Composition of Stallion Seminal Plasma and Its Impact on Oxidative Stress Markers and Spermatozoa Quality
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NUKLEUS 313011V387
Operational program Integrated Infrastructure
VEGA 1/0539/18
Ministry of Education, Science, Research and Sport of the Slovak Republic
VEGA 1/0392/20
Ministry of Education, Science, Research and Sport of the Slovak Republic
VEGA 1/0038/19
Ministry of Education, Science, Research and Sport of the Slovak Republic
APVV-16-0289
Slovak Research and Development Agency
20-GASPU-2021
Slovak University of Agriculture
PubMed
34833114
PubMed Central
PMC8624310
DOI
10.3390/life11111238
PII: life11111238
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, antioxidant activity, horse, micro and macroelements, prooxidant activity, spermatozoa,
- Publikační typ
- časopisecké články MeSH
The composition of seminal plasma of individual sires varies and so does the fertilizing ability. Micro and macro elements along with seminal enzymes, hormones, proteins, and lipids contained in seminal plasma are essential for the proper physiological function of spermatozoa. However, elevated levels against the normal physiological values, especially in the case of trace metals, result in the production of reactive oxygen species. The deficiency of antioxidants in the seminal plasma that could scavenge free radicals causes an impairment of spermatozoa quality. Ejaculates were obtained from 19 stallions. The fresh semen was analyzed to evaluate qualitative parameters of spermatozoa in terms of the motility, viability, and integrity of DNA. Separated seminal plasma underwent the assessment of the chemical and biochemical composition and RedOx markers. Based on the obtained concentrations of individual chemical elements, the correlation analysis suggested a negative impact of Cu in seminal plasma on the SOD, GPx, and LPO. Contrary, positive correlation was detected between FRAP and motility features. While Cu negatively correlated with sperm motion parameters, the adverse effect on viability was suggested for Cd. Our data suggest that seminal plasma has a potential due to its availability to become the potential biomarker of the reproductive health of farm animals.
Zobrazit více v PubMed
Magistrini M., Lindeberg H., Koskinen E., Beau P., Seguin F. Biophysical and 1H Magnetic Resonance Spectroscopy Characteristics of Fractionated Stallion Ejaculates. J. Reprod. Fertil. Suppl. 2000;56:101–110. PubMed
Pojprasath T., Lohachit C., Techakumphu M., Stout T., Tharasanit T. Improved Cryopreservability of Stallion Sperm Using a Sorbitol-Based Freezing Extender. Theriogenology. 2011;75:1742–1749. doi: 10.1016/j.theriogenology.2011.01.014. PubMed DOI
Papas M., Catalán J., Fernandez-Fuertes B., Arroyo L., Bassols A., Miró J., Yeste M. Specific Activity of Superoxide Dismutase in Stallion Seminal Plasma Is Related to Sperm Cryotolerance. Antioxidants. 2019;8:539. doi: 10.3390/antiox8110539. PubMed DOI PMC
Kareskoski M., Katila T. Components of Stallion Seminal Plasma and the Effects of Seminal Plasma on Sperm Longevity. Anim. Reprod. Sci. 2008;107:249–256. doi: 10.1016/j.anireprosci.2008.04.013. PubMed DOI
Halo M., Tirpák F., Kováčik A., Lípová P., Greń A., Massányi P. Biochemical Parameters of Seminal Plasma Affect Motility Traits of Stallion Spermatozoa. J. Microbiol. Biotechnol. Food Sci. 2018;7:472–474. doi: 10.15414/jmbfs.2018.7.5.472-474. DOI
Halo M.J., Tirpak F., Tvrda E., Blaszczyk M., Lipova P., Binkowski Ł., Massanyi P. Microelements and macroelements in seminal plasma affect oxidative balance of stallion semen; Proceedings of the MendelNet 2017—International PhD Students Conference; Brno, Czech Republic. 8–9 November 2017; Brno, Czech Republic: Mendel University in Brno; 2017. pp. 685–690.
