Coating Persistent Luminescence Nanoparticles With Hydrophilic Polymers for in vivo Imaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33195077
PubMed Central
PMC7542242
DOI
10.3389/fchem.2020.584114
Knihovny.cz E-zdroje
- Klíčová slova
- HPMA polymer, imaging, in vivo, nanoparticles, persistent luminescence, surface coating,
- Publikační typ
- časopisecké články MeSH
Persistent luminescence nanoparticles (PLNPs) are innovative nanomaterials highly useful for bioimaging applications. Indeed, due to their particular optical properties, i.e., the ability to store the excitation energy before slowly releasing it for a prolonged period of time, they allow in vivo imaging without auto-fluorescence and with a high target to background ratio. However, as for most nanoparticles (NPs), without any special surface coating, they are rapidly opsonized and captured by the liver after systemic injection into small animals. To overcome this issue and prolong nanoparticle circulation in the bloodstream, a new stealth strategy was developed by covering their surface with poly(N-2-hydroxypropyl)methacrylamide (pHPMA), a highly hydrophilic polymer widely used in nanomedicine. Preliminary in vivo imaging results demonstrated the possibility of pHPMA as an alternative strategy to cover ZnGa2O4:Cr NPs to delay their capture by the liver, thereby providing a new perspective for the formulation of stealth NPs.
Zobrazit více v PubMed
Aggarwal P., Hall J. B., McLeland C. B., Dobrovolskaia M. A., McNeil S. E. (2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution,biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61, 428–437. 10.1016/j.addr.2009.03.009 PubMed DOI PMC
Amoozgar Z., Yeo Y. (2012). Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley WIREs Nanomed. Nanobiotechnol. 4, 219–233. 10.1002/wnan.1157 PubMed DOI PMC
Brito H. F., Hölsä J., Laamanen T., Lastusaari M., Malkamäki M., Rodrigues L. C. V. (2012). Persistent luminescence mechanisms: human imagination at work. Opt. Mater. Exp. 2, 371–381. 10.1364/OME.2.000371 DOI
Chen L.-J., Yang C.-X., Yan X.-,Ping. (2017). Liposome-coated persistent luminescence nanoparticles as luminescence trackable drug carrier for chemotherapy. Anal. Chem. 89, 6936–6939. 10.1021/acs.analchem.7b01397 PubMed DOI
Chytil P., Koziolová E., Etrych T., Ulbrich K. (2017). HPMA copolymer–drug conjugates with controlled tumor-specific drug release. Macromol. Biosci. 18:1700209. 10.1002/mabi.201700209 PubMed DOI
Gao X. H., Cui Y. Y., Levenson R. M., Chung L. W. K., Nie S. M. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976. 10.1038/nbt994 PubMed DOI
Kopeček J., Kopečkova P. (2010). HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliv. Rev. 17, 122–149. 10.1016/j.addr.2009.10.004 PubMed DOI PMC
Kostka L., Kotrchová L., Šubr V., Libánská A., Ferreira C. A., Malátová I., et al. . (2020). HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours. Biomaterials 235:119728. 10.1016/j.biomaterials.2019.119728 PubMed DOI PMC
Le Masne de Chermont Q., Chanéac C., Seguin J., Pell,é F., Maîtrejean S., Jolivet J. P., et al. . (2007). Nanoprobes with near-infrared persistent luminescence for in vivo imaging. PNAS 104, 9266–9271. 10.1073/pnas.0702427104 PubMed DOI PMC
Lécuyer T., Teston E., Ramirez-Garcia G., Maldiney T., Viana B., Seguin J., et al. . (2016). Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 6, 2488–2524. 10.7150/thno.16589 PubMed DOI PMC
Liu J., Lécuyer T., Seguin J., Mignet N., Scherman D., Viana B., et al. . (2019). Imaging and therapeutic applications of persistent luminescence nanomaterials. Adv. Drug Deliv. Rev. 138, 193–210. 10.1016/j.addr.2018.10.015 PubMed DOI
Maldiney T. (2015). Controlling aminosilane layer thickness to extend the plasma half-life of stealth persistent luminescence nanoparticles in vivo. J. Mater. Chem. B. 3, 4009–4016. 10.1039/C5TB00146C PubMed DOI
Maldiney T., Bessière A., Seguin J., Teston E., Sharma S. K., Viana B., et al. . (2014). The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426. 10.1038/nmat3908 PubMed DOI
Maldiney T., Lecointre A., Viana B., Bessiere A., Bessodes M., Gourier D., et al. . (2011a). Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 133, 11810–11815. 10.1021/ja204504w PubMed DOI
Maldiney T., Richard C., Seguin J., Wattier N., Bessodes M., Scherman D. (2011b). Effect of core diameter, surface coating, and peg chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano. 5, 854–862. 10.1021/nn101937h PubMed DOI
Matsuzawa T., Aoki Y., Takeuchi N., Murayama Y. (1996). A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+,Dy3+. J. Electrochem. Soc. 143, 2670–2267. 10.1149/1.1837067 DOI
Perrier S., Takolpuckdee P., Mars C. A. (2005). Reversible addition-fragmentation chain transfer polymerization: end group modification for functionalized polymers and chain transfer agent recovery. Macromolecules. 38, 2033–2036. 10.1021/ma047611m DOI
Randárová E., Kudláčová J., Etrych T. (2020). HPMA copolymer-antibody constructs in neoplastic treatment: an overview of therapeutics, targeted diagnostics, and drug-free systems. J. Control Rel. 325, 304–322. 10.1016/j.jconrel.2020.06.040 PubMed DOI
Shemetov A. A., Nabiev I., Sukhanova A. (2012). Molecular interaction of proteins and peptides with nanoparticles. ACS Nano. 6, 4585–4602. 10.1021/nn300415x PubMed DOI
Šírová M., Strohalm J., Chytil P., Lidický O., Tomala J., Ríhová B., et al. . (2017). The structure of polymer carriers controls the efficacy of the experimental combination treatment of tumors with HPMA copolymer conjugates carrying doxorubicin and docetaxel. J Control Rel. 246, 1–11. 10.1016/j.jconrel.2016.12.004 PubMed DOI
Šubr V., Kostka L., Strohalm J., Etrych T., Ulbrich K. (2013). Synthesis of well-defined semitelechelic poly[n-(2-hydroxypropyl)methacrylamide] polymers with functional group at the α-end of the polymer chain by raft polymerization. Macromolecules. 46:2100–2108. 10.1021/ma400042u DOI
Tan H., Wang T., Shao Y., Yu C., Hu L. (2019). Crucial breakthrough of functional persistent luminescence materials for biomedical and information technological applications. Front. Chem. 7:387. 10.3389/fchem.2019.00387 PubMed DOI PMC
Teston E., Richard S., Maldiney T., Lièvre N., Yangshu Wang G., Motte L., et al. . (2015). Non-aqueous sol–gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging. Chem. Eur. J. 21, 7350–7354. 10.1002/chem.201406599 PubMed DOI
Walkey C. D., Olsen J. B., Guo H., Emili A., Chan W.C.W. (2012). Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147. 10.1021/ja2084338 PubMed DOI
Zhang P., Sun F., Liu S., Jiang S. (2016). Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J. Control Rel. 244, 184–193. 10.1016/j.jconrel.2016.06.040 PubMed DOI PMC