2017;52:819–824. doi: 10.1111/rda.12984. PubMed DOI

Matás C., Vieira L., García-Vázquez F.A., Avilés-López K., López-Úbeda R., Carvajal J.A., Gadea J. Effects of centrifugation through three different discontinuous Percoll gradients on boar sperm function. Anim. Reprod. Sci. 2011;127:62–72. doi: 10.1016/j.anireprosci.2011.06.009. PubMed DOI

Marzano G., Moscatelli N., Di Giacomo M., Martino N.A., Lacalandra G.M., Dell’Aquila M.E., Maruccio G., Primiceri E., Chiriacò M.S., Zara V., et al. Centrifugation Force and Time Alter CASA Parameters and Oxidative Status of Cryopreserved Stallion Sperm. Biology. 2020;9:22. doi: 10.3390/biology9020022. PubMed DOI PMC

Jiménez-Rabadán P., Morrell J.M., Johannisson A., Ramón M., García-Álvarez O., Maroto-Morales A., Alvaro-García P.J., Pérez-Guzmán M.D., Fernández-Santos M.R., Garde J.J., et al. Single layer centrifugation (SLC) improves sperm quality of cryopreserved Blanca-Celtibérica buck semen. Anim. Reprod. Sci. 2012;136:47–54. doi: 10.1016/j.anireprosci.2012.09.012. PubMed DOI

Aitken R.J., Finnie J.M., Muscio L., Whiting S., Connaughton H.S., Kuczera L., Rothkirch T.B., De Iuliis G.N. Potential importance of transition metals in the induction of DNA damage by sperm preparation media. Hum. Reprod. 2014;29:2136–2147. doi: 10.1093/humrep/deu204. PubMed DOI

Orzołek A., Wysocki P., Strzeżek J., Kordan W. Superoxide dismutase (SOD) in boar spermatozoa: Purification, biochemical properties and changes in activity during semen storage (16°C) in different extenders. Reprod. Biol. 2013;13:34–40. doi: 10.1016/j.repbio.2013.01.176. PubMed DOI

Kankofer M., Kolm G., Aurich J., Aurich C. Activity of glutathione peroxidase, superoxide dismutase and catalase and lipid peroxidation intensity in stallion semen during storage at 5 degrees C. Theriogenology. 2005;63:1354–1365. doi: 10.1016/j.theriogenology.2004.07.005. PubMed DOI

Ball B.A. Oxidative stress, osmotic stress and apoptosis: Impacts on sperm function and preservation in the horse. Anim. Reprod. Sci. 2008;107:257–267. doi: 10.1016/j.anireprosci.2008.04.014. PubMed DOI

Kumar C.S., Swamy M.J. HSP-1/2, a major horse seminal plasma protein, acts as a chaperone against oxidative stress. Biochem. Biophys. Res. Commun. 2016;473:1058–1063. doi: 10.1016/j.bbrc.2016.04.015. PubMed DOI

Mavi G.K., Dubey P.P., Cheema R.S. Association of antioxidant defense system with semen attributes vis a vis fertility in exotic and indigenous chicken breeds. Theriogenology. 2020;144:158–163. doi: 10.1016/j.theriogenology.2020.01.003. PubMed DOI

Foote R.H. Catalase content of rabbit, ram, bull and boar semen. J. Anim. Sci. 1962;21:966–968. doi: 10.2527/jas1962.214966x. DOI

Partyka A., Lukaszewicz E., Niżański W. Lipid peroxidation and antioxidant enzymes activity in avian semen. Anim. Reprod. Sci. 2012;134:184–190. doi: 10.1016/j.anireprosci.2012.07.007. PubMed DOI

Am-in N., Kirkwood R.N., Techakumphu M., Tantasuparuk W. Lipid profiles of sperm and seminal plasma from boars having normal or low sperm motility. Theriogenology. 2011;75:897–903. doi: 10.1016/j.theriogenology.2010.10.032. PubMed DOI

