Rooibos (Aspalathus linearis) extract enhances boar sperm velocity up to 96 hours of semen storage
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28837611
PubMed Central
PMC5570286
DOI
10.1371/journal.pone.0183682
PII: PONE-D-17-22249
Knihovny.cz E-zdroje
- MeSH
- Aspalathus chemie MeSH
- motilita spermií účinky léků MeSH
- ochrana biologická MeSH
- prasata MeSH
- rostlinné extrakty farmakologie MeSH
- spermie účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rostlinné extrakty MeSH
Rooibos (Aspalathus linearis) is a native shrub from South African fynbos and has become very popular in the last decades for its antioxidant and medicinal attributes. Several studies have shown its beneficial properties in numerous cell lines, but to date, the in vitro effects of rooibos extract on sperm cells are still unknown. In this study, boar semen was supplemented with four concentrations both of fermented and unfermented rooibos extracts during 96 h of liquid storage at 17°C. The effects of rooibos extracts on sperm velocity, membrane integrity, and acrosomal status were evaluated at 2 h, 48 h, and 96 h of semen storage. Overall our results indicate that rooibos extract enhances sperm velocity, protects the acrosome structure, and tends to preserve the membrane integrity during semen storage. Although the unfermented rooibos showed higher total polyphenol content and total antioxidant capacity than the fermented one, the latter had better effects on sperm velocity leading to, for instance, an increase of 30% in the rectilinear velocity (VSL) at 48 h compared to the control group. Taking into account the different storage times, we established a suitable range of extracts concentrations to be used in boar semen. The rooibos extract ought to be considered as a powerful and natural source of antioxidants for the preservation of boar semen.
Zobrazit více v PubMed
Joubert E, de Beer D. Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. South African J Bot. 2011; 77: 869–886.
Cheney RH, Scholtz E. Rooibos tea, a South African contribution to world beverages. Econ Bot. 1963; 17: 186–194.
Bramati L, Aquilano F, Pietta P. Unfermented Rooibos Tea: quantitative characterization of flavonoids by HPLC-UV and determination of the total antioxidant activity. J Agric Food Chem. 2003; 51: 7472–7474. doi: 10.1021/jf0347721 PubMed DOI
Joubert E, Winterton P, Britz TJ, Ferreira D. Superoxide anion and α, α-diphenyl-β-picrylhydrazyl radical scavenging capacity of rooibos (Aspalathus linearis) aqueous extracts, crude phenolic fractions, tannin and flavonoids. Food Res Int. 2004; 37: 133–138.
McKay DL, Blumberg JB. A review of the bioactivity of South African herbal teas: rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia). Phytother Res. 2007; 21: 1–16. doi: 10.1002/ptr.1992 PubMed DOI
Joubert E, Gelderblom WCA, Louw A, de Beer D. South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides-A review. J Ethnopharmacol. 2008; 119: 376–412. doi: 10.1016/j.jep.2008.06.014 PubMed DOI
Nash LA, Ward WE. Comparison of black, green and rooibos tea on osteoblast activity. Food Funct. 2016; 7: 1166–1175. doi: 10.1039/c5fo01222h PubMed DOI
Dludla PV, Muller CJF, Louw J, Joubert E, Salie R, Opoku AR, et al. The cardioprotective effect of an aqueous extract of fermented rooibos (Aspalathus linearis) on cultured cardiomyocytes derived from diabetic rats. Phytomedicine. 2014; 21: 595–601. doi: 10.1016/j.phymed.2013.10.029 PubMed DOI
Magcwebeba TU, Riedel S, Swanevelder S, Swart P, De Beer D, Joubert E, et al. The potential role of polyphenols in the modulation of skin cell viability by Aspalathus linearis and Cyclopia spp. herbal tea extracts in vitro. J Pharm Pharmacol. 2016; 68: 1440–1453. doi: 10.1111/jphp.12629 PubMed DOI
Monsees TK, Opuwari CS. Effect of rooibos (Aspalathus linearis) on the female rat reproductive tract and liver and kidney functions in vivo. South African J Bot. 2017; 110: 208–215.
