Composition of Stallion Seminal Plasma and Its Impact on Oxidative Stress Markers and Spermatozoa Quality

. 2021 Nov 16 ; 11 (11) : . [epub] 20211116

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34833114

Grantová podpora
NUKLEUS 313011V387 Operational program Integrated Infrastructure
VEGA 1/0539/18 Ministry of Education, Science, Research and Sport of the Slovak Republic
VEGA 1/0392/20 Ministry of Education, Science, Research and Sport of the Slovak Republic
VEGA 1/0038/19 Ministry of Education, Science, Research and Sport of the Slovak Republic
APVV-16-0289 Slovak Research and Development Agency
20-GASPU-2021 Slovak University of Agriculture

The composition of seminal plasma of individual sires varies and so does the fertilizing ability. Micro and macro elements along with seminal enzymes, hormones, proteins, and lipids contained in seminal plasma are essential for the proper physiological function of spermatozoa. However, elevated levels against the normal physiological values, especially in the case of trace metals, result in the production of reactive oxygen species. The deficiency of antioxidants in the seminal plasma that could scavenge free radicals causes an impairment of spermatozoa quality. Ejaculates were obtained from 19 stallions. The fresh semen was analyzed to evaluate qualitative parameters of spermatozoa in terms of the motility, viability, and integrity of DNA. Separated seminal plasma underwent the assessment of the chemical and biochemical composition and RedOx markers. Based on the obtained concentrations of individual chemical elements, the correlation analysis suggested a negative impact of Cu in seminal plasma on the SOD, GPx, and LPO. Contrary, positive correlation was detected between FRAP and motility features. While Cu negatively correlated with sperm motion parameters, the adverse effect on viability was suggested for Cd. Our data suggest that seminal plasma has a potential due to its availability to become the potential biomarker of the reproductive health of farm animals.

Zobrazit více v PubMed

Magistrini M., Lindeberg H., Koskinen E., Beau P., Seguin F. Biophysical and 1H Magnetic Resonance Spectroscopy Characteristics of Fractionated Stallion Ejaculates. J. Reprod. Fertil. Suppl. 2000;56:101–110. PubMed

Pojprasath T., Lohachit C., Techakumphu M., Stout T., Tharasanit T. Improved Cryopreservability of Stallion Sperm Using a Sorbitol-Based Freezing Extender. Theriogenology. 2011;75:1742–1749. doi: 10.1016/j.theriogenology.2011.01.014. PubMed DOI

Papas M., Catalán J., Fernandez-Fuertes B., Arroyo L., Bassols A., Miró J., Yeste M. Specific Activity of Superoxide Dismutase in Stallion Seminal Plasma Is Related to Sperm Cryotolerance. Antioxidants. 2019;8:539. doi: 10.3390/antiox8110539. PubMed DOI PMC

Kareskoski M., Katila T. Components of Stallion Seminal Plasma and the Effects of Seminal Plasma on Sperm Longevity. Anim. Reprod. Sci. 2008;107:249–256. doi: 10.1016/j.anireprosci.2008.04.013. PubMed DOI

Halo M., Tirpák F., Kováčik A., Lípová P., Greń A., Massányi P. Biochemical Parameters of Seminal Plasma Affect Motility Traits of Stallion Spermatozoa. J. Microbiol. Biotechnol. Food Sci. 2018;7:472–474. doi: 10.15414/jmbfs.2018.7.5.472-474. DOI

Halo M.J., Tirpak F., Tvrda E., Blaszczyk M., Lipova P., Binkowski Ł., Massanyi P. Microelements and macroelements in seminal plasma affect oxidative balance of stallion semen; Proceedings of the MendelNet 2017—International PhD Students Conference; Brno, Czech Republic. 8–9 November 2017; Brno, Czech Republic: Mendel University in Brno; 2017. pp. 685–690.