Barranco I., Tvarijonaviciute A., Perez-Patiño C., Parrilla I., Ceron J.J., Martinez E.A., Rodriguez-Martinez H., Roca J. High total antioxidant capacity of the porcine seminal plasma (SP-TAC) relates to sperm survival and fertility. Sci. Rep. 2015;5:18538. doi: 10.1038/srep18538. PubMed DOI PMC

Koziorowska-Gilun M., Koziorowski M., Fraser L., Strzeżek J. Antioxidant defence system of boar cauda epididymidal spermatozoa and reproductive tract fluids. Reprod. Domest. Anim. 2011;46:527–533. doi: 10.1111/j.1439-0531.2010.01701.x. PubMed DOI

Park K., Jeon S., Song Y.J., Yi L.S. Proteomic analysis of boar spermatozoa and quantity changes of superoxide dismutase 1, glutathione peroxidase, and peroxiredoxin 5 during epididymal maturation. Anim. Reprod. Sci. 2012;135:53–61. doi: 10.1016/j.anireprosci.2012.08.027. PubMed DOI

Rana M., Roy S.C., Divyashree B.C. Sperm antioxidant defences decrease during epididymal transit from caput to cauda in parallel with increases in epididymal fluid in the goat (Capra hircus) Reprod. Fertil. Dev. 2017;29:1708–1719. doi: 10.1071/RD16269. PubMed DOI

Koziorowska-Gilun M., Gilun P., Fraser L., Koziorowski M., Kordan W., Stefanczyk-Krzymowska S. Antioxidant enzyme activity and mRNA expression in reproductive tract of adult male European Bison (Bison bonasus, Linnaeus 1758) Reprod. Domest. Anim. 2013;48:7–14. doi: 10.1111/j.1439-0531.2012.02015.x. PubMed DOI

Strzezek R., Koziorowska-Gilun M., Kowalówka M., Strzezek J. Characteristics of antioxidant system in dog semen. Pol. J. Vet. Sci. 2009;12:55–60. PubMed

Papas M., Catalan J., Barranco I., Arroyo L., Bassols A., Yeste M., Miró J. Total and specific activities of superoxide dismutase (SOD) in seminal plasma are related with the cryotolerance of jackass spermatozoa. Cryobiology. 2020;92:109–116. doi: 10.1016/j.cryobiol.2019.11.043. PubMed DOI

Papas M., Catalán J., Fernandez-Fuertes B., Arroyo L., Bassols A., Miró J., Yeste M. Specific Activity of Superoxide Dismutase in Stallion Seminal Plasma Is Related to Sperm Cryotolerance. Antioxidants. 2019;8:539. doi: 10.3390/antiox8110539. PubMed DOI PMC

Luther I., Jakop U., Lueders I., Tordiffe A., Franz C., Schiller J., Kotze A., Müller K. Semen cryopreservation and radical reduction capacity of seminal fluid in captive African lion (Panthera leo) Theriogenology. 2017;89:295–304. doi: 10.1016/j.theriogenology.2016.10.024. PubMed DOI

Tvrdá E., Kňažická Z., Bárdos L., Massányi P., Lukáč N. Impact of oxidative stress on male fertility—A review. Acta Vet. Hung. 2011;59:465–484. doi: 10.1556/avet.2011.034. PubMed DOI

Silva P.F., Gadella B.M., Colenbrander B., Roelen B.A. Exposure of bovine sperm to pro-oxidants impairs the developmental competence of the embryo after the first cleavage. Theriogenology. 2007;67:609–619. doi: 10.1016/j.theriogenology.2006.09.032. PubMed DOI

Simões R., Feitosa W.B., Siqueira A.F., Nichi M., Paula-Lopes F.F., Marques M.G., Peres M.A., Barnabe V.H., Visintin J.A., Assumpção M.E. Influence of bovine sperm DNA fragmentation and oxidative stress on early embryo in vitro development outcome. Reproduction. 2013;146:433–441. doi: 10.1530/REP-13-0123. PubMed DOI