Talluri T.R., Mal G., Ravi S.K. Biochemical Components of Seminal Plasma and Their Correlation to the Fresh Seminal Characteristics in Marwari Stallions and Poitou Jacks. Vet. World. 2017;10:214–220. doi: 10.14202/vetworld.2017.214-220. PubMed DOI PMC
Marzec-Wróblewska U., Kamiński P., Lakota P. Influence of Chemical Elements on Mammalian Spermatozoa. Folia Biol. 2012;58:7–15. PubMed
Aloosh M., Hassani M., Nikoobakht M. Seminal Plasma Magnesium and Premature Ejaculation: A Case-Control Study. BJU Int. 2006;98:402–404. doi: 10.1111/j.1464-410X.2006.06320.x. PubMed DOI
Hejna M., Gottardo D., Baldi A., Dell’Orto V., Cheli F., Zaninelli M., Rossi L. Review: Nutritional Ecology of Heavy Metals. Animal. 2018;12:2156–2170. doi: 10.1017/S175173111700355X. PubMed DOI
Kerns K., Sharif M., Zigo M., Xu W., Hamilton L.E., Sutovsky M., Ellersieck M., Drobnis E.Z., Bovin N., Oko R., et al. Sperm Cohort-Specific Zinc Signature Acquisition and Capacitation-Induced Zinc Flux Regulate Sperm-Oviduct and Sperm-Zona Pellucida Interactions. Int. J. Mol. Sci. 2020;21:2121. doi: 10.3390/ijms21062121. PubMed DOI PMC
Azadmanesh J., Borgstahl G.E.O. A Review of the Catalytic Mechanism of Human Manganese Superoxide Dismutase. Antioxidants. 2018;7:25. doi: 10.3390/antiox7020025. PubMed DOI PMC
Pintus E., Ros-Santaella J.L. Impact of Oxidative Stress on Male Reproduction in Domestic and Wild Animals. Antioxidants. 2021;10:1154. doi: 10.3390/antiox10071154. PubMed DOI PMC
Pellavio G., Laforenza U. Human Sperm Functioning Is Related to the Aquaporin-Mediated Water and Hydrogen Peroxide Transport Regulation. Biochimie. 2021;188:45–51. doi: 10.1016/j.biochi.2021.05.011. PubMed DOI
Greifová H., Jambor T., Tokárová K., Speváková I., Knížatová N., Lukáč N. Resveratrol Attenuates Hydrogen Peroxide-Induced Oxidative Stress in TM3 Leydig Cells in Vitro. J. Environ. Sci. Health Part A. 2020;55:585–595. doi: 10.1080/10934529.2020.1717899. PubMed DOI
Gosalvez J., Tvrda E., Agarwal A. Free Radical and Superoxide Reactivity Detection in Semen Quality Assessment: Past, Present, and Future. J. Assist. Reprod. Genet. 2017;34:697–707. doi: 10.1007/s10815-017-0912-8. PubMed DOI PMC
Hafez E.S.E., Hafez B. Reproduction in Farm Animals. John Wiley & Sons; Hoboken, NJ, USA: 2013.
Rodríguez-Martínez H., Kvist U., Ernerudh J., Sanz L., Calvete J.J. Seminal Plasma Proteins: What Role Do They Play? Am. J. Reprod. Immunol. 2011;66((Suppl. 1)):11–22. doi: 10.1111/j.1600-0897.2011.01033.x. PubMed DOI
Akcay E., Reilas T., Andersson M., Katila T. Effect of Seminal Plasma Fractions on Stallion Sperm Survival after Cooled Storage. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2006;53:481–485. doi: 10.1111/j.1439-0442.2006.00882.x. PubMed DOI
Alghamdi A.S., Foster D.N., Troedsson M.H.T. Equine Seminal Plasma Reduces Sperm Binding to Polymorphonuclear Neutrophils (PMNs) and Improves the Fertility of Fresh Semen Inseminated into Inflamed Uteri. Reproduction. 2004;127:593–600. doi: 10.1530/rep.1.00096. PubMed DOI
Brinsko S.P., Crockett E.C., Squires E.L. Effect of Centrifugation and Partial Removal of Seminal Plasma on Equine Spermatozoal Motility after Cooling and Storage. Theriogenology. 2000;54:129–136. doi: 10.1016/S0093-691X(00)00331-9. PubMed DOI
Dimofski P., Meyre D., Dreumont N., Leininger-Muller B. Consequences of Paternal Nutrition on Offspring Health and Disease. Nutrients. 2021;13:2818. doi: 10.3390/nu13082818. PubMed DOI PMC
Jambor T., Greifova H., Kovacik A., Kovacikova E., Massanyi P., Forgacs Z., Lukac N. Identification of in Vitro Effect of 4-Octylphenol on the Basal and Human Chorionic Gonadotropin (HCG) Stimulated Secretion of Androgens and Superoxide Radicals in Mouse Leydig Cells. J. Environ. Sci. Health Part A. 2019;54:759–767. doi: 10.1080/10934529.2019.1592533. PubMed DOI
Massányi P., Massányi M., Madeddu R., Stawarz R., Lukáč N. Effects of Cadmium, Lead, and Mercury on the Structure and Function of Reproductive Organs. Toxics. 2020;8:94. doi: 10.3390/toxics8040094. PubMed DOI PMC
Binkowski L.J., Sloboda M., Dudzik P., Klak M., Stawarz R. Pollution of Artesian Wells in the Urban Areas of Krakow, Europe. Fresenius Environ. Bull. 2017;26:846–853.
