The Roles of NO and H2S in Sperm Biology: Recent Advances and New Perspectives

. 2020 Mar 21 ; 21 (6) : . [epub] 20200321

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32245265

After being historically considered as noxious agents, nitric oxide (NO) and hydrogen sulfide (H2S) are now listed as gasotransmitters, gaseous molecules that play a key role in a variety of cellular functions. Both NO and H2S are endogenously produced, enzymatically or non-enzymatically, and interact with each other in a range of cells and tissues. In spite of the great advances achieved in recent decades in other biological systems, knowledge about H2S function and interactions with NO in sperm biology is in its infancy. Here, we aim to provide an update on the importance of these molecules in the physiology of the male gamete. Special emphasis is given to the most recent advances in the metabolism, mechanisms of action, and effects (both physiological and pathophysiological) of these gasotransmitters. This manuscript also illustrates the physiological implications of NO and H2S observed in other cell types, which might be important for sperm function. The relevance of these gasotransmitters to several signaling pathways within sperm cells highlights their potential use for the improvement and successful application of assisted reproductive technologies.

Zobrazit více v PubMed

Palmer R.M.J., Ferrige A.G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–526. doi: 10.1038/327524a0. PubMed DOI

Brune B., Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol. Pharmacol. 1987;32:497–504. PubMed

Goodwin L.R., Francom D., Dieken F.P., Taylor J.D., Warenycia M.W., Reiffenstein R.J., Dowling G. Determination of sulfide in brain tissue by gas dialysis/ion chromatography: Postmortem studies and two case reports. J. Anal. Toxicol. 1989;13:105–109. doi: 10.1093/jat/13.2.105. PubMed DOI

Wang R. Two’s company, three’s a crowd: Can H2S be the third endogenous gaseous transmitter? Faseb J. 2002;16:1792–1798. doi: 10.1096/fj.02-0211hyp. PubMed DOI

Cirino G., Vellecco V., Bucci M. Nitric oxide and hydrogen sulfide: The gasotransmitter paradigm of the vascular system. Br. J. Pharmacol. 2017;174:4021–4031. doi: 10.1111/bph.13815. PubMed DOI PMC

Holwerda K.M., Karumanchi S.A., Lely A.T. Hydrogen sulfide: Role in vascular physiology and pathology. Curr. Opin. Nephrol. Hypertens. 2015;24:170–176. doi: 10.1097/MNH.0000000000000096. PubMed DOI

Panthi S., Manandhar S., Gautam K. Hydrogen sulfide, nitric oxide, and neurodegenerative disorders. Transl. Neurodegener. 2018;7:3. doi: 10.1186/s40035-018-0108-x. PubMed DOI PMC

Paul B.D., Snyder S.H. Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem. Pharmacol. 2018;149:101–109. doi: 10.1016/j.bcp.2017.11.019. PubMed DOI PMC

Wallace J.L., Ianaro A., de Nucci G. Gaseous Mediators in Gastrointestinal Mucosal Defense and Injury. Dig. Dis. Sci. 2017;62:2223–2230. doi: 10.1007/s10620-017-4681-0. PubMed DOI

Buzadzic B., Vucetic M., Jankovic A., Stancic A., Korac A., Korac B., Otasevic V. New insights into male (in) fertility: The importance of NO. Br. J. Pharmacol. 2015;172:1455–1467. doi: 10.1111/bph.12675. PubMed DOI PMC

Toor J.S., Sikka S.C. Human spermatozoa and interactions with oxidative stress. In: Henkel R., Samanta L., Agarwal A., editors. Oxidants, Antioxidants and Impact of the Oxidative Status in Male Reproduction. Elsevier Inc.; Amsterdam, the Netherlands: 2019. pp. 45–53. Chapter 1.6.

Di Villa Bianca R.D.E., Sorrentino R., Maffia P., Mirone V., Imbimbo C., Fusco F., De Palma R., Ignarro L.J., Cirino G. Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc. Natl. Acad. Sci. USA. 2009;106:4513–4518. doi: 10.1073/pnas.0807974105. PubMed DOI PMC

Sullivan R., Mieusset R. The human epididymis: Its function in sperm maturation. Hum. Reprod. Update. 2016;22:574–587. doi: 10.1093/humupd/dmw015. PubMed DOI

Stival C., Puga Molina L.C., Paudel B., Buffone M.G., Visconti P.E., Krapf D. Sperm capacitation and acrosome reaction in mammalian sperm. In: Buffone M., editor. Sperm Acrosome Biogenesis and Function during Fertilization. Advances in Anatomy, Embryology and Cell Biology. Volume 220. Springer; Cham, Switzerland: 2016. pp. 93–106. PubMed

Zhao Y., Vanhoutte P.M., Leung S.W.S. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci. 2015;129:83–94. doi: 10.1016/j.jphs.2015.09.002. PubMed DOI

Lind M., Hayes A., Caprnda M., Petrovic D., Rodrigo L., Kruzliak P., Zulli A. Inducible nitric oxide synthase: Good or bad? Biomed. Pharmacother. 2017;93:370–375. doi: 10.1016/j.biopha.2017.06.036. PubMed DOI

Lundberg J.O., Gladwin M.T., Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat. Rev. Drug Discov. 2015;14:623–641. doi: 10.1038/nrd4623. PubMed DOI

Förstermann U., Kleinert H. Nitric oxide synthase: Expression and expressional control of the three isoforms. Naunyn. Schmiedebergs. Arch. Pharmacol. 1995;352:351–364. doi: 10.1007/BF00172772. PubMed DOI

Staicu F.D., Matas Parra C. Nitric oxide: Key features in spermatozoa. In: Saravi S.S.S., editor. Nitric Oxide Synthase—Simple Enzyme-Complex Roles. IntechOpen; London, UK: 2017. pp. 138–154. Chapter 8.

