The Roles of NO and H2S in Sperm Biology: Recent Advances and New Perspectives
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32245265
PubMed Central
PMC7139502
DOI
10.3390/ijms21062174
PII: ijms21062174
Knihovny.cz E-zdroje
- Klíčová slova
- gasotransmitters, hydrogen sulfide, interaction, metabolism, nitric oxide, spermatozoa,
- MeSH
- gasotransmitery chemie metabolismus MeSH
- lidé MeSH
- oxid dusnatý metabolismus MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- reaktivní formy dusíku chemie metabolismus MeSH
- síra chemie metabolismus MeSH
- spermie chemie enzymologie metabolismus fyziologie MeSH
- sulfan metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- gasotransmitery MeSH
- oxid dusnatý MeSH
- reaktivní formy dusíku MeSH
- síra MeSH
- sulfan MeSH
After being historically considered as noxious agents, nitric oxide (NO) and hydrogen sulfide (H2S) are now listed as gasotransmitters, gaseous molecules that play a key role in a variety of cellular functions. Both NO and H2S are endogenously produced, enzymatically or non-enzymatically, and interact with each other in a range of cells and tissues. In spite of the great advances achieved in recent decades in other biological systems, knowledge about H2S function and interactions with NO in sperm biology is in its infancy. Here, we aim to provide an update on the importance of these molecules in the physiology of the male gamete. Special emphasis is given to the most recent advances in the metabolism, mechanisms of action, and effects (both physiological and pathophysiological) of these gasotransmitters. This manuscript also illustrates the physiological implications of NO and H2S observed in other cell types, which might be important for sperm function. The relevance of these gasotransmitters to several signaling pathways within sperm cells highlights their potential use for the improvement and successful application of assisted reproductive technologies.
Zobrazit více v PubMed
Palmer R.M.J., Ferrige A.G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–526. doi: 10.1038/327524a0. PubMed DOI
Brune B., Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol. Pharmacol. 1987;32:497–504. PubMed
Goodwin L.R., Francom D., Dieken F.P., Taylor J.D., Warenycia M.W., Reiffenstein R.J., Dowling G. Determination of sulfide in brain tissue by gas dialysis/ion chromatography: Postmortem studies and two case reports. J. Anal. Toxicol. 1989;13:105–109. doi: 10.1093/jat/13.2.105. PubMed DOI
Wang R. Two’s company, three’s a crowd: Can H2S be the third endogenous gaseous transmitter? Faseb J. 2002;16:1792–1798. doi: 10.1096/fj.02-0211hyp. PubMed DOI
Cirino G., Vellecco V., Bucci M. Nitric oxide and hydrogen sulfide: The gasotransmitter paradigm of the vascular system. Br. J. Pharmacol. 2017;174:4021–4031. doi: 10.1111/bph.13815. PubMed DOI PMC
Holwerda K.M., Karumanchi S.A., Lely A.T. Hydrogen sulfide: Role in vascular physiology and pathology. Curr. Opin. Nephrol. Hypertens. 2015;24:170–176. doi: 10.1097/MNH.0000000000000096. PubMed DOI
Panthi S., Manandhar S., Gautam K. Hydrogen sulfide, nitric oxide, and neurodegenerative disorders. Transl. Neurodegener. 2018;7:3. doi: 10.1186/s40035-018-0108-x. PubMed DOI PMC
Paul B.D., Snyder S.H. Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem. Pharmacol. 2018;149:101–109. doi: 10.1016/j.bcp.2017.11.019. PubMed DOI PMC
Wallace J.L., Ianaro A., de Nucci G. Gaseous Mediators in Gastrointestinal Mucosal Defense and Injury. Dig. Dis. Sci. 2017;62:2223–2230. doi: 10.1007/s10620-017-4681-0. PubMed DOI
Buzadzic B., Vucetic M., Jankovic A., Stancic A., Korac A., Korac B., Otasevic V. New insights into male (in) fertility: The importance of NO. Br. J. Pharmacol. 2015;172:1455–1467. doi: 10.1111/bph.12675. PubMed DOI PMC
Toor J.S., Sikka S.C. Human spermatozoa and interactions with oxidative stress. In: Henkel R., Samanta L., Agarwal A., editors. Oxidants, Antioxidants and Impact of the Oxidative Status in Male Reproduction. Elsevier Inc.; Amsterdam, the Netherlands: 2019. pp. 45–53. Chapter 1.6.