Botsou F., Sungur A., Kelepertzis E., Soylak M. Insights into the Chemical Partitioning of Trace Metals in Roadside and Off-Road Agricultural Soils along Two Major Highways in Attica’s Region, Greece. Ecotoxicol. Environ. Saf. 2016;132:101–110. doi: 10.1016/j.ecoenv.2016.05.032. PubMed DOI
Manisalidis I., Stavropoulou E., Stavropoulos A., Bezirtzoglou E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health. 2020;8:14. doi: 10.3389/fpubh.2020.00014. PubMed DOI PMC
Kilic S., Soylak M. Determination of Trace Element Contaminants in Herbal Teas Using ICP-MS by Different Sample Preparation Method. J. Food Sci. Technol. 2020;57:927–933. doi: 10.1007/s13197-019-04125-6. PubMed DOI PMC
Sayadi M.H., Kharkan J., Binkowski L.J., Moshgani M., Błaszczyk M., Mansouri B. Cadmium and Chromium Levels in Water and Edible Herbs in a Risk Assessment Study of Rural Residents Living in Eastern Iran. Environ. Sci. Pollut. Res. 2020;27:9901–9909. doi: 10.1007/s11356-020-07600-2. PubMed DOI
Perillo L., Arfuso F., Piccione G., Dara S., Tropia E., Cascone G., Licitra F., Monteverde V. Quantification of Some Heavy Metals in Hair of Dairy Cows Housed in Different Areas from Sicily as a Bioindicator of Environmental Exposure—A Preliminary Study. Animals. 2021;11:2268. doi: 10.3390/ani11082268. PubMed DOI PMC
Kovacik A., Arvay J., Tusimova E., Harangozo L., Tvrda E., Zbynovska K., Cupka P., Andrascikova S., Tomas J., Massanyi P. Seasonal Variations in the Blood Concentration of Selected Heavy Metals in Sheep and Their Effects on the Biochemical and Hematological Parameters. Chemosphere. 2017;168:365–371. doi: 10.1016/j.chemosphere.2016.10.090. PubMed DOI
Fu Z., Xi S. The Effects of Heavy Metals on Human Metabolism. Toxicol. Mech. Methods. 2020;30:167–176. doi: 10.1080/15376516.2019.1701594. PubMed DOI
Binkowski Ł.J., Rogoziński P., Błaszczyk M., Semla M., Melia P.M., Stawarz R. Relationship between Air Pollution and Metal Levels in Cancerous and Non-Cancerous Lung Tissues. J. Environ. Sci. Health Part A. 2016;51:1303–1308. doi: 10.1080/10934529.2016.1215200. PubMed DOI
Janicka M., Binkowski Ł.J., Błaszczyk M., Paluch J., Wojtaś W., Massanyi P., Stawarz R. Cadmium, Lead and Mercury Concentrations and Their Influence on Morphological Parameters in Blood Donors from Different Age Groups from Southern Poland. J. Trace Elem. Med. Biol. 2015;29:342–346. doi: 10.1016/j.jtemb.2014.10.002. PubMed DOI
Kovacik A., Tirpak F., Tomka M., Miskeje M., Tvrda E., Arvay J., Andreji J., Slanina T., Gabor M., Hleba L. Trace Elements Content in Semen and Their Interactions with Sperm Quality and RedOx Status in Freshwater Fish Cyprinus Carpio: A Correlation Study. J. Trace Elem. Med. Biol. 2018;50:399–407. doi: 10.1016/j.jtemb.2018.08.005. PubMed DOI
Halo Jr M., Massányi M., Tokárová K., Tirpák F., Greifová H., Solár D., Halo M., Massányi P. High Taurine Concentrations Negatively Effect Stallion Spermatozoa Parameters in Vitro. Acta Fytotech. Zootech. 2021;24:15–19. doi: 10.15414/afz.2021.24.mi-prap.15-19. DOI
Vizzari F., Massányi M., Knížatová N., Corino C., Rossi R., Ondruška Ľ., Tirpák F., Halo M., Massányi P. Effects of Dietary Plant Polyphenols and Seaweed Extract Mixture on Male-Rabbit Semen: Quality Traits and Antioxidant Markers. Saudi J. Biol. Sci. 2021;28:1017–1025. doi: 10.1016/j.sjbs.2020.11.043. PubMed DOI PMC