Lewis S.E., Donnelly E.T., Sterling E.S., Kennedy M.S., Thompson W., Chakravarthy U. Nitric oxide synthase and nitrite production in human spermatozoa: Evidence that endogenous nitric oxide is beneficial to sperm motility. Mol. Hum. Reprod. 1996;2:873–878. doi: 10.1093/molehr/2.11.873. PubMed DOI

Meiser H., Schulz R. Detection and localization of two constitutive NOS isoforms in bull spermatozoa. Anat. Histol. Embryol. 2003;32:321–325. doi: 10.1111/j.1439-0264.2003.00459.x. PubMed DOI

O’Bryan M.K., Zini A., Cheng C.Y., Schlegel P.N. Human sperm endothelial nitric oxide synthase expression: Correlation with sperm motility. Fertil. Steril. 1998;70:1143–1147. doi: 10.1016/S0015-0282(98)00382-3. PubMed DOI

Staicu F.D., Lopez-Úbeda R., Romero-Aguirregomezcorta J., Martínez-Soto J.C., Matás Parra C. Regulation of boar sperm functionality by the nitric oxide synthase/nitric oxide system. J. Assist. Reprod. Genet. 2019;36:1721–1736. doi: 10.1007/s10815-019-01526-6. PubMed DOI PMC

Liman N., Alan E. Region-specific localization of NOS isoforms and NADPH-diaphorase activity in the intratesticular and excurrent duct systems of adult domestic cats (Felis catus) Microsc. Res. Tech. 2016;79:192–208. doi: 10.1002/jemt.22619. PubMed DOI

Yang J.Z., Ajonuma L.C., Rowlands D.K., Tsang L.L., Ho L.S., Lam S.Y., Chen W.Y., Zhou C.X., Chung Y.W., Cho C.Y., et al. The role of inducible nitric oxide synthase in gamete interaction and fertilization: A comparative study on knockout mice of three NOS isoforms. Cell Biol. Int. 2005;29:785–791. doi: 10.1016/j.cellbi.2005.05.005. PubMed DOI

Herrero M.B., Perez M.S., Viggiano J.M., Polak J.M., De Gimeno M.F. Localization by indirect immunofluorescence of nitric oxide synthase in mouse and human spermatozoa. Reprod. Fertil. Dev. 1996;8:931–934. doi: 10.1071/RD9960931. PubMed DOI

Herrero M.B., Goin J.C., Boquet M., Canteros M.G., Franchi A.M., Perez Martinez S., Polak J.M., Viggiano J.M., Gimeno M.A.F. The nitric oxide synthase of mouse spermatozoa. FEBS Lett. 1997;411:39–42. doi: 10.1016/S0014-5793(97)00570-X. PubMed DOI

Ortega Ferrusola C., Gonzalez Fernandez L., Macias Garcia B., Salazar-Sandoval C., Morillo Rodriguez A., Rodríguez Martinez H., Tapia J.A., Pena F.J. Effect of cryopreservation on nitric oxide production by stallion spermatozoa. Biol. Reprod. 2009;81:1106–1111. doi: 10.1095/biolreprod.109.078220. PubMed DOI

Kolluru G.K., Shen X., Yuan S., Kevil C.G. Gasotransmitter heterocellular signaling. Antioxid. Redox Signal. 2017;26:936–960. doi: 10.1089/ars.2016.6909. PubMed DOI PMC

Fu M., Zhang W., Wu L., Yang G., Li H., Wang R. Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc. Natl. Acad. Sci. USA. 2012;109:2943–2948. doi: 10.1073/pnas.1115634109. PubMed DOI PMC

Olson K.R., Straub K.D. The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology. 2016;31:60–72. doi: 10.1152/physiol.00024.2015. PubMed DOI

Olson K.R. H2S and polysulfide metabolism: Conventional and unconventional pathways. Biochem. Pharmacol. 2018;149:77–90. doi: 10.1016/j.bcp.2017.12.010. PubMed DOI

Olson K.R., Gao Y., DeLeon E.R., Arif M., Arif F., Arora N., Straub K.D. Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS) Redox Biol. 2017;12:325–339. doi: 10.1016/j.redox.2017.02.021. PubMed DOI PMC

Olson K.R. Hydrogen sulfide, reactive sulfur species and coping with reactive oxygen species. Free Radic. Biol. Med. 2019;140:74–83. doi: 10.1016/j.freeradbiomed.2019.01.020. PubMed DOI