Talluri T.R., Mal G., Ravi S.K. Biochemical Components of Seminal Plasma and Their Correlation to the Fresh Seminal Characteristics in Marwari Stallions and Poitou Jacks. Vet. World. 2017;10:214–220. doi: 10.14202/vetworld.2017.214-220. PubMed DOI PMC

Marzec-Wróblewska U., Kamiński P., Lakota P. Influence of Chemical Elements on Mammalian Spermatozoa. Folia Biol. 2012;58:7–15. PubMed

Aloosh M., Hassani M., Nikoobakht M. Seminal Plasma Magnesium and Premature Ejaculation: A Case-Control Study. BJU Int. 2006;98:402–404. doi: 10.1111/j.1464-410X.2006.06320.x. PubMed DOI

Hejna M., Gottardo D., Baldi A., Dell’Orto V., Cheli F., Zaninelli M., Rossi L. Review: Nutritional Ecology of Heavy Metals. Animal. 2018;12:2156–2170. doi: 10.1017/S175173111700355X. PubMed DOI

Kerns K., Sharif M., Zigo M., Xu W., Hamilton L.E., Sutovsky M., Ellersieck M., Drobnis E.Z., Bovin N., Oko R., et al. Sperm Cohort-Specific Zinc Signature Acquisition and Capacitation-Induced Zinc Flux Regulate Sperm-Oviduct and Sperm-Zona Pellucida Interactions. Int. J. Mol. Sci. 2020;21:2121. doi: 10.3390/ijms21062121. PubMed DOI PMC

Azadmanesh J., Borgstahl G.E.O. A Review of the Catalytic Mechanism of Human Manganese Superoxide Dismutase. Antioxidants. 2018;7:25. doi: 10.3390/antiox7020025. PubMed DOI PMC

Pintus E., Ros-Santaella J.L. Impact of Oxidative Stress on Male Reproduction in Domestic and Wild Animals. Antioxidants. 2021;10:1154. doi: 10.3390/antiox10071154. PubMed DOI PMC

Pellavio G., Laforenza U. Human Sperm Functioning Is Related to the Aquaporin-Mediated Water and Hydrogen Peroxide Transport Regulation. Biochimie. 2021;188:45–51. doi: 10.1016/j.biochi.2021.05.011. PubMed DOI

Greifová H., Jambor T., Tokárová K., Speváková I., Knížatová N., Lukáč N. Resveratrol Attenuates Hydrogen Peroxide-Induced Oxidative Stress in TM3 Leydig Cells in Vitro. J. Environ. Sci. Health Part A. 2020;55:585–595. doi: 10.1080/10934529.2020.1717899. PubMed DOI

Gosalvez J., Tvrda E., Agarwal A. Free Radical and Superoxide Reactivity Detection in Semen Quality Assessment: Past, Present, and Future. J. Assist. Reprod. Genet. 2017;34:697–707. doi: 10.1007/s10815-017-0912-8. PubMed DOI PMC

Hafez E.S.E., Hafez B. Reproduction in Farm Animals. John Wiley & Sons; Hoboken, NJ, USA: 2013.

Rodríguez-Martínez H., Kvist U., Ernerudh J., Sanz L., Calvete J.J. Seminal Plasma Proteins: What Role Do They Play? Am. J. Reprod. Immunol. 2011;66((Suppl. 1)):11–22. doi: 10.1111/j.1600-0897.2011.01033.x. PubMed DOI

Akcay E., Reilas T., Andersson M., Katila T. Effect of Seminal Plasma Fractions on Stallion Sperm Survival after Cooled Storage. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2006;53:481–485. doi: 10.1111/j.1439-0442.2006.00882.x. PubMed DOI

Alghamdi A.S., Foster D.N., Troedsson M.H.T. Equine Seminal Plasma Reduces Sperm Binding to Polymorphonuclear Neutrophils (PMNs) and Improves the Fertility of Fresh Semen Inseminated into Inflamed Uteri. Reproduction. 2004;127:593–600. doi: 10.1530/rep.1.00096. PubMed DOI

Brinsko S.P., Crockett E.C., Squires E.L. Effect of Centrifugation and Partial Removal of Seminal Plasma on Equine Spermatozoal Motility after Cooling and Storage. Theriogenology. 2000;54:129–136. doi: 10.1016/S0093-691X(00)00331-9. PubMed DOI

Dimofski P., Meyre D., Dreumont N., Leininger-Muller B. Consequences of Paternal Nutrition on Offspring Health and Disease. Nutrients. 2021;13:2818. doi: 10.3390/nu13082818. PubMed DOI PMC

Jambor T., Greifova H., Kovacik A., Kovacikova E., Massanyi P., Forgacs Z., Lukac N. Identification of in Vitro Effect of 4-Octylphenol on the Basal and Human Chorionic Gonadotropin (HCG) Stimulated Secretion of Androgens and Superoxide Radicals in Mouse Leydig Cells. J. Environ. Sci. Health Part A. 2019;54:759–767. doi: 10.1080/10934529.2019.1592533. PubMed DOI