Awoniyi DO, Aboua YG, Marnewick JL, Du Plesis SS, Brooks NL. Protective effects of rooibos (Aspalathus linearis), green tea (Camellia sinensis) and commercial supplements on testicular tissue of oxidative stress-induced rats. African J Biotechnol. 2011; 10: 17317–17322. PubMed
Awoniyi DO, Aboua YG, Marnewick J, Brooks N. The effects of rooibos (Aspalathus linearis), green tea (Camellia sinensis) and commercial rooibos and green tea supplements on epididymal sperm in oxidative stress-induced rats. Phyther Res. 2012; 26: 1231–1239. PubMed
Opuwari CS, Monsees TK. In vivo effects of Aspalathus linearis (rooibos) on male rat reproductive functions. Andrologia. 2014; 46: 867–877. doi: 10.1111/and.12158 PubMed DOI
Opuwari CS, Monsees TK. Reduced testosterone production in TM3 Leydig cells treated with Aspalathus linearis (Rooibos) or Camellia sinensis (tea). Andrologia. 2015; 47: 52–58. doi: 10.1111/and.12221 PubMed DOI
Johnson LA, Weitze KF, Fiser P, Maxwell WMC. Storage of boar semen. Anim Reprod Sci. 2000; 62: 143–172. PubMed
Yeste M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology. 2016; 85: 47–64. doi: 10.1016/j.theriogenology.2015.09.047 PubMed DOI
Brouwers JF, Silva PFN, Gadella BM. New assays for detection and localization of endogenous lipid peroxidation products in living boar sperm after BTS dilution or after freeze-thawing. Theriogenology. 2005; 63: 458–469. doi: 10.1016/j.theriogenology.2004.09.046 PubMed DOI
Awda BJ, Mackenzie-Bell M, Buhr MM. Reactive oxygen species and boar sperm function. Biol Reprod. 2009; 81: 553–561. doi: 10.1095/biolreprod.109.076471 PubMed DOI
Yeste M. State-of-the-art of boar sperm preservation in liquid and frozen state. Anim Reprod. 2017; 14: 69–81.
Malo C, Gil L, Gonzalez N, Martínez F, Cano R, de Blas I, et al. Anti-oxidant supplementation improves boar sperm characteristics and fertility after cryopreservation: comparison between cysteine and rosemary (Rosmarinus officinalis). Cryobiology. 2010; 61: 142–147. doi: 10.1016/j.cryobiol.2010.06.009 PubMed DOI
Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965; 16: 144–158.
Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004; 37: 277–285. doi: 10.1016/j.clinbiochem.2003.11.015 PubMed DOI
Comizzoli P, Mauget R, Mermillod P. Assessment of in vitro fertility of deer spermatozoa by heterologous IVF with zona-free bovine oocytes. Theriogenology. 2001; 56: 261–274. PubMed
Schmidt H, Kamp G. Induced hyperactivity in boar spermatozoa and its evaluation by computer-assisted sperm analysis. Reproduction. 2004; 128: 71–79. PubMed
Pursel VG, Johnson LA, Rampacek GB. Acrosome morphology of boar spermatozoa incubated before cold shock. J Anim Sci. 1972; 34(2): 278–283. PubMed
Matthijs A, Harkema W, Engel B, Woelders H. In vitro phagocytosis of boar spermatozoa by neutrophils from peripheral blood of sows. J Reprod Fertil. 2000; 120(2): 265–273. PubMed
Barranco I, Tvarijonaviciute A, Perez-Patiño C, Parrilla I, Ceron JJ, Martinez EA, et al. High total antioxidant capacity of the porcine seminal plasma (SP-TAC) relates to sperm survival and fertility. Sci Rep. 2015; 5: 18538 doi: 10.1038/srep18538 PubMed DOI PMC