Shefa U., Kim M.S., Jeong N.Y., Jung J. Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxid. Med. Cell. Longev. 2018;2018:1873962. doi: 10.1155/2018/1873962. PubMed DOI PMC

Ishigami M., Hiraki K., Umemura K., Ogasawara Y., Ishii K., Kimura H. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid. Redox Signal. 2009;11:205–214. doi: 10.1089/ars.2008.2132. PubMed DOI

Kimura H. Hydrogen sulfide and polysulfides as biological mediators. Molecules. 2014;19:16146–16157. doi: 10.3390/molecules191016146. PubMed DOI PMC

Rose P., Moore P.K., Zhu Y.Z. H2S biosynthesis and catabolism: New insights from molecular studies. Cell. Mol. Life Sci. 2017;74:1391–1412. doi: 10.1007/s00018-016-2406-8. PubMed DOI PMC

Wang J., Wang W., Li S., Han Y., Zhang P., Meng G., Xiao Y., Xie L., Wang X., Sha J., et al. Hydrogen sulfide as a potential target in preventing spermatogenic failure and testicular dysfunction. Antioxid. Redox Signal. 2018;28:1447–1462. doi: 10.1089/ars.2016.6968. PubMed DOI

Otasevic V., Stancic A., Korac A., Jankovic A., Korac B. Reactive oxygen, nitrogen, and sulfur species in human male fertility. A crossroad of cellular signaling and pathology. BioFactors. 2019 doi: 10.1002/biof.1535. PubMed DOI

O’Flaherty C., Matsushita-Fournier D. Reactive oxygen species and protein modifications in spermatozoa. Biol. Reprod. 2017;97:577–585. doi: 10.1093/biolre/iox104. PubMed DOI

López Úbeda R., Matas P.C. An approach to the factors related to sperm capacitation process. Andrology-Open Access. 2015;4:128.

Jovičić M., Pintus E., Fenclová T., Simoník O.S., Chmelíková E., Ros-Santaella J.L., Sedmíková M. Effect of nitric oxide on boar sperm motility, membrane integrity, and acrosomal status during semen storage. Pol. J. Vet. Sci. 2018;21:73–82. PubMed

De Andrade A.F.C., Arruda R.P., Torres M.A., Pieri N.C.G., Leite T.G., Celeghini E.C.C., Oliveira L.Z., Gardés T.P., Bussiere M.C.C., Silva D.F. Nitric oxide in frozen-thawed equine sperm: Effects on motility, membrane integrity and sperm capacitation. Anim. Reprod. Sci. 2018;195:176–184. doi: 10.1016/j.anireprosci.2018.05.022. PubMed DOI

Derbyshire E.R., Marletta M.A. Structure and Regulation of Soluble Guanylate Cyclase. Annu. Rev. Biochem. 2012;81:533–559. doi: 10.1146/annurev-biochem-050410-100030. PubMed DOI

Pan J., Yuan H., Zhang X., Zhang H., Xu Q., Zhou Y., Tan L., Nagawa S., Huang Z.X., Tan X. Probing the molecular mechanism of human soluble guanylate cyclase activation by no in vitro and in vivo. Sci. Rep. 2017;7:43112. doi: 10.1038/srep43112. PubMed DOI PMC

Sürmeli N.B., Müskens F.M., Marletta M.A. The influence of nitric oxide on soluble guanylate cyclase regulation by nucleotides: Role of the pseudosymmetric site. J. Biol. Chem. 2015;290:15570–15580. doi: 10.1074/jbc.M115.641431. PubMed DOI PMC

Montfort W.R., Wales J.A., Weichsel A. Structure and activation of soluble guanylyl cyclase, the nitric oxide sensor. Antioxid. Redox Signal. 2017;26:107–121. doi: 10.1089/ars.2016.6693. PubMed DOI PMC

Zamir N., Barkan D., Keynan N., Naor Z., Breitbart H. Atrial natriuretic peptide induces acrosomal exocytosis in bovine spermatozoa. Am. J. Physiol. 1995;269:E216–E221. doi: 10.1152/ajpendo.1995.269.2.E216. PubMed DOI

Rotem R., Zamir N., Keynan N., Barkan D., Breitbart H., Naor Z. Atrial natriuretic peptide induces acrosomal exocytosis of human spermatozoa. Am. J. Physiol. 1998;274:E218–E223. doi: 10.1152/ajpendo.1998.274.2.E218. PubMed DOI

Wiesner B., Weiner J., Middendorff R., Hagen V., Kaupp U.B., Weyand I. Cyclic nucleotide-gated channels on the flagellum control Ca2+ entry into sperm. J. Cell Biol. 1998;142:473–484. doi: 10.1083/jcb.142.2.473. PubMed DOI PMC

Cisneros-Mejorado A., Hernández-Soberanis L., Islas-Carbajal M.C., Sánchez D. Capacitation and Ca2+ influx in spermatozoa: Role of CNG channels and protein kinase G. Andrology. 2014;2:145–154. doi: 10.1111/j.2047-2927.2013.00169.x. PubMed DOI

