Antimicrobial peptides and proteins as alternative antibiotics for porcine semen preservation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK21010327
Czech National Agency for Agricultural Research
PubMed
38867200
PubMed Central
PMC11167811
DOI
10.1186/s12917-024-04105-9
PII: 10.1186/s12917-024-04105-9
Knihovny.cz E-zdroje
- Klíčová slova
- Antimicrobial resistance, Boar semen, Gentamicin, Lysozyme, Nisin, Sperm function,
- MeSH
- akrozom účinky léků MeSH
- antibakteriální látky * farmakologie MeSH
- antimikrobiální peptidy farmakologie MeSH
- buněčná membrána účinky léků MeSH
- gentamiciny farmakologie MeSH
- muramidasa * farmakologie MeSH
- nisin * farmakologie MeSH
- prasata MeSH
- sperma účinky léků MeSH
- spermie účinky léků MeSH
- uchování spermatu * veterinární metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- antimikrobiální peptidy MeSH
- gentamiciny MeSH
- muramidasa * MeSH
- nisin * MeSH
BACKGROUND: Antimicrobial resistance (AMR) is nowadays a major emerging challenge for public health worldwide. The over- and misuse of antibiotics, including those for cell culture, are promoting AMR while also encouraging the research and employment of alternative drugs. The addition of antibiotics to the cell media is strongly recommended in sperm preservation, being gentamicin the most used for boar semen. Because of its continued use, several bacterial strains present in boar semen have developed resistance to this antibiotic. Antimicrobial peptides and proteins (AMPPs) are promising candidates as alternative antibiotics because their mechanism of action is less likely to promote AMR. In the present study, we tested two AMPPs (lysozyme and nisin; 50 and 500 µg/mL) as possible substitutes of gentamicin for boar semen preservation up to 48 h of storage. RESULTS: We found that both AMPPs improved sperm plasma membrane and acrosome integrity during semen storage. The highest concentration tested for lysozyme also kept the remaining sperm parameters unaltered, at 48 h of semen storage, and reduced the bacterial load at comparable levels of the samples supplemented with gentamicin (p > 0.05). On the other hand, while nisin (500 µg/mL) reduced the total Enterobacteriaceae counts, it also decreased the rapid and progressive sperm population and the seminal oxidation-reduction potential (p < 0.05). CONCLUSIONS: The protective effect of lysozyme on sperm function together with its antimicrobial activity and inborn presence in body fluids, including semen and cervical mucus, makes this enzyme a promising antimicrobial agent for boar semen preservation.
Zobrazit více v PubMed
World Health Organization (WHO). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed March 2023.
Bresciani C, Cabassi CS, Morini G, Taddei S, Bettini R, Bigliardi E, et al. Boar semen bacterial contamination in Italy and antibiotic efficacy in a modified extender. Ital J Anim Sci. 2014;13:83–7. doi: 10.4081/ijas.2014.3082. DOI
Althouse GC, Pierdon MS, Lu KG. Thermotemporal dynamics of contaminant bacteria and antimicrobials in extended porcine semen. Theriogenology. 2008;70:1317–23. doi: 10.1016/j.theriogenology.2008.07.010. PubMed DOI
Kuster CE, Althouse GC. The impact of bacteriospermia on boar sperm storage and reproductive performance. Theriogenology. 2016;85:21–6. doi: 10.1016/j.theriogenology.2015.09.049. PubMed DOI
Úbeda JL, Ausejo R, Dahmani Y, Falceto MV, Usan A, Malo C, et al. Adverse effects of members of the Enterobacteriaceae family on boar sperm quality. Theriogenology. 2013;80:565–70. doi: 10.1016/j.theriogenology.2013.05.022. PubMed DOI
Khaki A. Assessment on the adverse effects of aminoglycosides and flouroquinolone on sperm parameters and male reproductive tissue: a systematic review. Iran J Reprod Med. 2015;13:125–34. PubMed PMC
Aurich C, Spergser J. Influence of bacteria and gentamicin on cooled-stored stallion spermatozoa. Theriogenology. 2007;67:912–8. doi: 10.1016/j.theriogenology.2006.11.004. PubMed DOI
Li Z, Zhang D, He Y, Ding Z, Mao F, Zhang X. Lipopolysaccharide compromises human sperm function by reducing intracellular cAMP. Tohoku J Exp Med. 2016;238:105–12. doi: 10.1620/tjem.238.105. PubMed DOI
Eley A, Hosseinzadeh S, Hakimi H, Geary I, Pacey AA. Apoptosis of ejaculated human sperm is induced by co-incubation with Chlamydia trachomatis lipopolysaccharide. Hum Reprod. 2005;20:2601–7. doi: 10.1093/humrep/dei082. PubMed DOI
Commission Delegated Regulation (EU). 2020/686. https://eurlex.europa.eu/eli/reg_del/2020/686/oj. Accessed 3 May 2024.