Di Villa Bianca R.D.E., Sorrentino R., Maffia P., Mirone V., Imbimbo C., Fusco F., De Palma R., Ignarro L.J., Cirino G. Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc. Natl. Acad. Sci. USA. 2009;106:4513–4518. doi: 10.1073/pnas.0807974105. PubMed DOI PMC
Sullivan R., Mieusset R. The human epididymis: Its function in sperm maturation. Hum. Reprod. Update. 2016;22:574–587. doi: 10.1093/humupd/dmw015. PubMed DOI
Stival C., Puga Molina L.C., Paudel B., Buffone M.G., Visconti P.E., Krapf D. Sperm capacitation and acrosome reaction in mammalian sperm. In: Buffone M., editor. Sperm Acrosome Biogenesis and Function during Fertilization. Advances in Anatomy, Embryology and Cell Biology. Volume 220. Springer; Cham, Switzerland: 2016. pp. 93–106. PubMed
Zhao Y., Vanhoutte P.M., Leung S.W.S. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci. 2015;129:83–94. doi: 10.1016/j.jphs.2015.09.002. PubMed DOI
Lind M., Hayes A., Caprnda M., Petrovic D., Rodrigo L., Kruzliak P., Zulli A. Inducible nitric oxide synthase: Good or bad? Biomed. Pharmacother. 2017;93:370–375. doi: 10.1016/j.biopha.2017.06.036. PubMed DOI
Lundberg J.O., Gladwin M.T., Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat. Rev. Drug Discov. 2015;14:623–641. doi: 10.1038/nrd4623. PubMed DOI
Förstermann U., Kleinert H. Nitric oxide synthase: Expression and expressional control of the three isoforms. Naunyn. Schmiedebergs. Arch. Pharmacol. 1995;352:351–364. doi: 10.1007/BF00172772. PubMed DOI
Staicu F.D., Matas Parra C. Nitric oxide: Key features in spermatozoa. In: Saravi S.S.S., editor. Nitric Oxide Synthase—Simple Enzyme-Complex Roles. IntechOpen; London, UK: 2017. pp. 138–154. Chapter 8.
Lewis S.E., Donnelly E.T., Sterling E.S., Kennedy M.S., Thompson W., Chakravarthy U. Nitric oxide synthase and nitrite production in human spermatozoa: Evidence that endogenous nitric oxide is beneficial to sperm motility. Mol. Hum. Reprod. 1996;2:873–878. doi: 10.1093/molehr/2.11.873. PubMed DOI
Meiser H., Schulz R. Detection and localization of two constitutive NOS isoforms in bull spermatozoa. Anat. Histol. Embryol. 2003;32:321–325. doi: 10.1111/j.1439-0264.2003.00459.x. PubMed DOI
O’Bryan M.K., Zini A., Cheng C.Y., Schlegel P.N. Human sperm endothelial nitric oxide synthase expression: Correlation with sperm motility. Fertil. Steril. 1998;70:1143–1147. doi: 10.1016/S0015-0282(98)00382-3. PubMed DOI
Staicu F.D., Lopez-Úbeda R., Romero-Aguirregomezcorta J., Martínez-Soto J.C., Matás Parra C. Regulation of boar sperm functionality by the nitric oxide synthase/nitric oxide system. J. Assist. Reprod. Genet. 2019;36:1721–1736. doi: 10.1007/s10815-019-01526-6. PubMed DOI PMC
Liman N., Alan E. Region-specific localization of NOS isoforms and NADPH-diaphorase activity in the intratesticular and excurrent duct systems of adult domestic cats (Felis catus) Microsc. Res. Tech. 2016;79:192–208. doi: 10.1002/jemt.22619. PubMed DOI
Yang J.Z., Ajonuma L.C., Rowlands D.K., Tsang L.L., Ho L.S., Lam S.Y., Chen W.Y., Zhou C.X., Chung Y.W., Cho C.Y., et al. The role of inducible nitric oxide synthase in gamete interaction and fertilization: A comparative study on knockout mice of three NOS isoforms. Cell Biol. Int. 2005;29:785–791. doi: 10.1016/j.cellbi.2005.05.005. PubMed DOI
Herrero M.B., Perez M.S., Viggiano J.M., Polak J.M., De Gimeno M.F. Localization by indirect immunofluorescence of nitric oxide synthase in mouse and human spermatozoa. Reprod. Fertil. Dev. 1996;8:931–934. doi: 10.1071/RD9960931. PubMed DOI
Herrero M.B., Goin J.C., Boquet M., Canteros M.G., Franchi A.M., Perez Martinez S., Polak J.M., Viggiano J.M., Gimeno M.A.F. The nitric oxide synthase of mouse spermatozoa. FEBS Lett. 1997;411:39–42. doi: 10.1016/S0014-5793(97)00570-X. PubMed DOI
Ortega Ferrusola C., Gonzalez Fernandez L., Macias Garcia B., Salazar-Sandoval C., Morillo Rodriguez A., Rodríguez Martinez H., Tapia J.A., Pena F.J. Effect of cryopreservation on nitric oxide production by stallion spermatozoa. Biol. Reprod. 2009;81:1106–1111. doi: 10.1095/biolreprod.109.078220. PubMed DOI