Singh A.P., Rajender S. CatSper channel, sperm function and male fertility. Reprod. Biomed. Online. 2015;30:28–38. doi: 10.1016/j.rbmo.2014.09.014. PubMed DOI

Belén Herrero M., Chatterjee S., Lefièvre L., De Lamirande E., Gagnon C. Nitric oxide interacts with the cAMP pathway to modulate capacitation of human spermatozoa. Free Radic. Biol. Med. 2000;29:522–536. doi: 10.1016/S0891-5849(00)00339-7. PubMed DOI

McVey M., Hill J., Howlett A., Klein C. Adenylyl cyclase, a coincidence detector for nitric oxide. J. Biol. Chem. 1999;274:18887–18892. doi: 10.1074/jbc.274.27.18887. PubMed DOI

Kaupp U.B., Strünker T. Signaling in sperm: More different than similar. Trends Cell Biol. 2017;27:101–109. doi: 10.1016/j.tcb.2016.10.002. PubMed DOI

Gangwar D.K., Atreja S.K. Signalling events and associated pathways related to the mammalian sperm capacitation. Reprod. Domest. Anim. 2015;50:705–711. doi: 10.1111/rda.12541. PubMed DOI

Lefièvre L., Chen Y., Conner S.J., Scott J.L., Publicover S.J., Ford W.C.L., Barratt C.L.R. Human spermatozoa contain multiple targets for protein S-nitrosylation: An alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics. 2007;7:3066–3084. doi: 10.1002/pmic.200700254. PubMed DOI PMC

Nagpure B.V., Bian J.S. Interaction of hydrogen sulfide with nitric oxide in the cardiovascular System. Oxid. Med. Cell. Longev. 2016;2016:6904327. doi: 10.1155/2016/6904327. PubMed DOI PMC

Zhao Y., Zhang W.D., Liu X.Q., Zhang P.F., Hao Y.N., Li L., Chen L., Shen W., Tang X.F., Min L.J., et al. Hydrogen sulfide and/or ammonia reduces spermatozoa motility through AMPK/AKT related pathways. Sci. Rep. 2016;6:37884. doi: 10.1038/srep37884. PubMed DOI PMC

Martin-Hidalgo D., Hurtado de Llera A., Calle-Guisado V., Gonzalez-Fernandez L., Garcia-Marin L., Bragado M.J. AMPK function in mammalian spermatozoa. Int. J. Mol. Sci. 2018;19:E3293. doi: 10.3390/ijms19113293. PubMed DOI PMC

Xia Y.Q., Ning J.Z., Cheng F., Yu W.M., Rao T., Ruan Y., Yuan R., Du Y. GYY4137 a H2S donor, attenuates ipsilateral epididymis injury in experimentally varicocele-induced rats via activation of the PI3K/ Akt pathway. Iran. J. Basic Med. Sci. 2019;22:729–735. PubMed PMC

Yang G. Gasotransmitters and Protein Post-Translational Modifications. MOJ Proteomics Bioinform. 2017;5:122–124. doi: 10.15406/mojpb.2017.05.00165. DOI

Mustafa A.K., Gadalla M.M., Sen N., Kim S., Mu W., Gazi S.K., Barrow R.K., Yang G., Wang R., Snyder S.H. HS signals through protein S-Sulfhydration. Sci. Signal. 2009;2:ra72. doi: 10.1126/scisignal.2000464. PubMed DOI PMC

Matsuura K., Huang H.W., Chen M.C., Chen Y., Cheng C.M. Relationship between porcine sperm motility and sperm enzymatic activity using paper-based devices. Sci. Rep. 2017;7:46213. doi: 10.1038/srep46213. PubMed DOI PMC

Wang L., Li Y., Fu J., Zhen L., Zhao N., Yang Q., Li S., Li X. Cadmium inhibits mouse sperm motility through inducing tyrosine phosphorylation in a specific subset of proteins. Reprod. Toxicol. 2016;63:96–106. doi: 10.1016/j.reprotox.2016.05.018. PubMed DOI

Muronetz V.I., Kuravsky M.L., Barinova K.V., Schmalhausen E.V. Sperm-specific glyceraldehyde-3-phosphate dehydrogenase–an evolutionary acquisition of mammals. Biochemistry. 2015;80:1672–1689. doi: 10.1134/S0006297915130040. PubMed DOI

Miki K., Qu W., Goulding E.H., Willis W.D., Bunch D.O., Strader L.F., Perreault S.D., Eddy E.M., O’Brien D.A. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc. Natl. Acad. Sci. USA. 2004;101:16501–16506. doi: 10.1073/pnas.0407708101. PubMed DOI PMC

Filipovic M.R., Zivanovic J., Alvarez B., Banerjee R. Chemical Biology of H2S Signaling through Persulfidation. Chem. Rev. 2018;118:1253–1337. doi: 10.1021/acs.chemrev.7b00205. PubMed DOI PMC

Lau N., Pluth M.D. Reactive sulfur species (RSS): Persulfides, polysulfides, potential, and problems. Curr. Opin. Chem. Biol. 2019;49:1–8. doi: 10.1016/j.cbpa.2018.08.012. PubMed DOI