Commission Delegated Regulation (EU). 2023/647. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32023R0647. Accessed 3 May 2024.
Zhang LJ, Gallo RL. Antimicrobial peptides. Curr Biol. 2016;26:R14–9. doi: 10.1016/j.cub.2015.11.017. PubMed DOI
Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6:1–12. doi: 10.3389/fcimb.2016.00194. PubMed DOI PMC
Pulido D, Nogús MV, Boix E, Torrent M. Lipopolysaccharide neutralization by antimicrobial peptides: a gambit in the innate host defense strategy. J Innate Immun. 2012;4:327–36. doi: 10.1159/000336713. PubMed DOI PMC
Branen JK, Davidson PM. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int J Food Microbiol. 2004;90:63–74. doi: 10.1016/S0168-1605(03)00172-7. PubMed DOI
Nakamura S, Kato A, Kobayashi K. Novel Bifunctional Lysozyme–Dextran Conjugate that acts on both gram-negative and Gram-positive Bacteria. Agric Biol Chem. 1990;54:3057–9.
Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M et al. Safety of nisin (E 234) as a food additive in the light of new toxicological data and the proposed extension of use. EFSA J. 2017;15. PubMed PMC
Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Biomedical applications of nisin. J Appl Microbiol. 2016;120:1449–65. doi: 10.1111/jam.13033. PubMed DOI PMC
Fleming A. On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc B-Biol Sci. 1922;93:306–17.
Jiang L, Li Y, Wang L, Guo J, Liu W, Meng G, et al. Recent insights into the prognostic and therapeutic applications of Lysozymes. Front Pharmacol. 2021;12:1–16. doi: 10.3389/fphar.2021.767642. PubMed DOI PMC
Chimura T, Hirayama T, Takase M. Lysozyme in cervical mucus of patients with chorioamnionitis. Jpn J Antibiot. 1993;46:726–9. PubMed
Ohno N, Morrison DC. Lipopolysaccharide interaction with lysozyme. J Biol Chem. 1989;264:4434–41. doi: 10.1016/S0021-9258(18)83761-9. PubMed DOI
Gadea J. Review: semen extenders used in the artificial inseminarion of swine. Span J Agric Res. 2003;1:17–27. doi: 10.5424/sjar/2003012-17. DOI
Caballero Gómez N, Manetsberger J, Benomar N, Castillo Gutiérrez S, Abriouel H. Antibacterial and antibiofilm effects of essential oil components, EDTA and HLE disinfectant solution on Enterococcus, Pseudomonas and Staphylococcus sp. multiresistant strains isolated along the meat production chain. Front Microbiol. 2022;13:1–20. doi: 10.3389/fmicb.2022.1014169. PubMed DOI PMC
Corral LG, Post LS, Montville TJ. Antimicrobial activity of sodium bicarbonate. J Food Sci. 1988;53:981–2. doi: 10.1111/j.1365-2621.1988.tb09005.x. DOI
Yeste M. State-of-the-art of boar sperm preservation in liquid and frozen state. Anim Reprod. 2017;14:69–81. doi: 10.21451/1984-3143-AR895. DOI
Pintus E, Jovičić M, Kadlec M, Ros-Santaella JL. Divergent effect of fast- and slow-releasing H2S donors on boar spermatozoa under oxidative stress. Sci Rep. 2020;10:6508. doi: 10.1038/s41598-020-63489-4. PubMed DOI PMC
Pintus E, Chinn AF, Kadlec M, García-Vázquez FA, Novy P, Matson JB, et al. N-thiocarboxyanhydrides, amino acid-derived enzyme-activated H2S donors, enhance sperm mitochondrial activity in presence and absence of oxidative stress. BMC Vet Res. 2023;19:52. doi: 10.1186/s12917-023-03593-5. PubMed DOI PMC
Ros-Santaella JL, Kadlec M, Pintus E. Pharmacological activity of Honeybush (Cyclopia Intermedia) in Boar Spermatozoa during Semen Storage and under oxidative stress. Animals. 2020;10:463. doi: 10.3390/ani10030463. PubMed DOI PMC
Agarwal A, Gupta S, Sharma R. Oxidation–reduction potential measurement in Ejaculated Semen samples. In: Agarwal A, Gupta S, Sharma R, editors. Andrological evaluation of male infertility. Switzerland: Springer, Cham; 2016. pp. 165–70.