Kolluru G.K., Shen X., Yuan S., Kevil C.G. Gasotransmitter heterocellular signaling. Antioxid. Redox Signal. 2017;26:936–960. doi: 10.1089/ars.2016.6909. PubMed DOI PMC
Fu M., Zhang W., Wu L., Yang G., Li H., Wang R. Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc. Natl. Acad. Sci. USA. 2012;109:2943–2948. doi: 10.1073/pnas.1115634109. PubMed DOI PMC
Olson K.R., Straub K.D. The role of hydrogen sulfide in evolution and the evolution of hydrogen sulfide in metabolism and signaling. Physiology. 2016;31:60–72. doi: 10.1152/physiol.00024.2015. PubMed DOI
Olson K.R. H2S and polysulfide metabolism: Conventional and unconventional pathways. Biochem. Pharmacol. 2018;149:77–90. doi: 10.1016/j.bcp.2017.12.010. PubMed DOI
Olson K.R., Gao Y., DeLeon E.R., Arif M., Arif F., Arora N., Straub K.D. Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS) Redox Biol. 2017;12:325–339. doi: 10.1016/j.redox.2017.02.021. PubMed DOI PMC
Olson K.R. Hydrogen sulfide, reactive sulfur species and coping with reactive oxygen species. Free Radic. Biol. Med. 2019;140:74–83. doi: 10.1016/j.freeradbiomed.2019.01.020. PubMed DOI
Shefa U., Kim M.S., Jeong N.Y., Jung J. Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxid. Med. Cell. Longev. 2018;2018:1873962. doi: 10.1155/2018/1873962. PubMed DOI PMC
Ishigami M., Hiraki K., Umemura K., Ogasawara Y., Ishii K., Kimura H. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid. Redox Signal. 2009;11:205–214. doi: 10.1089/ars.2008.2132. PubMed DOI
Kimura H. Hydrogen sulfide and polysulfides as biological mediators. Molecules. 2014;19:16146–16157. doi: 10.3390/molecules191016146. PubMed DOI PMC
Rose P., Moore P.K., Zhu Y.Z. H2S biosynthesis and catabolism: New insights from molecular studies. Cell. Mol. Life Sci. 2017;74:1391–1412. doi: 10.1007/s00018-016-2406-8. PubMed DOI PMC
Wang J., Wang W., Li S., Han Y., Zhang P., Meng G., Xiao Y., Xie L., Wang X., Sha J., et al. Hydrogen sulfide as a potential target in preventing spermatogenic failure and testicular dysfunction. Antioxid. Redox Signal. 2018;28:1447–1462. doi: 10.1089/ars.2016.6968. PubMed DOI
Otasevic V., Stancic A., Korac A., Jankovic A., Korac B. Reactive oxygen, nitrogen, and sulfur species in human male fertility. A crossroad of cellular signaling and pathology. BioFactors. 2019 doi: 10.1002/biof.1535. PubMed DOI
O’Flaherty C., Matsushita-Fournier D. Reactive oxygen species and protein modifications in spermatozoa. Biol. Reprod. 2017;97:577–585. doi: 10.1093/biolre/iox104. PubMed DOI
López Úbeda R., Matas P.C. An approach to the factors related to sperm capacitation process. Andrology-Open Access. 2015;4:128.
Jovičić M., Pintus E., Fenclová T., Simoník O.S., Chmelíková E., Ros-Santaella J.L., Sedmíková M. Effect of nitric oxide on boar sperm motility, membrane integrity, and acrosomal status during semen storage. Pol. J. Vet. Sci. 2018;21:73–82. PubMed
De Andrade A.F.C., Arruda R.P., Torres M.A., Pieri N.C.G., Leite T.G., Celeghini E.C.C., Oliveira L.Z., Gardés T.P., Bussiere M.C.C., Silva D.F. Nitric oxide in frozen-thawed equine sperm: Effects on motility, membrane integrity and sperm capacitation. Anim. Reprod. Sci. 2018;195:176–184. doi: 10.1016/j.anireprosci.2018.05.022. PubMed DOI
Derbyshire E.R., Marletta M.A. Structure and Regulation of Soluble Guanylate Cyclase. Annu. Rev. Biochem. 2012;81:533–559. doi: 10.1146/annurev-biochem-050410-100030. PubMed DOI
Pan J., Yuan H., Zhang X., Zhang H., Xu Q., Zhou Y., Tan L., Nagawa S., Huang Z.X., Tan X. Probing the molecular mechanism of human soluble guanylate cyclase activation by no in vitro and in vivo. Sci. Rep. 2017;7:43112. doi: 10.1038/srep43112. PubMed DOI PMC
Sürmeli N.B., Müskens F.M., Marletta M.A. The influence of nitric oxide on soluble guanylate cyclase regulation by nucleotides: Role of the pseudosymmetric site. J. Biol. Chem. 2015;290:15570–15580. doi: 10.1074/jbc.M115.641431. PubMed DOI PMC