Paul B.D., Snyder S.H. H2S: A Novel Gasotransmitter that Signals by Sulfhydration. Trends Biochem. Sci. 2015;40:687–700. doi: 10.1016/j.tibs.2015.08.007. PubMed DOI PMC

Mishanina T.V., Libiad M., Banerjee R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat. Chem. Biol. 2015;11:457–464. doi: 10.1038/nchembio.1834. PubMed DOI PMC

Aitken R.J., Gibb Z., Baker M.A., Drevet J., Gharagozloo P. Causes and consequences of oxidative stress in Spermatozoa. Reprod. Fertil. Dev. 2016;28:1–10. doi: 10.1071/RD15325. PubMed DOI

Aitken R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017;84:1039–1052. doi: 10.1002/mrd.22871. PubMed DOI

Kothari S., Thompson A., Agarwal A., du Plessis S.S. Free radicals: Their beneficial and detrimental effects on sperm function. Indian J. Exp. Biol. 2010;48:425–435. PubMed

Jacob C., Lancaster J.R., Giles G.I. Reactive sulphur species in oxidative signal transduction. Biochem. Soc. Trans. 2004;32:1015–1017. doi: 10.1042/BST0321015. PubMed DOI

Sancho S., Vilagran I. The boar ejaculate: Sperm function and seminal plasma analyses. In: Bonet S., Casas I., Holt W.V., Bonet S., Casas I., Holt W.V., Yeste M., editors. Boar Reproduction. Springer; Berlin/Heidelberg, Germany: 2013. pp. 471–516. Chapter 9.

O’Flaherty C. The enzymatic antioxidant system of human spermatozoa. Adv. Androl. 2014;2014:626374. doi: 10.1155/2014/626374. DOI

Moretti E., Collodel G., Fiaschi A.I., Micheli L., Iacoponi F., Cerretani D. Nitric oxide, malondialdheyde and non-enzymatic antioxidants assessed in viable spermatozoa from selected infertile men. Reprod. Biol. 2017;17:370–375. doi: 10.1016/j.repbio.2017.10.003. PubMed DOI

Guthrie H.D., Welch G.R., Long J.A. Mitochondrial function and reactive oxygen species action in relation to boar motility. Theriogenology. 2008;70:1209–1215. doi: 10.1016/j.theriogenology.2008.06.017. PubMed DOI

Weidinger A., Kozlov A.V. Biological activities of reactive oxygen and nitrogen species: Oxidative stress versus signal transduction. Biomolecules. 2015;5:472–484. doi: 10.3390/biom5020472. PubMed DOI PMC

Alizadeh N., Abbasi M., Abolhassani F., Amidi F., Mahmoudi R., Hoshino Y., Sato E. Effects of aminoguanidine on infertile varicocelized rats: A functional and morphological study. Daru. 2010;18:51–56. PubMed PMC

Pintus E., Kadlec M., Jovičić M., Sedmíková M., Ros-Santaella J.L. Aminoguanidine protects boar spermatozoa against the deleterious effects of oxidative stress. Pharmaceutics. 2018;10:E212. doi: 10.3390/pharmaceutics10040212. PubMed DOI PMC

Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA. 2018;115:5839–5848. doi: 10.1073/pnas.1804932115. PubMed DOI PMC

Speckmann B., Steinbrenner H., Grune T., Klotz L.O. Peroxynitrite: From interception to signaling. Arch. Biochem. Biophys. 2016;595:153–160. doi: 10.1016/j.abb.2015.06.022. PubMed DOI

Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 2018;54:287–293. doi: 10.1016/j.ajme.2017.09.001. DOI

Uribe P., Boguen R., Treulen F., Sänchez R., Villegas J.V. Peroxynitrite-mediated nitrosative stress decreases motility and mitochondrial membrane potential in human spermatozoa. Mol. Hum. Reprod. 2014;21:237–243. doi: 10.1093/molehr/gau107. PubMed DOI

Uribe P., Treulen F., Boguen R., Sánchez R., Villegas J.V. Nitrosative stress by peroxynitrite impairs ATP production in human spermatozoa. Andrologia. 2017;49:e12615. doi: 10.1111/and.12615. PubMed DOI

Cabrillana M.E., Uribe P., Villegas J.V., Álvarez J., Sánchez R., Fornés M.W. Thiol oxidation by nitrosative stress: Cellular localization in human spermatozoa. Syst. Biol. Reprod. Med. 2016;62:325–334. doi: 10.1080/19396368.2016.1208782. PubMed DOI

Uribe P., Villegas J.V., Cabrillana M.E., Boguen R., Sánchez R., Fornés M.W., Isachenko V., Isachenko E. Impact of peroxynitrite-mediated nitrosative stress on human sperm cells. Free Radic. Biol. Med. 2018;120:S54. doi: 10.1016/j.freeradbiomed.2018.04.178. DOI

Serrano R., Garrido N., Céspedes J.A., González-Fernández L., García-Marín L.J., Bragado M.J. Molecular mechanisms involved in the impairment of boar sperm motility by peroxynitrite-induced nitrosative stress. Int. J. Mol. Sci. 2020;21:E1208. doi: 10.3390/ijms21041208. PubMed DOI PMC