Wyck S., Herrera C., Requena C.E., Bittner L., Hajkova P., Bollwein H., Santoro R. Oxidative stress in sperm affects the epigenetic reprogramming in early embryonic development. Epigenet. Chromatin. 2018;11:60. doi: 10.1186/s13072-018-0224-y. PubMed DOI PMC

Ribas-Maynou J., Yeste M., Salas-Huetos A. The Relationship between Sperm Oxidative Stress Alterations and IVF/ICSI Outcomes: A Systematic Review from Nonhuman Mammals. Biology. 2020;9:178. doi: 10.3390/biology9070178. PubMed DOI PMC

Takahashi M. Heat stress on reproductive function and fertility in mammals. Reprod. Med. Biol. 2011;11:37–47. doi: 10.1007/s12522-011-0105-6. PubMed DOI PMC

Garcia-Oliveros L.N., de Arruda R.P., Batissaco L., Gonzaga V.H.G., Nogueira V.J.M., Florez-Rodriguez S.A., Almeida F.D.S., Alves M.B.R., Pinto S.C.C., Nichi M., et al. Heat stress effects on bovine sperm cells: A chronological approach to early findings. Int. J. Biometeorol. 2020;64:1367–1378. doi: 10.1007/s00484-020-01917-w. PubMed DOI

Llamas Luceño N., de Souza Ramos Angrimani D., de Cássia Bicudo L., Szymańska K.J., Van Poucke M., Demeyere K., Meyer E., Peelman L., Mullaart E., Broekhuijse M.L.W.J., et al. Exposing dairy bulls to high temperature-humidity index during spermatogenesis compromises subsequent embryo development in vitro. Theriogenology. 2020;141:16–25. doi: 10.1016/j.theriogenology.2019.08.034. PubMed DOI

Kamarianos A., Karamanlis X., Theodosiadou E., Goulas P., Smokovitis A. The presence of environmental pollutants in the semen of farm animals (bull, ram, goat, and boar) Reprod. Toxicol. 2003;17:439–445. doi: 10.1016/S0890-6238(03)00031-5. PubMed DOI

Massányi P., Trandzik J., Nad P., Koreneková B., Skalická M., Toman R., Lukac N., Halo M., Strapak P. Concentration of copper, iron, zinc, cadmium, lead, and nickel in bull and ram semen and relation to the occurrence of pathological spermatozoa. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2004;39:3005–3014. doi: 10.1081/LESA-200034832. PubMed DOI

Arabi M. Bull spermatozoa under mercury stress. Reprod. Domest. Anim. 2005;40:454–459. doi: 10.1111/j.1439-0531.2005.00607.x. PubMed DOI

Silva E.F.S.J.D., Missio D., Martinez C.S., Vassallo D.V., Peçanha F.M., Leivas F.G., Brum D.D.S., Wiggers G.A. Mercury at environmental relevant levels affects spermatozoa function and fertility capacity in bovine sperm. J. Toxicol. Environ. Health A. 2019;82:268–278. doi: 10.1080/15287394.2019.1589608. PubMed DOI

Yeste M., Estrada E., Rocha L.G., Marín H., Rodríguez-Gil J.E., Miró J. Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus. Andrology. 2015;3:395–407. doi: 10.1111/andr.291. PubMed DOI

Kwon W.S., Oh S.A., Kim Y.J., Rahman M.S., Park Y.J., Pang M.G. Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa. Sci. Rep. 2015;5:13821. doi: 10.1038/srep13821. PubMed DOI PMC

Schulze M., Rüdiger K., Waberski D. Rotation of Boar Semen Doses During Storage Affects Sperm Quality. Reprod. Domest. Anim. 2015;50:684–687. doi: 10.1111/rda.12532. PubMed DOI

Isaksson C. Pollution and its impact on wild animals: A meta-analysis on oxidative stress. Ecohealth. 2010;7:342–350. doi: 10.1007/s10393-010-0345-7. PubMed DOI