Montfort W.R., Wales J.A., Weichsel A. Structure and activation of soluble guanylyl cyclase, the nitric oxide sensor. Antioxid. Redox Signal. 2017;26:107–121. doi: 10.1089/ars.2016.6693. PubMed DOI PMC
Zamir N., Barkan D., Keynan N., Naor Z., Breitbart H. Atrial natriuretic peptide induces acrosomal exocytosis in bovine spermatozoa. Am. J. Physiol. 1995;269:E216–E221. doi: 10.1152/ajpendo.1995.269.2.E216. PubMed DOI
Rotem R., Zamir N., Keynan N., Barkan D., Breitbart H., Naor Z. Atrial natriuretic peptide induces acrosomal exocytosis of human spermatozoa. Am. J. Physiol. 1998;274:E218–E223. doi: 10.1152/ajpendo.1998.274.2.E218. PubMed DOI
Wiesner B., Weiner J., Middendorff R., Hagen V., Kaupp U.B., Weyand I. Cyclic nucleotide-gated channels on the flagellum control Ca2+ entry into sperm. J. Cell Biol. 1998;142:473–484. doi: 10.1083/jcb.142.2.473. PubMed DOI PMC
Cisneros-Mejorado A., Hernández-Soberanis L., Islas-Carbajal M.C., Sánchez D. Capacitation and Ca2+ influx in spermatozoa: Role of CNG channels and protein kinase G. Andrology. 2014;2:145–154. doi: 10.1111/j.2047-2927.2013.00169.x. PubMed DOI
Singh A.P., Rajender S. CatSper channel, sperm function and male fertility. Reprod. Biomed. Online. 2015;30:28–38. doi: 10.1016/j.rbmo.2014.09.014. PubMed DOI
Belén Herrero M., Chatterjee S., Lefièvre L., De Lamirande E., Gagnon C. Nitric oxide interacts with the cAMP pathway to modulate capacitation of human spermatozoa. Free Radic. Biol. Med. 2000;29:522–536. doi: 10.1016/S0891-5849(00)00339-7. PubMed DOI
McVey M., Hill J., Howlett A., Klein C. Adenylyl cyclase, a coincidence detector for nitric oxide. J. Biol. Chem. 1999;274:18887–18892. doi: 10.1074/jbc.274.27.18887. PubMed DOI
Kaupp U.B., Strünker T. Signaling in sperm: More different than similar. Trends Cell Biol. 2017;27:101–109. doi: 10.1016/j.tcb.2016.10.002. PubMed DOI
Gangwar D.K., Atreja S.K. Signalling events and associated pathways related to the mammalian sperm capacitation. Reprod. Domest. Anim. 2015;50:705–711. doi: 10.1111/rda.12541. PubMed DOI
Lefièvre L., Chen Y., Conner S.J., Scott J.L., Publicover S.J., Ford W.C.L., Barratt C.L.R. Human spermatozoa contain multiple targets for protein S-nitrosylation: An alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics. 2007;7:3066–3084. doi: 10.1002/pmic.200700254. PubMed DOI PMC
Nagpure B.V., Bian J.S. Interaction of hydrogen sulfide with nitric oxide in the cardiovascular System. Oxid. Med. Cell. Longev. 2016;2016:6904327. doi: 10.1155/2016/6904327. PubMed DOI PMC
Zhao Y., Zhang W.D., Liu X.Q., Zhang P.F., Hao Y.N., Li L., Chen L., Shen W., Tang X.F., Min L.J., et al. Hydrogen sulfide and/or ammonia reduces spermatozoa motility through AMPK/AKT related pathways. Sci. Rep. 2016;6:37884. doi: 10.1038/srep37884. PubMed DOI PMC
Martin-Hidalgo D., Hurtado de Llera A., Calle-Guisado V., Gonzalez-Fernandez L., Garcia-Marin L., Bragado M.J. AMPK function in mammalian spermatozoa. Int. J. Mol. Sci. 2018;19:E3293. doi: 10.3390/ijms19113293. PubMed DOI PMC
Xia Y.Q., Ning J.Z., Cheng F., Yu W.M., Rao T., Ruan Y., Yuan R., Du Y. GYY4137 a H2S donor, attenuates ipsilateral epididymis injury in experimentally varicocele-induced rats via activation of the PI3K/ Akt pathway. Iran. J. Basic Med. Sci. 2019;22:729–735. PubMed PMC
Yang G. Gasotransmitters and Protein Post-Translational Modifications. MOJ Proteomics Bioinform. 2017;5:122–124. doi: 10.15406/mojpb.2017.05.00165. DOI
Mustafa A.K., Gadalla M.M., Sen N., Kim S., Mu W., Gazi S.K., Barrow R.K., Yang G., Wang R., Snyder S.H. HS signals through protein S-Sulfhydration. Sci. Signal. 2009;2:ra72. doi: 10.1126/scisignal.2000464. PubMed DOI PMC
Matsuura K., Huang H.W., Chen M.C., Chen Y., Cheng C.M. Relationship between porcine sperm motility and sperm enzymatic activity using paper-based devices. Sci. Rep. 2017;7:46213. doi: 10.1038/srep46213. PubMed DOI PMC