AFNOR, NF V08-100. Microbiology of food and animal feeding stuffs - Plating out and enumeration of microorganisms by spiral plate technique. 2001. https://m.boutique.afnor.org/Store/Preview/DisplayExtract?ProductID=17973&VersionID=6.
CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically . CLSI standard M07. 9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.
Sone M. Investigations on the Control of Bacteria in Boar Semen. Japanese J Anim Reprod. 1990;36:P23–9. doi: 10.1262/jrd1977.36.23P. DOI
Espeche JC, Varas R, Maturana P, Cutro AC, Maffía PC, Hollmann A. Membrane permeability and antimicrobial peptides: much more than just making a hole. Pept Sci. 2023;1–14.
Schulze M, Grobbel M, Müller K, Junkes C, Dathe M, Rüdiger K, et al. Challenges and limits using antimicrobial peptides in Boar Semen Preservation. Reprod Domest Anim. 2015;50:5–10. doi: 10.1111/rda.12553. PubMed DOI
Jakop U, Hensel B, Orquera S, Rößner A, Alter T, Schröter F, et al. Development of a new antimicrobial concept for boar semen preservation based on bacteriocins. Theriogenology. 2021;173:163–72. doi: 10.1016/j.theriogenology.2021.08.004. PubMed DOI
Hensel B, Jakop U, Scheinpflug K, Mühldorfer K, Schröter F, Schäfer J, et al. Low temperature preservation of porcine semen: influence of short antimicrobial lipopeptides on sperm quality and bacterial load. Sci Rep. 2020;10:1–12. doi: 10.1038/s41598-020-70180-1. PubMed DOI PMC
Puig-Timonet A, Castillo-Martín M, Pereira BA, Pinart E, Bonet S, Yeste M. Evaluation of porcine beta defensins-1 and – 2 as antimicrobial peptides for liquid-stored boar semen: effects on bacterial growth and sperm quality. Theriogenology. 2018;111:9–18. doi: 10.1016/j.theriogenology.2018.01.014. PubMed DOI
Waberski D, Riesenbeck A, Schulze M, Weitze KF, Johnson L. Application of preserved boar semen for artificial insemination: past, present and future challenges. Theriogenology. 2019;137:2–7. doi: 10.1016/j.theriogenology.2019.05.030. PubMed DOI
Maroto Martín LO, Muñoz EC, De Cupere F, Van Driessche E, Echemendia-Blanco D, Rodríguez JMM, et al. Bacterial contamination of boar semen affects the litter size. Anim Reprod Sci. 2010;120:95–104. doi: 10.1016/j.anireprosci.2010.03.008. PubMed DOI
Contreras MJ, Núñez-Montero K, Bruna P, García M, Leal K, Barrientos L, et al. Bacteria and Boar Semen Storage: Progress and challenges. Antibiotics. 2022;11:1–14. doi: 10.3390/antibiotics11121796. PubMed DOI PMC
Ciornei Ş, Drugociu D, Ciornei LM, Mareş M, Roşca P. Total aseptization of Boar Semen, to increase the biosecurity of reproduction in Swine. Molecules. 2021;26(20):6183. doi: 10.3390/molecules26206183. PubMed DOI PMC
Gączarzewicz D, Udała J, Piasecka M, Błaszczyk B, Stankiewicz T. Bacterial contamination of boar semen and its relationship to sperm quality preserved in commercial extender containing gentamicin sulfate. Pol J Vet Sci. 2016;19:451–9. doi: 10.1515/pjvs-2016-0057. PubMed DOI