Slanina T., Miškeje M., Tirpák F., Baszczyk M., Stawarz R., Massányi P. Effect of Taurine on Turkey (Meleagris Gallopavo) Spermatozoa Viability and Motility. Czech J. Anim. Sci. 2018;63:127–135. doi: 10.17221/79/2017-CJAS. DOI
Tirpak F., Slanina T., Tomka M., Zidek R., Halo M., Ivanic P., Gren A., Formicki G., Stachanczyk K., Lukac N., et al. Exposure to Non-Ionizing Electromagnetic Radiation of Public Risk Prevention Instruments Threatens the Quality of Spermatozoids. Reprod. Domest. Anim. 2019;54:150–159. doi: 10.1111/rda.13338. PubMed DOI
Kuželová L., Vašíček J., Rafay J., Chrenek P. Detection of Macrophages in Rabbit Semen and Their Relationship with Semen Quality. Theriogenology. 2017;97:148–153. doi: 10.1016/j.theriogenology.2017.04.032. PubMed DOI
Peña F.J., Johannisson A., Wallgren M., Rodríguez-Martínez H. Assessment of Fresh and Frozen–Thawed Boar Semen Using an Annexin-V Assay: A New Method of Evaluating Sperm Membrane Integrity. Theriogenology. 2003;60:677–689. doi: 10.1016/S0093-691X(03)00081-5. PubMed DOI
Tvrdá E., Arroyo F., Ďuračka M., López-Fernández C., Gosálvez J. Dynamic Assessment of Human Sperm DNA Damage II: The Effect of Sperm Concentration Adjustment during Processing. J. Assist. Reprod. Genet. 2019;36:799–807. doi: 10.1007/s10815-019-01423-y. PubMed DOI PMC
Halo M., Tirpák F., Dano A., Zbynovská K., Kovácik A., Ondruška L., Gren A., Lukác N., Massányi P. Zinc Affects Rabbit Spermatozoa in Vitro: Effects on Motility and Viability. J. Microbiol. Biotechnol. Food Sci. 2018;8:901–904.
Tirpak F., Slanina T., Kovacik A., Ondruska L., Massanyi P., Halo M., Massanyi P. Low Taurine Concentrations Possitively Affect Rabbit Spermatozoa Properties in Later Time Intervals. J. Microbiol. Biotechnol. Food Sci. 2017;7:128–131. doi: 10.15414/jmbfs.2017.7.2.128-131. DOI
Binkowski Ł.J., Błaszczyk M., Przystupińska A., Ożgo M., Massanyi P. Metal Concentrations in Archaeological and Contemporary Mussel Shells (Unionidae): Reconstruction of Past Environmental Conditions and the Present State. Chemosphere. 2019;228:756–761. doi: 10.1016/j.chemosphere.2019.04.190. PubMed DOI
Tvrdá E., Tušimová E., Kováčik A., Paál D., Greifová H., Abdramanov A., Lukáč N. Curcumin Has Protective and Antioxidant Properties on Bull Spermatozoa Subjected to Induced Oxidative Stress. Anim. Reprod. Sci. 2016;172:10–20. doi: 10.1016/j.anireprosci.2016.06.008. PubMed DOI
Tokarova K., Vasicek J., Jurcik R., Balazi A., Kovacikova E., Kovacik A., Chrenek P., Capcarova M. Low Dose Exposure of Patulin and Protective Effect of Epicatechin on Blood Cells in Vitro. J. Environ. Sci. Health Part B. 2019;54:459–466. doi: 10.1080/03601234.2019.1575673. PubMed DOI
Tvrdá E., Kňažická Z., Lukáčová J., Schneidgenová M., Goc Z., Greń A., Szabó C., Massányi P., Lukáč N. The Impact of Lead and Cadmium on Selected Motility, Prooxidant and Antioxidant Parameters of Bovine Seminal Plasma and Spermatozoa. J. Environ. Sci. Health Part A. 2013;48:1292–1300. doi: 10.1080/10934529.2013.777243. PubMed DOI
Morel M.C.G.D. Equine Reproductive Physiology, Breeding and Stud Management. 5th ed. CABI; Wallingford, UK: 2020.