Wang L., Li Y., Fu J., Zhen L., Zhao N., Yang Q., Li S., Li X. Cadmium inhibits mouse sperm motility through inducing tyrosine phosphorylation in a specific subset of proteins. Reprod. Toxicol. 2016;63:96–106. doi: 10.1016/j.reprotox.2016.05.018. PubMed DOI
Muronetz V.I., Kuravsky M.L., Barinova K.V., Schmalhausen E.V. Sperm-specific glyceraldehyde-3-phosphate dehydrogenase–an evolutionary acquisition of mammals. Biochemistry. 2015;80:1672–1689. doi: 10.1134/S0006297915130040. PubMed DOI
Miki K., Qu W., Goulding E.H., Willis W.D., Bunch D.O., Strader L.F., Perreault S.D., Eddy E.M., O’Brien D.A. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc. Natl. Acad. Sci. USA. 2004;101:16501–16506. doi: 10.1073/pnas.0407708101. PubMed DOI PMC
Filipovic M.R., Zivanovic J., Alvarez B., Banerjee R. Chemical Biology of H2S Signaling through Persulfidation. Chem. Rev. 2018;118:1253–1337. doi: 10.1021/acs.chemrev.7b00205. PubMed DOI PMC
Lau N., Pluth M.D. Reactive sulfur species (RSS): Persulfides, polysulfides, potential, and problems. Curr. Opin. Chem. Biol. 2019;49:1–8. doi: 10.1016/j.cbpa.2018.08.012. PubMed DOI
Paul B.D., Snyder S.H. H2S: A Novel Gasotransmitter that Signals by Sulfhydration. Trends Biochem. Sci. 2015;40:687–700. doi: 10.1016/j.tibs.2015.08.007. PubMed DOI PMC
Mishanina T.V., Libiad M., Banerjee R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat. Chem. Biol. 2015;11:457–464. doi: 10.1038/nchembio.1834. PubMed DOI PMC
Aitken R.J., Gibb Z., Baker M.A., Drevet J., Gharagozloo P. Causes and consequences of oxidative stress in Spermatozoa. Reprod. Fertil. Dev. 2016;28:1–10. doi: 10.1071/RD15325. PubMed DOI
Aitken R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017;84:1039–1052. doi: 10.1002/mrd.22871. PubMed DOI
Kothari S., Thompson A., Agarwal A., du Plessis S.S. Free radicals: Their beneficial and detrimental effects on sperm function. Indian J. Exp. Biol. 2010;48:425–435. PubMed
Jacob C., Lancaster J.R., Giles G.I. Reactive sulphur species in oxidative signal transduction. Biochem. Soc. Trans. 2004;32:1015–1017. doi: 10.1042/BST0321015. PubMed DOI
Sancho S., Vilagran I. The boar ejaculate: Sperm function and seminal plasma analyses. In: Bonet S., Casas I., Holt W.V., Bonet S., Casas I., Holt W.V., Yeste M., editors. Boar Reproduction. Springer; Berlin/Heidelberg, Germany: 2013. pp. 471–516. Chapter 9.
O’Flaherty C. The enzymatic antioxidant system of human spermatozoa. Adv. Androl. 2014;2014:626374. doi: 10.1155/2014/626374. DOI
Moretti E., Collodel G., Fiaschi A.I., Micheli L., Iacoponi F., Cerretani D. Nitric oxide, malondialdheyde and non-enzymatic antioxidants assessed in viable spermatozoa from selected infertile men. Reprod. Biol. 2017;17:370–375. doi: 10.1016/j.repbio.2017.10.003. PubMed DOI
Guthrie H.D., Welch G.R., Long J.A. Mitochondrial function and reactive oxygen species action in relation to boar motility. Theriogenology. 2008;70:1209–1215. doi: 10.1016/j.theriogenology.2008.06.017. PubMed DOI
Weidinger A., Kozlov A.V. Biological activities of reactive oxygen and nitrogen species: Oxidative stress versus signal transduction. Biomolecules. 2015;5:472–484. doi: 10.3390/biom5020472. PubMed DOI PMC
Alizadeh N., Abbasi M., Abolhassani F., Amidi F., Mahmoudi R., Hoshino Y., Sato E. Effects of aminoguanidine on infertile varicocelized rats: A functional and morphological study. Daru. 2010;18:51–56. PubMed PMC
Pintus E., Kadlec M., Jovičić M., Sedmíková M., Ros-Santaella J.L. Aminoguanidine protects boar spermatozoa against the deleterious effects of oxidative stress. Pharmaceutics. 2018;10:E212. doi: 10.3390/pharmaceutics10040212. PubMed DOI PMC
Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA. 2018;115:5839–5848. doi: 10.1073/pnas.1804932115. PubMed DOI PMC
Speckmann B., Steinbrenner H., Grune T., Klotz L.O. Peroxynitrite: From interception to signaling. Arch. Biochem. Biophys. 2016;595:153–160. doi: 10.1016/j.abb.2015.06.022. PubMed DOI
Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 2018;54:287–293. doi: 10.1016/j.ajme.2017.09.001. DOI