Massányi P., Massányi M., Madeddu R., Stawarz R., Lukáč N. Effects of Cadmium, Lead, and Mercury on the Structure and Function of Reproductive Organs. Toxics. 2020;8:94. doi: 10.3390/toxics8040094. PubMed DOI PMC

Binkowski L.J., Sloboda M., Dudzik P., Klak M., Stawarz R. Pollution of Artesian Wells in the Urban Areas of Krakow, Europe. Fresenius Environ. Bull. 2017;26:846–853.

Botsou F., Sungur A., Kelepertzis E., Soylak M. Insights into the Chemical Partitioning of Trace Metals in Roadside and Off-Road Agricultural Soils along Two Major Highways in Attica’s Region, Greece. Ecotoxicol. Environ. Saf. 2016;132:101–110. doi: 10.1016/j.ecoenv.2016.05.032. PubMed DOI

Manisalidis I., Stavropoulou E., Stavropoulos A., Bezirtzoglou E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health. 2020;8:14. doi: 10.3389/fpubh.2020.00014. PubMed DOI PMC

Kilic S., Soylak M. Determination of Trace Element Contaminants in Herbal Teas Using ICP-MS by Different Sample Preparation Method. J. Food Sci. Technol. 2020;57:927–933. doi: 10.1007/s13197-019-04125-6. PubMed DOI PMC

Sayadi M.H., Kharkan J., Binkowski L.J., Moshgani M., Błaszczyk M., Mansouri B. Cadmium and Chromium Levels in Water and Edible Herbs in a Risk Assessment Study of Rural Residents Living in Eastern Iran. Environ. Sci. Pollut. Res. 2020;27:9901–9909. doi: 10.1007/s11356-020-07600-2. PubMed DOI

Perillo L., Arfuso F., Piccione G., Dara S., Tropia E., Cascone G., Licitra F., Monteverde V. Quantification of Some Heavy Metals in Hair of Dairy Cows Housed in Different Areas from Sicily as a Bioindicator of Environmental Exposure—A Preliminary Study. Animals. 2021;11:2268. doi: 10.3390/ani11082268. PubMed DOI PMC

Kovacik A., Arvay J., Tusimova E., Harangozo L., Tvrda E., Zbynovska K., Cupka P., Andrascikova S., Tomas J., Massanyi P. Seasonal Variations in the Blood Concentration of Selected Heavy Metals in Sheep and Their Effects on the Biochemical and Hematological Parameters. Chemosphere. 2017;168:365–371. doi: 10.1016/j.chemosphere.2016.10.090. PubMed DOI

Fu Z., Xi S. The Effects of Heavy Metals on Human Metabolism. Toxicol. Mech. Methods. 2020;30:167–176. doi: 10.1080/15376516.2019.1701594. PubMed DOI

Binkowski Ł.J., Rogoziński P., Błaszczyk M., Semla M., Melia P.M., Stawarz R. Relationship between Air Pollution and Metal Levels in Cancerous and Non-Cancerous Lung Tissues. J. Environ. Sci. Health Part A. 2016;51:1303–1308. doi: 10.1080/10934529.2016.1215200. PubMed DOI

Janicka M., Binkowski Ł.J., Błaszczyk M., Paluch J., Wojtaś W., Massanyi P., Stawarz R. Cadmium, Lead and Mercury Concentrations and Their Influence on Morphological Parameters in Blood Donors from Different Age Groups from Southern Poland. J. Trace Elem. Med. Biol. 2015;29:342–346. doi: 10.1016/j.jtemb.2014.10.002. PubMed DOI

Kovacik A., Tirpak F., Tomka M., Miskeje M., Tvrda E., Arvay J., Andreji J., Slanina T., Gabor M., Hleba L. Trace Elements Content in Semen and Their Interactions with Sperm Quality and RedOx Status in Freshwater Fish Cyprinus Carpio: A Correlation Study. J. Trace Elem. Med. Biol. 2018;50:399–407. doi: 10.1016/j.jtemb.2018.08.005. PubMed DOI

Halo Jr M., Massányi M., Tokárová K., Tirpák F., Greifová H., Solár D., Halo M., Massányi P. High Taurine Concentrations Negatively Effect Stallion Spermatozoa Parameters in Vitro. Acta Fytotech. Zootech. 2021;24:15–19. doi: 10.15414/afz.2021.24.mi-prap.15-19. DOI