Koziorowska-Gilun M, Koziorowski M, Fraser L, Strzezek J. Antioxidant defence system of boar cauda epididymidal spermatozoa and reproductive tract fluids. Reprod Domest Anim. 2011; 46: 527–533. doi: 10.1111/j.1439-0531.2010.01701.x PubMed DOI
Holt C, Holt WV, Moore HD, Reed HC, Curnock RM. Objectively measured boar sperm motility parameters correlate with the outcomes of on-farm inseminations: results of two fertility trials. J Androl. 1997; 18: 312–323. PubMed
Hernández-Caravaca I, Soriano-Úbeda C, Matás C, Izquierdo-Rico MJ, García-Vázquez FA. Boar sperm with defective motility are discriminated in the backflow moments after insemination. Theriogenology. 2015; 83: 655–661. doi: 10.1016/j.theriogenology.2014.10.032 PubMed DOI
Hernández-Caravaca I, Izquierdo-Rico MJ, Matás C, Carvajal JA, Vieira L, Abril D, et al. Reproductive performance and backflow study in cervical and post-cervical artificial insemination in sows. Anim Reprod Sci. 2012; 136: 14–22. doi: 10.1016/j.anireprosci.2012.10.007 PubMed DOI
Chan PJ, Corselli JU, Jacobson JD, Patton WC, King A. Correlation between intact sperm acrosome assessed using the Spermac stain and sperm fertilizing capacity. Arch Androl. 1996; 36: 25–27. PubMed
Schroer S, Yudin A, Myles D. Acrosomal status and motility of guinea pig spermatozoa during in vitro penetration of the cumulus oophorus. Zygote. 2000; 8: 107–117. PubMed
Birck A, Christensen P, Labouriau R, Pedersen J, Borchersen S. In vitro induction of the acrosome reaction in bull sperm and the relationship to field fertility using low-dose inseminations. Theriogenology. 2010; 73: 1180–1191. doi: 10.1016/j.theriogenology.2009.10.010 PubMed DOI
Marnewick J, Joubert E, Joseph S, Swanevelder S, Swart P, Gelderblom W. Inhibition of tumour promotion in mouse skin by extracts of rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), unique South African herbal teas. Cancer Lett. 2005; 224: 193–202. doi: 10.1016/j.canlet.2004.11.014 PubMed DOI
Moretti E, Mazzi L, Terzuoli G, Bonechi C, Iacoponi F, Martini S, et al. Effect of quercetin, rutin, naringenin and epicatechin on lipid peroxidation induced in human sperm. Reprod Toxicol. 2012; 34: 651–657. doi: 10.1016/j.reprotox.2012.10.002 PubMed DOI
Johinke D, de Graaf SP, Bathgate R. Quercetin reduces the in vitro production of H2O2 during chilled storage of rabbit spermatozoa. Anim Reprod Sci. 2014; 151: 208–219. doi: 10.1016/j.anireprosci.2014.10.017 PubMed DOI
Tvrdá E, Tušimová E, Kováčik A, Paál D, Libová Ľ, Lukáč N. Protective effects of quercetin on selected oxidative biomarkers in bovine spermatozoa subjected to ferrous ascorbate. Reprod Domest Anim. 2016; 51: 524–537. doi: 10.1111/rda.12714 PubMed DOI
de Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995; 10: 15–21. PubMed
Sikka SC. Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl. 2004; 25: 5–18. PubMed
Aitken RJ, Jones KT, Robertson SA. Reactive oxygen species and sperm function—In sickness and in health. J Androl. 2012; 33: 1096–1106. doi: 10.2164/jandrol.112.016535 PubMed DOI
Impact of Oxidative Stress on Male Reproduction in Domestic and Wild Animals
Plant Extracts as Alternative Additives for Sperm Preservation