Uribe P., Boguen R., Treulen F., Sänchez R., Villegas J.V. Peroxynitrite-mediated nitrosative stress decreases motility and mitochondrial membrane potential in human spermatozoa. Mol. Hum. Reprod. 2014;21:237–243. doi: 10.1093/molehr/gau107. PubMed DOI
Uribe P., Treulen F., Boguen R., Sánchez R., Villegas J.V. Nitrosative stress by peroxynitrite impairs ATP production in human spermatozoa. Andrologia. 2017;49:e12615. doi: 10.1111/and.12615. PubMed DOI
Cabrillana M.E., Uribe P., Villegas J.V., Álvarez J., Sánchez R., Fornés M.W. Thiol oxidation by nitrosative stress: Cellular localization in human spermatozoa. Syst. Biol. Reprod. Med. 2016;62:325–334. doi: 10.1080/19396368.2016.1208782. PubMed DOI
Uribe P., Villegas J.V., Cabrillana M.E., Boguen R., Sánchez R., Fornés M.W., Isachenko V., Isachenko E. Impact of peroxynitrite-mediated nitrosative stress on human sperm cells. Free Radic. Biol. Med. 2018;120:S54. doi: 10.1016/j.freeradbiomed.2018.04.178. DOI
Serrano R., Garrido N., Céspedes J.A., González-Fernández L., García-Marín L.J., Bragado M.J. Molecular mechanisms involved in the impairment of boar sperm motility by peroxynitrite-induced nitrosative stress. Int. J. Mol. Sci. 2020;21:E1208. doi: 10.3390/ijms21041208. PubMed DOI PMC
Giles G.I., Nasim M.J., Ali W., Jacob C. The reactive sulfur species concept: 15 years on. Antioxidants. 2017;6:38. doi: 10.3390/antiox6020038. PubMed DOI PMC
Szabo C., Ransy C., Módis K., Andriamihaja M., Murghes B., Coletta C., Olah G., Yanagi K., Bouillaud F. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br. J. Pharmacol. 2014;171:2099–2122. doi: 10.1111/bph.12369. PubMed DOI PMC
Li L., Rose P., Moore P.K. Hydrogen sulfide and cell signaling. Annu. Rev. Pharmacol. Toxicol. 2011;51:169–187. doi: 10.1146/annurev-pharmtox-010510-100505. PubMed DOI
Xie Z.Z., Liu Y., Bian J.S. Hydrogen sulfide and cellular redox homeostasis. Oxid. Med. Cell. Longev. 2016;2016:6043038. doi: 10.1155/2016/6043038. PubMed DOI PMC
Li G., Xie Z.Z., Chua J.M.W., Wong P.C., Bian J. Hydrogen sulfide protects testicular germ cells against heat-induced injury. Nitric Oxide Biol. Chem. 2015;46:165–171. doi: 10.1016/j.niox.2014.10.005. PubMed DOI
Ning J.Z., Li W., Cheng F., Rao T., Yu W.M., Ruan Y., Yuan R., Zhang X.B., Du Y., Xiao C.C. The protective effects of GYY4137 on ipsilateral testicular injury in experimentally varicocele-induced rats. Exp. Ther. Med. 2018;15:433–439. doi: 10.3892/etm.2017.5417. PubMed DOI PMC
Jia Y., Castellanos J., Wang C., Sinha-Hikim I., Lue Y., Swerdloff R.S., Sinha-Hikim A.P. Mitogen-activated protein kinase signaling in male germ cell apoptosis in the rat. Biol. Reprod. 2009;80:771–780. doi: 10.1095/biolreprod.108.072843. PubMed DOI PMC
Porter A.G., Jänicke R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104. doi: 10.1038/sj.cdd.4400476. PubMed DOI
Durairajanayagam D., Agarwal A., Ong C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod. Biomed. Online. 2015;30:14–27. doi: 10.1016/j.rbmo.2014.09.018. PubMed DOI
Zhang X.G., Hong J.Y., Yan G.J., Wang Y.F., Li Q.W., Hu J.H. Association of heat shock protein 70 with motility of frozen-thawed sperm in bulls. Czech J. Anim. Sci. 2015;60:256–262. doi: 10.17221/8239-CJAS. DOI
Erata G.Ö., Koçak Toker N., Durlanik Ö., Kadioǧlu A., Aktan G., Aykaç Toker G. The role of heat shock protein 70 (Hsp 70) in male infertility: Is it a line of defense against sperm DNA fragmentation? Fertil. Steril. 2008;90:322–327. doi: 10.1016/j.fertnstert.2007.06.021. PubMed DOI
Reddy V.S., Yadav B., Yadav C.L., Anand M., Swain D.K., Kumar D., Kritania D., Madan A.K., Kumar J., Yadav S. Effect of sericin supplementation on heat shock protein 70 (HSP70) expression, redox status and post thaw semen quality in goat. Cryobiology. 2018;84:33–39. doi: 10.1016/j.cryobiol.2018.08.005. PubMed DOI
Hancock J.T., Whiteman M. Hydrogen sulfide signaling: Interactions with nitric oxide and reactive oxygen species. Ann. N. Y. Acad. Sci. 2016;1365:5–14. doi: 10.1111/nyas.12733. PubMed DOI