Aulsebrook L.C., Bertram M.G., Martin J.M., Aulsebrook A.E., Brodin T., Evans J.P., Hall M.D., O’Bryan M.K., Pask A.J., Tyler C.R., et al. Reproduction in a polluted world: Implications for wildlife. Reproduction. 2020;160:R13–R23. doi: 10.1530/REP-20-0154. PubMed DOI

Dasgupta S., Peng X., Chen S., Li J., Du M., Zhou Y.H., Zhong G., Xu H., Ta K. Toxic anthropogenic pollutants reach the deepest ocean on Earth. Geochem. Perspect. Lett. 2018;7:22–26. doi: 10.7185/geochemlet.1814. DOI

Napper I.E., Davies B.F., Clifford H., Elvin S., Koldewey H.J., Mayewski P.A., Kimberley R.M., Potocky M., Elmore A.C., Gajurel A.P., et al. Reaching new heights in plastic pollution—preliminary findings of microplastics on Mount Everest. One Earth. 2020;3:621–630. doi: 10.1016/j.oneear.2020.10.020. DOI

Amri N., Hammouda A., Rahmouni F., Chokri M.A., Chaabane R., Selmi S., Rebai T., Badraoui R. Reproductive effects in hybrid sparrow from a polluted area in Tunisia: Oxidative damage and altered testicular histomorphology. Ecotoxicol. Environ. Saf. 2016;129:164–170. doi: 10.1016/j.ecoenv.2016.03.024. PubMed DOI

Castellanos P., del Olmo E., Fernández-Santos M.R., Rodríguez-Estival J., Garde J.J., Mateo R. Increased chromatin fragmentation and reduced acrosome integrity in spermatozoa of red deer from lead polluted sites. Sci. Total Environ. 2015;505:32–38. doi: 10.1016/j.scitotenv.2014.09.087. PubMed DOI

Reglero M.M., Taggart M.A., Castellanos P., Mateo R. Reduced sperm quality in relation to oxidative stress in red deer from a lead mining area. Environ. Pollut. 2009;157:2209–2215. doi: 10.1016/j.envpol.2009.04.017. PubMed DOI

Rodríguez-Estival J., Taggart M.A., Mateo R. Alterations in vitamin A and E levels in liver and testis of wild ungulates from a lead mining area. Arch. Environ. Contam. Toxicol. 2011;60:361–371. doi: 10.1007/s00244-010-9597-z. PubMed DOI

Dauwe T., Janssens E., Kempenaers B., Eens M. The effect of heavy metal exposure on egg size, eggshell thickness and the number of spermatozoa in blue tit Parus caeruleus eggs. Environ. Pollut. 2004;129:125–129. doi: 10.1016/j.envpol.2003.09.028. PubMed DOI

Vallverdú-Coll N., Mougeot F., Ortiz-Santaliestra M.E., Castaño C., Santiago-Moreno J., Mateo R. Effects of Lead Exposure on Sperm Quality and Reproductive Success in an Avian Model. Environ. Sci. Technol. 2016;50:12484–12492. doi: 10.1021/acs.est.6b04231. PubMed DOI

Li Y., Wang X., Sun Z. Ecotoxicological effects of petroleum-contaminated soil on the earthworm Eisenia fetida. J. Hazard. Mater. 2020;393:122384. doi: 10.1016/j.jhazmat.2020.122384. PubMed DOI

Møller A.P., Mousseau T.A., Lynn C., Ostermiller S., Rudolfsen G. Impaired swimming behaviour and morphology of sperm from barn swallows Hirundo rustica in Chernobyl. Mutat. Res. 2008;650:210–216. doi: 10.1016/j.mrgentox.2007.12.006. PubMed DOI

Møller A.P., Bonisoli-Alquati A., Mousseau T.A., Rudolfsen G. Aspermy, sperm quality and radiation in Chernobyl birds. PLoS ONE. 2014;9:e100296. doi: 10.1371/journal.pone.0100296. PubMed DOI PMC