Sotler R., Poljšak B., Dahmane R., Jukić T., Pavan Jukić D., Rotim C., Trebše P., Starc A. Prooxidant Activities of Antioxidants and their Impact on Health. Acta Clin. Croat. 2019;58:726–736. doi: 10.20471/acc.2019.58.04.20. PubMed DOI PMC
El Sisy G.A., Abo El-Maaty A.M., Rawash Z.M. Comparative Blood and Seminal Plasma Oxidant/Antioxidant Status of Arab Stallions with Different Ages and Their Relation to Semen Quality. Asian Pac. J. Reprod. 2016;5:428–433. doi: 10.1016/j.apjr.2016.07.006. DOI
Massányi P., Trandzik J., Nad P., Lukac N., Skalicka M., Korenekova B., Cigankova V., Toman R., Halo M., Strapak P. Semen Concentration of Trace Elements in Stallions and Relation to the Spermatozoa Quality. Trace Elem. Electrolytes. 2004;21:229–231. doi: 10.5414/TEP21229. DOI
Usuga A., Rojano B., Restrepo G. Effect of Seminal Plasma Components on the Quality of Fresh and Cryopreserved Stallion Semen. J. Equine Vet. Sci. 2017;58:103–111. doi: 10.1016/j.jevs.2017.09.005. DOI
Ball B.A. Oxidative Stress, Osmotic Stress and Apoptosis: Impacts on Sperm Function and Preservation in the Horse. Anim. Reprod. Sci. 2008;107:257–267. doi: 10.1016/j.anireprosci.2008.04.014. PubMed DOI
Tirpák F., Greifová H., Lukáč N., Stawarz R., Massányi P. Exogenous Factors Affecting the Functional Integrity of Male Reproduction. Life. 2021;11:213. doi: 10.3390/life11030213. PubMed DOI PMC
Wnuk M., Lewinska A., Oklejewicz B., Bartosz G., Tischner M., Bugno-Poniewierska M. Redox Status of Equine Seminal Plasma Reflects the Pattern and Magnitude of DNA Damage in Sperm Cells. Theriogenology. 2010;74:1677–1684. doi: 10.1016/j.theriogenology.2010.07.007. PubMed DOI
Pesch S., Bergmann M., Bostedt H. Determination of Some Enzymes and Macro- and Microelements in Stallion Seminal Plasma and Their Correlations to Semen Quality. Theriogenology. 2006;66:307–313. doi: 10.1016/j.theriogenology.2005.11.015. PubMed DOI
Freitas M.J., Vijayaraghavan S., Fardilha M. Signalling mechanisms in mammalian sperm motility. Biol. Reprod. 2017;96:2–12. PubMed
Singh A.P., Rajender S. CatSper channel, sperm function and male fertility. Reprod. Biomed. Online. 2015;30:28–38. doi: 10.1016/j.rbmo.2014.09.014. PubMed DOI
Baumber J., Sabeur K., Vo A., Ball B.A. Reactive Oxygen Species Promote Tyrosine Phosphorylation and Capacitation in Equine Spermatozoa. Theriogenology. 2003;60:1239–1247. doi: 10.1016/S0093-691X(03)00144-4. PubMed DOI
Amidi F., Pazhohan A., Shabani Nashtaei M., Khodarahmian M., Nekoonam S. The Role of Antioxidants in Sperm Freezing: A Review. Cell Tissue Bank. 2016;17:745–756. doi: 10.1007/s10561-016-9566-5. PubMed DOI
Töpfer-Petersen E., Ekhlasi-Hundrieser M., Kirchhoff C., Leeb T., Sieme H. The Role of Stallion Seminal Proteins in Fertilisation. Anim. Reprod. Sci. 2005;89:159–170. doi: 10.1016/j.anireprosci.2005.06.018. PubMed DOI