Bennemann E, Machado PA, Girardini SK, Sonálio L, Tonin KA. Contaminantes bacterianos y perfil de susceptibilidad del semen porcino en centros de recogida em Brasil. Rev MVZ Córdoba. 2018;23:6637–48. doi: 10.21897/rmvz.1338. DOI
Dalmutt AC, Moreno LZ, Gomes VTM, Cunha MPV, Barbosa MRF, Sato MIZ, et al. Characterization of bacterial contaminants of boar semen: identification by MALDI-TOF mass spectrometry and antimicrobial susceptibility profiling. J Appl Anim Res. 2020;48:559–65. doi: 10.1080/09712119.2020.1848845. DOI
Tvrdá E, Bučko O, Rojková K, Ďuračka M, Kunová S, Kováč J, et al. The efficiency of selected extenders against bacterial contamination of Boar Semen in a swine breeding facility in Western Slovakia. Animals. 2021;11:3320. doi: 10.3390/ani11113320. PubMed DOI PMC
Schulze M, Czirják GÁ, Müller K, Bortfeldt R, Jung M, Jakop U. Antibacterial defense and sperm quality in boar ejaculates. J Reprod Immunol. 2019;131:13–20. doi: 10.1016/j.jri.2018.11.001. PubMed DOI
Luther AM, Nguyen TQ, Verspohl J, Waberski D. Antimicrobially active semen extenders allow the reduction of antibiotic use in pig insemination. Antibiotics. 2021;10(11):1319. doi: 10.3390/antibiotics10111319. PubMed DOI PMC
Mouritzen MV, Andrea A, Qvist K, Poulsen SS, Jenssen H. Immunomodulatory potential of Nisin A with application in wound healing. Wound Repair Regen. 2019;27:650–60. doi: 10.1111/wrr.12743. PubMed DOI
Takada K, Ohno N, Yadomae T. Detoxification of lipopolysaccharide (LPS) by egg white lysozyme. FEMS Immunol Med Microbiol. 1994;9:255–63. doi: 10.1111/j.1574-695X.1994.tb00360.x. PubMed DOI
Okazaki T, Mihara T, Fujita Y, Yoshida S, Teshima H, Shimada M. Polymyxin B neutralizes bacteria-released endotoxin and improves the quality of boar sperm during liquid storage and cryopreservation. Theriogenology. 2010;74:1691–700. doi: 10.1016/j.theriogenology.2010.05.019. PubMed DOI
Rowe M, Czirják GÁ, Lifjeld JT, Giraudeau M. Lysozyme-associated bactericidal activity in the ejaculate of a wild passerine. Biol J Linn Soc. 2013;109:92–100. doi: 10.1111/bij.12044. DOI
Otti O, Naylor RA, Siva-Jothy MT, Reinhardt K. Bacteriolytic activity in the ejaculate of an insect. Am Nat. 2009;174:292–5. doi: 10.1086/600099. PubMed DOI
Tvrdá E, Lovíšek D, Gálová E, Schwarzová M, Kováčiková E, Kunová S, et al. Possible implications of Bacteriospermia on the sperm quality, oxidative characteristics, and seminal Cytokine Network in Normozoospermic Men. Int J Mol Sci. 2022;23(15):8678. doi: 10.3390/ijms23158678. PubMed DOI PMC
Lahnsteiner F, Radner M. Lysozyme activities and immunoglobulin concentrations in seminal plasma and spermatozoa of different teleost species and indications on its significance for sperm function. Theriogenology. 2010;74:246–54. doi: 10.1016/j.theriogenology.2010.02.008. PubMed DOI
Mårdh PA, Colleen S. Lysozyme in seminal fluid of healthy males and patients with Prostatitis and in tissues of the male uro-genital tract. Scand J Urol Nephrol. 1974;8:179–83. doi: 10.3109/00365597409132126. PubMed DOI