Giles G.I., Nasim M.J., Ali W., Jacob C. The reactive sulfur species concept: 15 years on. Antioxidants. 2017;6:38. doi: 10.3390/antiox6020038. PubMed DOI PMC

Szabo C., Ransy C., Módis K., Andriamihaja M., Murghes B., Coletta C., Olah G., Yanagi K., Bouillaud F. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br. J. Pharmacol. 2014;171:2099–2122. doi: 10.1111/bph.12369. PubMed DOI PMC

Li L., Rose P., Moore P.K. Hydrogen sulfide and cell signaling. Annu. Rev. Pharmacol. Toxicol. 2011;51:169–187. doi: 10.1146/annurev-pharmtox-010510-100505. PubMed DOI

Xie Z.Z., Liu Y., Bian J.S. Hydrogen sulfide and cellular redox homeostasis. Oxid. Med. Cell. Longev. 2016;2016:6043038. doi: 10.1155/2016/6043038. PubMed DOI PMC

Li G., Xie Z.Z., Chua J.M.W., Wong P.C., Bian J. Hydrogen sulfide protects testicular germ cells against heat-induced injury. Nitric Oxide Biol. Chem. 2015;46:165–171. doi: 10.1016/j.niox.2014.10.005. PubMed DOI

Ning J.Z., Li W., Cheng F., Rao T., Yu W.M., Ruan Y., Yuan R., Zhang X.B., Du Y., Xiao C.C. The protective effects of GYY4137 on ipsilateral testicular injury in experimentally varicocele-induced rats. Exp. Ther. Med. 2018;15:433–439. doi: 10.3892/etm.2017.5417. PubMed DOI PMC

Jia Y., Castellanos J., Wang C., Sinha-Hikim I., Lue Y., Swerdloff R.S., Sinha-Hikim A.P. Mitogen-activated protein kinase signaling in male germ cell apoptosis in the rat. Biol. Reprod. 2009;80:771–780. doi: 10.1095/biolreprod.108.072843. PubMed DOI PMC

Porter A.G., Jänicke R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104. doi: 10.1038/sj.cdd.4400476. PubMed DOI

Durairajanayagam D., Agarwal A., Ong C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod. Biomed. Online. 2015;30:14–27. doi: 10.1016/j.rbmo.2014.09.018. PubMed DOI

Zhang X.G., Hong J.Y., Yan G.J., Wang Y.F., Li Q.W., Hu J.H. Association of heat shock protein 70 with motility of frozen-thawed sperm in bulls. Czech J. Anim. Sci. 2015;60:256–262. doi: 10.17221/8239-CJAS. DOI

Erata G.Ö., Koçak Toker N., Durlanik Ö., Kadioǧlu A., Aktan G., Aykaç Toker G. The role of heat shock protein 70 (Hsp 70) in male infertility: Is it a line of defense against sperm DNA fragmentation? Fertil. Steril. 2008;90:322–327. doi: 10.1016/j.fertnstert.2007.06.021. PubMed DOI

Reddy V.S., Yadav B., Yadav C.L., Anand M., Swain D.K., Kumar D., Kritania D., Madan A.K., Kumar J., Yadav S. Effect of sericin supplementation on heat shock protein 70 (HSP70) expression, redox status and post thaw semen quality in goat. Cryobiology. 2018;84:33–39. doi: 10.1016/j.cryobiol.2018.08.005. PubMed DOI

Hancock J.T., Whiteman M. Hydrogen sulfide signaling: Interactions with nitric oxide and reactive oxygen species. Ann. N. Y. Acad. Sci. 2016;1365:5–14. doi: 10.1111/nyas.12733. PubMed DOI

Almog T., Naor Z. Mitogen activated protein kinases (MAPKs) as regulators of spermatogenesis and spermatozoa functions. Mol. Cell Endocrinol. 2008;282:39–44. doi: 10.1016/j.mce.2007.11.011. PubMed DOI

Lee N.P.Y., Cheng C.Y. Nitric oxide/nitric oxide synthase, spermatogenesis, and tight junction dynamics. Biol. Reprod. 2004;70:267–276. doi: 10.1095/biolreprod.103.021329. PubMed DOI

Silva J.V., Freitas M.J., Correia B.R., Korrodi-Gregório L., Patrício A., Pelech S., Fardilha M. Profiling signaling proteins in human spermatozoa: Biomarker identification for sperm quality evaluation. Fertil. Steril. 2015;104:845–856. doi: 10.1016/j.fertnstert.2015.06.039. PubMed DOI

Schieke S.M., Briviba K., Klotz L.O., Sies H. Activation pattern of mitogen-activated protein kinases elicited by peroxynitrite: Attenuation by selenite supplementation. FEBS Lett. 1999;448:301–303. doi: 10.1016/S0014-5793(99)00372-5. PubMed DOI

Molina L.C.P., Luque G.M., Balestrini P.A., Marín-Briggiler C.I., Romarowski A., Buffone M.G. Molecular basis of human sperm capacitation. Front. Cell Dev. Biol. 2018;6:1–23. doi: 10.3389/fcell.2018.00072. PubMed DOI PMC