Vizzari F., Massányi M., Knížatová N., Corino C., Rossi R., Ondruška Ľ., Tirpák F., Halo M., Massányi P. Effects of Dietary Plant Polyphenols and Seaweed Extract Mixture on Male-Rabbit Semen: Quality Traits and Antioxidant Markers. Saudi J. Biol. Sci. 2021;28:1017–1025. doi: 10.1016/j.sjbs.2020.11.043. PubMed DOI PMC

Slanina T., Miškeje M., Tirpák F., Baszczyk M., Stawarz R., Massányi P. Effect of Taurine on Turkey (Meleagris Gallopavo) Spermatozoa Viability and Motility. Czech J. Anim. Sci. 2018;63:127–135. doi: 10.17221/79/2017-CJAS. DOI

Tirpak F., Slanina T., Tomka M., Zidek R., Halo M., Ivanic P., Gren A., Formicki G., Stachanczyk K., Lukac N., et al. Exposure to Non-Ionizing Electromagnetic Radiation of Public Risk Prevention Instruments Threatens the Quality of Spermatozoids. Reprod. Domest. Anim. 2019;54:150–159. doi: 10.1111/rda.13338. PubMed DOI

Kuželová L., Vašíček J., Rafay J., Chrenek P. Detection of Macrophages in Rabbit Semen and Their Relationship with Semen Quality. Theriogenology. 2017;97:148–153. doi: 10.1016/j.theriogenology.2017.04.032. PubMed DOI

Peña F.J., Johannisson A., Wallgren M., Rodríguez-Martínez H. Assessment of Fresh and Frozen–Thawed Boar Semen Using an Annexin-V Assay: A New Method of Evaluating Sperm Membrane Integrity. Theriogenology. 2003;60:677–689. doi: 10.1016/S0093-691X(03)00081-5. PubMed DOI

Tvrdá E., Arroyo F., Ďuračka M., López-Fernández C., Gosálvez J. Dynamic Assessment of Human Sperm DNA Damage II: The Effect of Sperm Concentration Adjustment during Processing. J. Assist. Reprod. Genet. 2019;36:799–807. doi: 10.1007/s10815-019-01423-y. PubMed DOI PMC

Halo M., Tirpák F., Dano A., Zbynovská K., Kovácik A., Ondruška L., Gren A., Lukác N., Massányi P. Zinc Affects Rabbit Spermatozoa in Vitro: Effects on Motility and Viability. J. Microbiol. Biotechnol. Food Sci. 2018;8:901–904.

Tirpak F., Slanina T., Kovacik A., Ondruska L., Massanyi P., Halo M., Massanyi P. Low Taurine Concentrations Possitively Affect Rabbit Spermatozoa Properties in Later Time Intervals. J. Microbiol. Biotechnol. Food Sci. 2017;7:128–131. doi: 10.15414/jmbfs.2017.7.2.128-131. DOI

Binkowski Ł.J., Błaszczyk M., Przystupińska A., Ożgo M., Massanyi P. Metal Concentrations in Archaeological and Contemporary Mussel Shells (Unionidae): Reconstruction of Past Environmental Conditions and the Present State. Chemosphere. 2019;228:756–761. doi: 10.1016/j.chemosphere.2019.04.190. PubMed DOI

Tvrdá E., Tušimová E., Kováčik A., Paál D., Greifová H., Abdramanov A., Lukáč N. Curcumin Has Protective and Antioxidant Properties on Bull Spermatozoa Subjected to Induced Oxidative Stress. Anim. Reprod. Sci. 2016;172:10–20. doi: 10.1016/j.anireprosci.2016.06.008. PubMed DOI

Tokarova K., Vasicek J., Jurcik R., Balazi A., Kovacikova E., Kovacik A., Chrenek P., Capcarova M. Low Dose Exposure of Patulin and Protective Effect of Epicatechin on Blood Cells in Vitro. J. Environ. Sci. Health Part B. 2019;54:459–466. doi: 10.1080/03601234.2019.1575673. PubMed DOI

Tvrdá E., Kňažická Z., Lukáčová J., Schneidgenová M., Goc Z., Greń A., Szabó C., Massányi P., Lukáč N. The Impact of Lead and Cadmium on Selected Motility, Prooxidant and Antioxidant Parameters of Bovine Seminal Plasma and Spermatozoa. J. Environ. Sci. Health Part A. 2013;48:1292–1300. doi: 10.1080/10934529.2013.777243. PubMed DOI

Morel M.C.G.D. Equine Reproductive Physiology, Breeding and Stud Management. 5th ed. CABI; Wallingford, UK: 2020.