Almog T., Naor Z. Mitogen activated protein kinases (MAPKs) as regulators of spermatogenesis and spermatozoa functions. Mol. Cell Endocrinol. 2008;282:39–44. doi: 10.1016/j.mce.2007.11.011. PubMed DOI
Lee N.P.Y., Cheng C.Y. Nitric oxide/nitric oxide synthase, spermatogenesis, and tight junction dynamics. Biol. Reprod. 2004;70:267–276. doi: 10.1095/biolreprod.103.021329. PubMed DOI
Silva J.V., Freitas M.J., Correia B.R., Korrodi-Gregório L., Patrício A., Pelech S., Fardilha M. Profiling signaling proteins in human spermatozoa: Biomarker identification for sperm quality evaluation. Fertil. Steril. 2015;104:845–856. doi: 10.1016/j.fertnstert.2015.06.039. PubMed DOI
Schieke S.M., Briviba K., Klotz L.O., Sies H. Activation pattern of mitogen-activated protein kinases elicited by peroxynitrite: Attenuation by selenite supplementation. FEBS Lett. 1999;448:301–303. doi: 10.1016/S0014-5793(99)00372-5. PubMed DOI
Molina L.C.P., Luque G.M., Balestrini P.A., Marín-Briggiler C.I., Romarowski A., Buffone M.G. Molecular basis of human sperm capacitation. Front. Cell Dev. Biol. 2018;6:1–23. doi: 10.3389/fcell.2018.00072. PubMed DOI PMC
Miki K., Clapham D.E. Rheotaxis guides mammalian sperm. Curr. Biol. 2013;23:443–452. doi: 10.1016/j.cub.2013.02.007. PubMed DOI PMC
Miraglia E., Rullo M.L., Bosia A., Massobrio M., Revelli A., Ghigo D. Stimulation of the nitric oxide/cyclic guanosine monophosphate signaling pathway elicits human sperm chemotaxis in vitro. Fertil. Steril. 2007;87:1059–1063. doi: 10.1016/j.fertnstert.2006.07.1540. PubMed DOI
Wiliński B., Wiliński J., Gajda M., Jasek E., Somogyi E., Głowacki M., Śliwa L. Sodium hydrosulfide exerts a transitional attenuating effect on spermatozoa migration in vitro. Folia Biol. 2015;63:145–149. doi: 10.3409/fb63_2.145. PubMed DOI
Xia J., Ren D. The BSA-induced Ca2+ influx during sperm capacitation is CATSPER channel-dependent. Reprod. Biol. Endocrinol. 2009;7:119. doi: 10.1186/1477-7827-7-119. PubMed DOI PMC
Schiffer C., Rieger S., Brenker C., Young S., Hamzeh H., Wachten D., Tüttelmann F., Röpke A., Kaupp U.B., Wang T., et al. Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca2+ signaling. EMBO J. 2020;39:e102363. doi: 10.15252/embj.2019102363. PubMed DOI PMC
Gupta R.K., Swain D.K., Singh V., Anand M., Choudhury S., Yadav S., Saxena A., Garg S.K. Molecular characterization of voltage-gated potassium channel (Kv) and its importance in functional dynamics in bull spermatozoa. Theriogenology. 2018;114:229–236. doi: 10.1016/j.theriogenology.2018.03.030. PubMed DOI
Björkgren I., Lishko P.V. Fertility and trp channels. In: Emir T.L.R., editor. Neurobiology of TRP Channels. CRC Press/Taylor & Francis; Boca Raton, FL, USA: 2017. PubMed
Kumar A., Mishra A.K., Swain D.K., Singh V., Yadav S., Saxena A. Role of transient receptor potential channels in regulating spermatozoa functions: A mini-review. Vet. World. 2018;11:1618–1623. doi: 10.14202/vetworld.2018.1618-1623. PubMed DOI PMC
Yoshida T., Inoue R., Morii T., Takahashi N., Yamamoto S., Hara Y., Tominaga M., Shimizu S., Sato Y., Mori Y. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat. Chem. Biol. 2006;2:596–607. doi: 10.1038/nchembio821. PubMed DOI
Mundt N., Spehr M., Lishko P.V. TRPV4 is the temperature-sensitive ion channel of human sperm. Elife. 2018;7:e35853. doi: 10.7554/eLife.35853. PubMed DOI PMC
Kumar A., Mishra A.K., Singh V., Yadav S., Saxena A., Garg S.K., Swain D.K. Molecular and functional insights into transient receptor potential vanilloid 1 (TRPV1) in bull spermatozoa. Theriogenology. 2019;128:207–217. doi: 10.1016/j.theriogenology.2019.01.029. PubMed DOI
Bernabò N., Pistilli M.G., Mattioli M., Barboni B. Role of TRPV1 channels in boar spermatozoa acquisition of fertilizing ability. Mol. Cell. Endocrinol. 2010;323:224–231. doi: 10.1016/j.mce.2010.02.025. PubMed DOI
Claudia C., Horatiu S., Iudith I., Vasile B., Constanta S. Research regarding the role of TRPV1 and capsaicin (CPS) implication for capacitation and acrosome reaction. Rom. Biotechnol. Lett. 2014;19:9437–9441.