Bonisoli-Alquati A., Mousseau T.A., Møller A.P., Caprioli M., Saino N. Increased oxidative stress in barn swallows from the Chernobyl region. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2010;155:205–210. doi: 10.1016/j.cbpa.2009.10.041. PubMed DOI

Bathgate R. Antioxidant mechanisms and their benefit on post-thaw boar sperm quality. Reprod. Domest. Anim. 2011;46:23–25. doi: 10.1111/j.1439-0531.2011.01826.x. PubMed DOI

Gadea J., Gumbao D., Cánovas S., García-Vázquez F.A., Grullón L.A., Gardón J.C. Supplementation of the dilution medium after thawing with reduced glutathione improves function and the in vitro fertilizing ability of frozen-thawed bull spermatozoa. Int. J. Androl. 2008;31:40–49. doi: 10.1111/j.1365-2605.2007.00756.x. PubMed DOI

Masoudi R., Sharafi M., Shahneh A.Z., Khodaei-Motlagh M. Effects of reduced glutathione on the quality of rooster sperm during cryopreservation. Theriogenology. 2019;128:149–155. doi: 10.1016/j.theriogenology.2019.01.016. PubMed DOI

Muthmainnah C.R., Eriani K., Hasri I., Irham M., Batubara A.S., Muchlisin Z.A. Effect of glutathione on sperm quality after short-term cryopreservation in seurukan fish Osteochilus vittatus (Cyprinidae) Theriogenology. 2018;122:30–34. doi: 10.1016/j.theriogenology.2018.08.024. PubMed DOI

Morrell J.M., Georgakas A., Lundeheim N., Nash D., Davies Morel M.C., Johannisson A. Effect of heterologous and homologous seminal plasma on stallion sperm quality. Theriogenology. 2014;82:176–183. doi: 10.1016/j.theriogenology.2014.03.020. PubMed DOI

Fernández-Gago R., Domínguez J.C., Martínez-Pastor F. Seminal plasma applied post-thawing affects boar sperm physiology: A flow cytometry study. Theriogenology. 2013;80:400–410. doi: 10.1016/j.theriogenology.2013.05.003. PubMed DOI

Ros-Santaella J.L., Kadlec M., Pintus E. Pharmacological Activity of Honeybush (Cyclopia intermedia) in Boar Spermatozoa during Semen Storage and under Oxidative Stress. Animals. 2020;10:463. doi: 10.3390/ani10030463. PubMed DOI PMC

Ros-Santaella J.L., Pintus E. Rooibos (Aspalathus linearis) extract enhances boar sperm velocity up to 96 hours of semen storage. PLoS ONE. 2017;12:e0183682. doi: 10.1371/journal.pone.0183682. PubMed DOI PMC

Pintus E., Kadlec M., Jovičić M., Sedmíková M., Ros-Santaella J.L. Aminoguanidine Protects Boar Spermatozoa against the Deleterious Effects of Oxidative Stress. Pharmaceutics. 2018;10:212. doi: 10.3390/pharmaceutics10040212. PubMed DOI PMC

Pintus E., Jovičić M., Kadlec M., Ros-Santaella J.L. Divergent effect of fast- and slow-releasing H2S donors on boar spermatozoa under oxidative stress. Sci. Rep. 2020;10:6508. doi: 10.1038/s41598-020-63489-4. PubMed DOI PMC

Thuwanut P., Chatdarong K., Techakumphu M., Axnér E. The effect of antioxidants on motility, viability, acrosome integrity and DNA integrity of frozen-thawed epididymal cat spermatozoa. Theriogenology. 2008;70:233–240. doi: 10.1016/j.theriogenology.2008.04.005. PubMed DOI

Thuwanut P., Chatdarong K., Bergqvist A.S., Söderquist L., Thiangtum K., Tongthainan D., Axnér E. The effects of antioxidants on semen traits and in vitro fertilizing ability of sperm from the flat-headed cat (Prionailurus planiceps) Theriogenology. 2011;76:115–125. doi: 10.1016/j.theriogenology.2011.01.024. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...