Sotler R., Poljšak B., Dahmane R., Jukić T., Pavan Jukić D., Rotim C., Trebše P., Starc A. Prooxidant Activities of Antioxidants and their Impact on Health. Acta Clin. Croat. 2019;58:726–736. doi: 10.20471/acc.2019.58.04.20. PubMed DOI PMC

El Sisy G.A., Abo El-Maaty A.M., Rawash Z.M. Comparative Blood and Seminal Plasma Oxidant/Antioxidant Status of Arab Stallions with Different Ages and Their Relation to Semen Quality. Asian Pac. J. Reprod. 2016;5:428–433. doi: 10.1016/j.apjr.2016.07.006. DOI

Massányi P., Trandzik J., Nad P., Lukac N., Skalicka M., Korenekova B., Cigankova V., Toman R., Halo M., Strapak P. Semen Concentration of Trace Elements in Stallions and Relation to the Spermatozoa Quality. Trace Elem. Electrolytes. 2004;21:229–231. doi: 10.5414/TEP21229. DOI

Usuga A., Rojano B., Restrepo G. Effect of Seminal Plasma Components on the Quality of Fresh and Cryopreserved Stallion Semen. J. Equine Vet. Sci. 2017;58:103–111. doi: 10.1016/j.jevs.2017.09.005. DOI

Ball B.A. Oxidative Stress, Osmotic Stress and Apoptosis: Impacts on Sperm Function and Preservation in the Horse. Anim. Reprod. Sci. 2008;107:257–267. doi: 10.1016/j.anireprosci.2008.04.014. PubMed DOI

Tirpák F., Greifová H., Lukáč N., Stawarz R., Massányi P. Exogenous Factors Affecting the Functional Integrity of Male Reproduction. Life. 2021;11:213. doi: 10.3390/life11030213. PubMed DOI PMC

Wnuk M., Lewinska A., Oklejewicz B., Bartosz G., Tischner M., Bugno-Poniewierska M. Redox Status of Equine Seminal Plasma Reflects the Pattern and Magnitude of DNA Damage in Sperm Cells. Theriogenology. 2010;74:1677–1684. doi: 10.1016/j.theriogenology.2010.07.007. PubMed DOI

Pesch S., Bergmann M., Bostedt H. Determination of Some Enzymes and Macro- and Microelements in Stallion Seminal Plasma and Their Correlations to Semen Quality. Theriogenology. 2006;66:307–313. doi: 10.1016/j.theriogenology.2005.11.015. PubMed DOI

Freitas M.J., Vijayaraghavan S., Fardilha M. Signalling mechanisms in mammalian sperm motility. Biol. Reprod. 2017;96:2–12. PubMed

Singh A.P., Rajender S. CatSper channel, sperm function and male fertility. Reprod. Biomed. Online. 2015;30:28–38. doi: 10.1016/j.rbmo.2014.09.014. PubMed DOI

Baumber J., Sabeur K., Vo A., Ball B.A. Reactive Oxygen Species Promote Tyrosine Phosphorylation and Capacitation in Equine Spermatozoa. Theriogenology. 2003;60:1239–1247. doi: 10.1016/S0093-691X(03)00144-4. PubMed DOI

Amidi F., Pazhohan A., Shabani Nashtaei M., Khodarahmian M., Nekoonam S. The Role of Antioxidants in Sperm Freezing: A Review. Cell Tissue Bank. 2016;17:745–756. doi: 10.1007/s10561-016-9566-5. PubMed DOI

Töpfer-Petersen E., Ekhlasi-Hundrieser M., Kirchhoff C., Leeb T., Sieme H. The Role of Stallion Seminal Proteins in Fertilisation. Anim. Reprod. Sci. 2005;89:159–170. doi: 10.1016/j.anireprosci.2005.06.018. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Calcium affects stallion spermatozoa parameters in different incubation temperatures

. 2024 Aug 30 ; 10 (16) : e35879. [epub] 20240808

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...