Mandal A, Klotz KL, Shetty J, Jayes FL, Wolkowicz MJ, Bolling LC, et al. SLLP1, a unique, intra-acrosomal, non-bacteriolytic, c lysozyme-like protein of human spermatozoa. Biol Reprod. 2003;68:1525–37. doi: 10.1095/biolreprod.102.010108. PubMed DOI
Ou C, Lee RK, Lin M, Lu C, Yang T, Yeh L, et al. A mouse seminal vesicle-secreted lysozyme c‐like protein modulates sperm capacitation. J Cell Biochem. 2021;122:653–66. doi: 10.1002/jcb.29894. PubMed DOI
Peña FJ, Ortiz-Rodríguez JM, Gaitskell-Phillips GL, Gil MC, Ortega-Ferrusola C, Martín-Cano FE. An integrated overview on the regulation of sperm metabolism (glycolysis-Krebs cycle-oxidative phosphorylation) Anim Reprod Sci. 2022;246:106805. doi: 10.1016/j.anireprosci.2021.106805. PubMed DOI
Ortiz-Rodríguez JM, Martín-Cano FE, Gaitskell-Phillips GL, Silva A, Ortega-Ferrusola C, Gil MC, et al. Low glucose and high pyruvate reduce the production of 2-oxoaldehydes, improving mitochondrial efficiency, redox regulation, and stallion sperm function. Biol Reprod. 2021;105:519–32. PubMed
Liu H, Zheng F, Cao Q, Ren B, Zhu L, Striker G, et al. Amelioration of oxidant stress by the defensin lysozyme. Am J Physiol - Endocrinol Metab. 2006;290:824–32. doi: 10.1152/ajpendo.00349.2005. PubMed DOI
Aranha C, Gupta S, Reddy KVR. Contraceptive efficacy of antimicrobial peptide Nisin: in vitro and in vivo studies. Contraception. 2004;69:333–8. doi: 10.1016/j.contraception.2003.11.002. PubMed DOI
Khazaei Monfared Y, Mahmoudian M, Caldera F, Pedrazzo AR, Zakeri-Milani P, Matencio A, et al. Nisin delivery by nanosponges increases its anticancer activity against in-vivo melanoma model. J Drug Deliv Sci Technol. 2023;79:104065. doi: 10.1016/j.jddst.2022.104065. DOI
Yuan N, Wang Y, Guan Y, Chen C, Hu W. Effect of Nisin on the quality and antioxidant activity of fresh-cut pumpkins (Cucurbita moschata Duch) Horticulturae. 2023;9(5):529. doi: 10.3390/horticulturae9050529. DOI
Panner Selvam MK, Agarwal A, Henkel R, Finelli R, Robert KA, Iovine C, et al. The effect of oxidative and reductive stress on semen parameters and functions of physiologically normal human spermatozoa. Free Radic Biol Med. 2020;152:375–85. doi: 10.1016/j.freeradbiomed.2020.03.008. PubMed DOI
Ngo C, Suwimonteerabutr J, Prapasarakul N, Morrell JM, Tummaruk P. Bacteriospermia and its antimicrobial resistance in relation to boar sperm quality during short-term storage with or without antibiotics in a tropical environment. Porc Heal Manag. 2023;9:21. doi: 10.1186/s40813-023-00320-2. PubMed DOI PMC
Althouse GC, Kuster CE, Clark SG, Weisiger RM. Field investigations of bacterial contaminants and their effects on extended porcine semen. Theriogenology. 2000;53:1167–76. doi: 10.1016/S0093-691X(00)00261-2. PubMed DOI
World Organisation for Animal Health (WOAH). Terrestrial Animal Health Code. https://www.woah.org/en/what-we-do/standards/codes-and-manuals/#ui-id-1. Accessed 3 May 2024.
Morrell JM, Cojkic A, Malaluang P, Ntallaris T, Lindahl J, Hansson I. Antibiotics in semen extenders – a multiplicity of paradoxes. Reprod Fertil Dev. 2024;36. PubMed
Editorial: Novel approaches to predict and improve sperm function during semen storage