Miki K., Clapham D.E. Rheotaxis guides mammalian sperm. Curr. Biol. 2013;23:443–452. doi: 10.1016/j.cub.2013.02.007. PubMed DOI PMC

Miraglia E., Rullo M.L., Bosia A., Massobrio M., Revelli A., Ghigo D. Stimulation of the nitric oxide/cyclic guanosine monophosphate signaling pathway elicits human sperm chemotaxis in vitro. Fertil. Steril. 2007;87:1059–1063. doi: 10.1016/j.fertnstert.2006.07.1540. PubMed DOI

Wiliński B., Wiliński J., Gajda M., Jasek E., Somogyi E., Głowacki M., Śliwa L. Sodium hydrosulfide exerts a transitional attenuating effect on spermatozoa migration in vitro. Folia Biol. 2015;63:145–149. doi: 10.3409/fb63_2.145. PubMed DOI

Xia J., Ren D. The BSA-induced Ca2+ influx during sperm capacitation is CATSPER channel-dependent. Reprod. Biol. Endocrinol. 2009;7:119. doi: 10.1186/1477-7827-7-119. PubMed DOI PMC

Schiffer C., Rieger S., Brenker C., Young S., Hamzeh H., Wachten D., Tüttelmann F., Röpke A., Kaupp U.B., Wang T., et al. Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca2+ signaling. EMBO J. 2020;39:e102363. doi: 10.15252/embj.2019102363. PubMed DOI PMC

Gupta R.K., Swain D.K., Singh V., Anand M., Choudhury S., Yadav S., Saxena A., Garg S.K. Molecular characterization of voltage-gated potassium channel (Kv) and its importance in functional dynamics in bull spermatozoa. Theriogenology. 2018;114:229–236. doi: 10.1016/j.theriogenology.2018.03.030. PubMed DOI

Björkgren I., Lishko P.V. Fertility and trp channels. In: Emir T.L.R., editor. Neurobiology of TRP Channels. CRC Press/Taylor & Francis; Boca Raton, FL, USA: 2017. PubMed

Kumar A., Mishra A.K., Swain D.K., Singh V., Yadav S., Saxena A. Role of transient receptor potential channels in regulating spermatozoa functions: A mini-review. Vet. World. 2018;11:1618–1623. doi: 10.14202/vetworld.2018.1618-1623. PubMed DOI PMC

Yoshida T., Inoue R., Morii T., Takahashi N., Yamamoto S., Hara Y., Tominaga M., Shimizu S., Sato Y., Mori Y. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat. Chem. Biol. 2006;2:596–607. doi: 10.1038/nchembio821. PubMed DOI

Mundt N., Spehr M., Lishko P.V. TRPV4 is the temperature-sensitive ion channel of human sperm. Elife. 2018;7:e35853. doi: 10.7554/eLife.35853. PubMed DOI PMC

Kumar A., Mishra A.K., Singh V., Yadav S., Saxena A., Garg S.K., Swain D.K. Molecular and functional insights into transient receptor potential vanilloid 1 (TRPV1) in bull spermatozoa. Theriogenology. 2019;128:207–217. doi: 10.1016/j.theriogenology.2019.01.029. PubMed DOI

Bernabò N., Pistilli M.G., Mattioli M., Barboni B. Role of TRPV1 channels in boar spermatozoa acquisition of fertilizing ability. Mol. Cell. Endocrinol. 2010;323:224–231. doi: 10.1016/j.mce.2010.02.025. PubMed DOI

Claudia C., Horatiu S., Iudith I., Vasile B., Constanta S. Research regarding the role of TRPV1 and capsaicin (CPS) implication for capacitation and acrosome reaction. Rom. Biotechnol. Lett. 2014;19:9437–9441.

King A.L., Polhemus D.J., Bhushan S., Otsuka H., Kondo K., Nicholson C.K., Bradley J.M., Islam K.N., Calvert J.W., Tao Y.X. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc. Natl. Acad. Sci. USA. 2014;111:3182–3187. doi: 10.1073/pnas.1321871111. PubMed DOI PMC

Di T., Sullivan J.A., Magness R.R., Zhang L., Bird I.M. Pregnancy-specific enhancement of agonist-stimulated ERK-1/2 signaling in uterine artery endothelial cells increases Ca2+ sensitivity of endothelial nitric oxide synthase as well as cytosolic phospholipase A2. Endocrinology. 2001;142:3014–3026. doi: 10.1210/endo.142.7.8278. PubMed DOI

Cai H., Li Z., Davis M.E., Kanner W., Harrison D.G., Dudley S.C. Akt-dependent phosphorylation of serine 1179 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 cooperatively mediate activation of the endothelial nitric-oxide synthase by hydrogen peroxide. Mol. Pharmacol. 2003;63:325–331. doi: 10.1124/mol.63.2.325. PubMed DOI