King A.L., Polhemus D.J., Bhushan S., Otsuka H., Kondo K., Nicholson C.K., Bradley J.M., Islam K.N., Calvert J.W., Tao Y.X. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc. Natl. Acad. Sci. USA. 2014;111:3182–3187. doi: 10.1073/pnas.1321871111. PubMed DOI PMC
Di T., Sullivan J.A., Magness R.R., Zhang L., Bird I.M. Pregnancy-specific enhancement of agonist-stimulated ERK-1/2 signaling in uterine artery endothelial cells increases Ca2+ sensitivity of endothelial nitric oxide synthase as well as cytosolic phospholipase A2. Endocrinology. 2001;142:3014–3026. doi: 10.1210/endo.142.7.8278. PubMed DOI
Cai H., Li Z., Davis M.E., Kanner W., Harrison D.G., Dudley S.C. Akt-dependent phosphorylation of serine 1179 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 cooperatively mediate activation of the endothelial nitric-oxide synthase by hydrogen peroxide. Mol. Pharmacol. 2003;63:325–331. doi: 10.1124/mol.63.2.325. PubMed DOI
Benetti L.R., Campos D., Gurgueira S.A., Vercesi A.E., Guedes C.E.V., Santos K.L., Wallace J.L., Teixeira S.A., Florenzano J., Costa S.K.P., et al. Hydrogen sulfide inhibits oxidative stress in lungs from allergic mice in vivo. Eur. J. Pharmacol. 2013;698:463–469. doi: 10.1016/j.ejphar.2012.11.025. PubMed DOI
Kolluru G.K., Yuan S., Shen X., Kevil C.G. H2S regulation of nitric oxide metabolism. Methods Enzymol. 2015;554:271–297. PubMed PMC
Ivanovic-Burmazovic I., Filipovic M.R. Saying NO to H2S: A Story of HNO, HSNO, and SSNO−. Inorg. Chem. 2019;58:4039–4051. doi: 10.1021/acs.inorgchem.8b02592. PubMed DOI
Cortese-Krott M.M., Kuhnle G.G.C., Dyson A., Fernandez B.O., Grman M., DuMond J.F., Barrow M.P., McLeod G., Nakagawa H., Ondrias K., et al. Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proc. Natl. Acad. Sci. USA. 2015;112:E4651–E4660. doi: 10.1073/pnas.1509277112. PubMed DOI PMC
Filipovic M.R., Miljkovic J.L., Nauser T., Royzen M., Klos K., Shubina T., Koppenol W.H., Lippard S.J., Ivanović-Burmazović I. Chemical characterization of the smallest S-nitrosothiol, HSNO; Cellular cross-talk of H2S and S-nitrosothiols. J. Am. Chem. Soc. 2012;134:12016–12027. doi: 10.1021/ja3009693. PubMed DOI PMC
Andrews K.L., Lumsden N.G., Farry J., Jefferis A.M., Kemp-Harper B.K., Chin-Dusting J.P.F. Nitroxyl: A vasodilator of human vessels that is not susceptible to tolerance. Clin. Sci. 2015;129:179–187. doi: 10.1042/CS20140759. PubMed DOI
Bianco C.L., Toscano J.P., Bartberger M.D., Fukuto J.M. The chemical biology of HNO signaling. Arch. Biochem. Biophys. 2017;617:129–136. doi: 10.1016/j.abb.2016.08.014. PubMed DOI PMC
Jackson M.I., Fields H.F., Lujan T.S., Cantrell M.M., Lin J., Fukuto J.M. The effects of nitroxyl (HNO) on H2O2 metabolism and possible mechanisms of HNO signaling. Arch. Biochem. Biophys. 2013;538:120–129. doi: 10.1016/j.abb.2013.08.008. PubMed DOI PMC
Broniowska K.A., Diers A.R., Hogg N. S-Nitrosoglutathione. Biochim. Biophys. Acta. 2013;1830:3173–3181. doi: 10.1016/j.bbagen.2013.02.004. PubMed DOI PMC
Ondrias K., Stasko A., Cacanyiova S., Sulova Z., Krizanova O., Kristek F., Malekova L., Knezl V., Breier A. H2S and HS− donor NaHS releases nitric oxide from nitrosothiols, metal nitrosyl complex, brain homogenate and murine L1210 leukaemia cells. Pflug. Arch. Eur. J. Physiol. 2008;457:271–279. doi: 10.1007/s00424-008-0519-0. PubMed DOI
Kumar M.R., Farmer P.J. Characterization of polysulfides, polysulfanes, and other unique species in the reaction between GSNO and H2S. Molecules. 2019;24:E3090. doi: 10.3390/molecules24173090. PubMed DOI PMC
Berenyiova A., Grman M., Mijuskovic A., Stasko A., Misak A., Nagy P., Ondriasova E., Cacanyiova S., Brezova V., Feelisch M., et al. The reaction products of sulfide and S-nitrosoglutathione are potent vasorelaxants. Nitric Oxide Biol. Chem. 2015;46:123–130. doi: 10.1016/j.niox.2014.12.008. PubMed DOI
Musset B., Clark R.A., DeCoursey T.E., Petheo G.L., Geiszt M., Chen Y., Cornell J.E., Eddy C.A., Brzyski R.G., El Jamali A. NOX5 in human spermatozoa: Expression, function, and regulation. J. Biol. Chem. 2012;287:9376–9388. doi: 10.1074/jbc.M111.314955. PubMed DOI PMC
Cortese-Krott M.M., Fernandez B.O., Santos J.L.T., Mergia E., Grman M., Nagy P., Kelm M., Butler A., Feelisch M. Nitrosopersulfide (SSNO-) accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide. Redox Biol. 2014;2:234–244. doi: 10.1016/j.redox.2013.12.031. PubMed DOI PMC
Cortese-Krott M.M., Fernandez B.O., Kelm M., Butler A.R., Feelisch M. On the chemical biology of the nitrite/sulfide interaction. Nitric Oxide Biol. Chem. 2015;46:14–24. doi: 10.1016/j.niox.2014.12.009. PubMed DOI
Wedmann R., Ivanovic-Burmazovic I., Filipovic M.R. Nitrosopersulfide (SSNO−) decomposes in the presence of sulfide, cyanide or glutathione to give HSNO/SNO−: Consequences for the assumed role in cell signalling. Interface Focus. 2017;7:20160139. doi: 10.1098/rsfs.2016.0139. PubMed DOI PMC
The Interaction of NO and H2S in Boar Spermatozoa under Oxidative Stress
Impact of Oxidative Stress on Male Reproduction in Domestic and Wild Animals