Benetti L.R., Campos D., Gurgueira S.A., Vercesi A.E., Guedes C.E.V., Santos K.L., Wallace J.L., Teixeira S.A., Florenzano J., Costa S.K.P., et al. Hydrogen sulfide inhibits oxidative stress in lungs from allergic mice in vivo. Eur. J. Pharmacol. 2013;698:463–469. doi: 10.1016/j.ejphar.2012.11.025. PubMed DOI

Kolluru G.K., Yuan S., Shen X., Kevil C.G. H2S regulation of nitric oxide metabolism. Methods Enzymol. 2015;554:271–297. PubMed PMC

Ivanovic-Burmazovic I., Filipovic M.R. Saying NO to H2S: A Story of HNO, HSNO, and SSNO−. Inorg. Chem. 2019;58:4039–4051. doi: 10.1021/acs.inorgchem.8b02592. PubMed DOI

Cortese-Krott M.M., Kuhnle G.G.C., Dyson A., Fernandez B.O., Grman M., DuMond J.F., Barrow M.P., McLeod G., Nakagawa H., Ondrias K., et al. Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proc. Natl. Acad. Sci. USA. 2015;112:E4651–E4660. doi: 10.1073/pnas.1509277112. PubMed DOI PMC

Filipovic M.R., Miljkovic J.L., Nauser T., Royzen M., Klos K., Shubina T., Koppenol W.H., Lippard S.J., Ivanović-Burmazović I. Chemical characterization of the smallest S-nitrosothiol, HSNO; Cellular cross-talk of H2S and S-nitrosothiols. J. Am. Chem. Soc. 2012;134:12016–12027. doi: 10.1021/ja3009693. PubMed DOI PMC

Andrews K.L., Lumsden N.G., Farry J., Jefferis A.M., Kemp-Harper B.K., Chin-Dusting J.P.F. Nitroxyl: A vasodilator of human vessels that is not susceptible to tolerance. Clin. Sci. 2015;129:179–187. doi: 10.1042/CS20140759. PubMed DOI

Bianco C.L., Toscano J.P., Bartberger M.D., Fukuto J.M. The chemical biology of HNO signaling. Arch. Biochem. Biophys. 2017;617:129–136. doi: 10.1016/j.abb.2016.08.014. PubMed DOI PMC

Jackson M.I., Fields H.F., Lujan T.S., Cantrell M.M., Lin J., Fukuto J.M. The effects of nitroxyl (HNO) on H2O2 metabolism and possible mechanisms of HNO signaling. Arch. Biochem. Biophys. 2013;538:120–129. doi: 10.1016/j.abb.2013.08.008. PubMed DOI PMC

Broniowska K.A., Diers A.R., Hogg N. S-Nitrosoglutathione. Biochim. Biophys. Acta. 2013;1830:3173–3181. doi: 10.1016/j.bbagen.2013.02.004. PubMed DOI PMC

Ondrias K., Stasko A., Cacanyiova S., Sulova Z., Krizanova O., Kristek F., Malekova L., Knezl V., Breier A. H2S and HS− donor NaHS releases nitric oxide from nitrosothiols, metal nitrosyl complex, brain homogenate and murine L1210 leukaemia cells. Pflug. Arch. Eur. J. Physiol. 2008;457:271–279. doi: 10.1007/s00424-008-0519-0. PubMed DOI

Kumar M.R., Farmer P.J. Characterization of polysulfides, polysulfanes, and other unique species in the reaction between GSNO and H2S. Molecules. 2019;24:E3090. doi: 10.3390/molecules24173090. PubMed DOI PMC

Berenyiova A., Grman M., Mijuskovic A., Stasko A., Misak A., Nagy P., Ondriasova E., Cacanyiova S., Brezova V., Feelisch M., et al. The reaction products of sulfide and S-nitrosoglutathione are potent vasorelaxants. Nitric Oxide Biol. Chem. 2015;46:123–130. doi: 10.1016/j.niox.2014.12.008. PubMed DOI

Musset B., Clark R.A., DeCoursey T.E., Petheo G.L., Geiszt M., Chen Y., Cornell J.E., Eddy C.A., Brzyski R.G., El Jamali A. NOX5 in human spermatozoa: Expression, function, and regulation. J. Biol. Chem. 2012;287:9376–9388. doi: 10.1074/jbc.M111.314955. PubMed DOI PMC

Cortese-Krott M.M., Fernandez B.O., Santos J.L.T., Mergia E., Grman M., Nagy P., Kelm M., Butler A., Feelisch M. Nitrosopersulfide (SSNO-) accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide. Redox Biol. 2014;2:234–244. doi: 10.1016/j.redox.2013.12.031. PubMed DOI PMC

Cortese-Krott M.M., Fernandez B.O., Kelm M., Butler A.R., Feelisch M. On the chemical biology of the nitrite/sulfide interaction. Nitric Oxide Biol. Chem. 2015;46:14–24. doi: 10.1016/j.niox.2014.12.009. PubMed DOI

Wedmann R., Ivanovic-Burmazovic I., Filipovic M.R. Nitrosopersulfide (SSNO−) decomposes in the presence of sulfide, cyanide or glutathione to give HSNO/SNO−: Consequences for the assumed role in cell signalling. Interface Focus. 2017;7:20160139. doi: 10.1098/rsfs.2016.0139. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace