Novel Aminoguanidine Hydrazone Analogues: From Potential Antimicrobial Agents to Potent Cholinesterase Inhibitors

. 2021 Nov 26 ; 14 (12) : . [epub] 20211126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34959630

Grantová podpora
20-19638Y Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000841 European Regional Development Fund

A series of thirty-one hydrazones of aminoguanidine, nitroaminoguanidine, 1,3-diaminoguanidine, and (thio)semicarbazide were prepared from various aldehydes, mainly chlorobenzaldehydes, halogenated salicylaldehydes, 5-nitrofurfural, and isatin (yields of 50-99%). They were characterized by spectral methods. Primarily, they were designed and evaluated as potential broad-spectrum antimicrobial agents. The compounds were effective against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus with minimum inhibitory concentrations (MIC) from 7.8 µM, as well as Gram-negative strains with higher MIC. Antifungal evaluation against yeasts and Trichophyton mentagrophytes found MIC from 62.5 µM. We also evaluated inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The compounds inhibited both enzymes with IC50 values of 17.95-54.93 µM for AChE and ≥1.69 µM for BuChE. Based on the substitution, it is possible to modify selectivity for a particular cholinesterase as we obtained selective inhibitors of either AChE or BuChE, as well as balanced inhibitors. The compounds act via mixed-type inhibition. Their interactions with enzymes were studied by molecular docking. Cytotoxicity was assessed in HepG2 cells. The hydrazones differ in their toxicity (IC50 from 5.27 to >500 µM). Some of the derivatives represent promising hits for further development. Based on the substitution pattern, it is possible to modulate bioactivity to the desired one.

Zobrazit více v PubMed

Viegas-Junior C., Danuello A., da Silva Bolzani V., Barreiro E.J., Fraga C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem. 2007;14:1829–1852. doi: 10.2174/092986707781058805. PubMed DOI

Pintus E., Kadlec M., Jovičić M., Sedmíková M., Ros-Santaella J.L. Aminoguanidine Protects Boar Spermatozoa against the Deleterious Effects of Oxidative Stress. Pharmaceutics. 2018;10:212. doi: 10.3390/pharmaceutics10040212. PubMed DOI PMC

Vojtaššák J., Blaško M., Danišoviš Ľ., Čársky J., Ďuríková M., Respiská V., Waczulíková I., Böhmer D. In Vitro Evaluation of the Cytotoxicity and Genotoxicity of Resorcylidene Aminoguanidine in Human Diploid Cells B-HNF-1. Folia Biol. 2008;54:109–114. PubMed

Ma Y., Song X., Ma T., Li Y., Bai H., Zhang Z., Hu H., Yuan R., Wen Y., Gao J. Aminoguanidine inhibits IL-1β-induced protein expression of iNOS and COX-2 by blocking the NF-κB signaling pathway in rat articular chondrocytes. Exp. Ther. Med. 2020;20:2623–2630. doi: 10.3892/etm.2020.9021. PubMed DOI PMC

Wei Z.-Y., Chi K.-Q., Yu Z.-K., Liu H.-Y., Sun L.-P., Zheng C.-J., Piao H.-R. Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Bioorg. Med. Chem. Lett. 2016;26:5920–5925. doi: 10.1016/j.bmcl.2016.11.001. PubMed DOI

Wu J., Ma S., Zhang T.-Y., Wei Z.-Y., Wang H.-M., Guo F.-Y., Zheng C.-J., Piao H.-R. Synthesis and biological evaluation of ursolic acid derivatives containing an aminoguanidine moiety. Med. Chem. Res. 2019;28:959–973. doi: 10.1007/s00044-019-02349-x. DOI

Song M., Wang S., Wang Z., Fu Z., Zhou S., Cheng H., Liang Z., Deng X. Synthesis, antimicrobial and cytotoxic activities, and molecular docking studies of N-arylsulfonylindoles containing an aminoguanidine, a semicarbazide, and a thiosemicarbazide moiety. Eur. J. Med. Chem. 2019;166:108–118. doi: 10.1016/j.ejmech.2019.01.038. PubMed DOI

Deng X., Song M. Synthesis, antibacterial and anticancer activity, and docking study of aminoguanidines containing an alkynyl moiety. J. Enzyme Inhib. Med. Chem. 2020;35:354–364. doi: 10.1080/14756366.2019.1702654. PubMed DOI PMC

Russell C.C., Stevens A., Pi H., Khazandi M., Ogunniyi A.D., Young K.A., Baker J.R., McCluskey S.N., Page S.W., Trott D.J., et al. Gram-Positive and Gram-Negative Antibiotic Activity of Asymmetric and Monomeric Robenidine Analogues. ChemMedChem. 2018;13:2573–2580. doi: 10.1002/cmdc.201800463. PubMed DOI

Dantas N., de Aquino T.M., de Araújo-Júnior J.X., da Silva-Júnior E., Gomes E.A., Severo Gomes A.A., Siqueira-Júnior J.P., Junior F.J.B.M. Aminoguanidine hydrazones (AGH’s) as modulators of norfloxacin resistance in Staphylococcus aureus that overexpress NorA efflux pump. Chem. Biol. Interact. 2018;280:8–14. doi: 10.1016/j.cbi.2017.12.009. PubMed DOI

Messeder J.C., Tinoco L.W., Figueroa-Villar J.D., Souza E.M., Santa Rita R., de Castro S.L. Aromatic guanyl hydrazones: Synthesis, structural studies and in vitro activity against Trypanosoma cruzi. Bioorg. Med. Chem. Lett. 1995;5:3079–3084. doi: 10.1016/0960-894X(95)00541-5. DOI

Rohilla A., Khare G., Tyagi A.K. A combination of docking and cheminformatics approaches for the identification of inhibitors against 4′ phosphopantetheinyl transferase of Mycobacterium tuberculosis. RSC Adv. 2018;8:328–341. doi: 10.1039/C7RA11198C. DOI

Amidi S., Esfahanizadeh M., Tabib K., Soleimani Z., Kobarfard F. Rational Design and Synthesis of 1-(Arylideneamino)-4-aryl-1H-imidazole-2-amine Derivatives as Antiplatelet Agents. ChemMedChem. 2017;12:962–971. doi: 10.1002/cmdc.201700123. PubMed DOI

Xu H., Wang Y.-Y. Antifungal agents. Part 5: Synthesis and antifungal activities of aminoguanidine derivatives of N-arylsulfonyl-3-acylindoles. Bioorg. Med. Chem. Lett. 2010;20:7274–7277. doi: 10.1016/j.bmcl.2010.10.084. PubMed DOI

Liu D.C., Gao M.J., Huo Q., Ma T., Wang Y., Wu C.Z. Design, synthesis, and apoptosis-promoting effect evaluation of novel pyrazole with benzo[d]thiazole derivatives containing aminoguanidine units. J. Enzyme Inhib. Med. Chem. 2019;34:829–837. doi: 10.1080/14756366.2019.1591391. PubMed DOI PMC

Krátký M., Konečná K., Brablíková M., Janoušek J., Pflégr V., Maixnerová J., Trejtnar F., Vinšová J. Iodinated 1,2-diacylhydrazines, benzohydrazide-hydrazones and their analogues as dual antimicrobial and cytotoxic agents. Bioorg. Med. Chem. 2021;41:116209. doi: 10.1016/j.bmc.2021.116209. PubMed DOI

Krátký M., Konečná K., Brokešová K., Maixnerová J., Trejtnar F., Vinšová J. Optimizing the structure of (salicylideneamino)benzoic acids: Towards selective antifungal and anti-staphylococcal agents. Eur. J. Pharm. Sci. 2021;159:105732. doi: 10.1016/j.ejps.2021.105732. PubMed DOI

Krátký M., Konečná K., Janoušek J., Brablíková M., Janďourek O., Trejtnar F., Stolaříková J., Vinšová J. 4-Aminobenzoic acid derivatives: Converting folate precursor to antimicrobial and cytotoxic agents. Biomolecules. 2020;10:9. doi: 10.3390/biom10010009. PubMed DOI PMC

Krátký M., Bősze S., Baranyai Z., Stolaříková J., Vinšová J. Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide. Bioorg. Med. Chem. Lett. 2017;27:5185–5189. doi: 10.1016/j.bmcl.2017.10.050. PubMed DOI

Soukup O., Winder M., Killi U.K., Wsol V., Jun D., Kuca K., Tobin G. Acetylcholinesterase Inhibitors and Drugs Acting on Muscarinic Receptors- Potential Crosstalk of Cholinergic Mechanisms During Pharmacological Treatment. Curr. Neuropharmacol. 2017;15:637–653. doi: 10.2174/1570159X14666160607212615. PubMed DOI PMC

Masunari A., Tavares L.C. A new class of nifuroxazide analogues: Synthesis of 5-nitrothiophene derivatives with antimicrobial activity against multidrug-resistant Staphylococcus aureus. Bioorg. Med. Chem. 2007;15:4229–4236. doi: 10.1016/j.bmc.2007.03.068. PubMed DOI

Abraham R.J., Stevens A.J., Young K.A., Russell C., Qvist A., Khazandi M., Wong H.S., Abraham S., Ogunniyi A.D., Page S.W., et al. Robenidine Analogues as Gram-Positive Antibacterial Agents. J. Med. Chem. 2016;59:2126–2138. doi: 10.1021/acs.jmedchem.5b01797. PubMed DOI

Şoica C., Fuliaş A., Vlase G., Dehelean C., Vlase T., Ledeţi I. Synthesis and thermal behavior of new ambazone complexes with some transitional cations. J. Therm. Anal. Calorim. 2014;118:1305–1311. doi: 10.1007/s10973-014-3858-4. DOI

Parvathaneni V., Gupta V. Utilizing Drug Repurposing Against COVID-19—Efficacy, Limitations, and Challenges. Life Sci. 2020;259:118275. doi: 10.1016/j.lfs.2020.118275. PubMed DOI PMC

Yuan X., Jia C., Ma Y., Yang D., Ruic C., Qin Z. Synthesis, insecticidal and fungicidal activities of methyl 2-(methoxyimino)-2-(2-((1-(N’- nitrocarbamimidoyl)-2-hydrocarbylidenehydrazinyl)methyl)phenyl)acetates. RSC Adv. 2016;6:19916–19922. doi: 10.1039/C5RA27359E. DOI

Kumler W.D., Sah P.P.T. Nitroguanylhydrazones of Aldehydes: Their Antitubercular Activity, Ultraviolet Absorption Spectra and Structure. J. Am. Pharm. Assoc. 1952;41:375–379. doi: 10.1002/jps.3030410712. PubMed DOI

Contreras J.M., Rival Y.M., Chayer S., Bourguignon J.J., Wermuth C.G. Aminopyridazines as Acetylcholinesterase Inhibitors. J. Med. Chem. 1999;42:730–741. doi: 10.1021/jm981101z. PubMed DOI

Ferreira Neto D.C., de Souza Ferreira M., da Conceição Petronilho E., Alencar Lima J., de Azeredo S.O.F., de Oliveira Carneiro Brum J., do Nascimento C.J., Figueroa Villar J.D. A new guanylhydrazone derivative as a potential acetylcholinesterase inhibitor for Alzheimer’s disease: Synthesis, molecular docking, biological evaluation and kinetic studies by nuclear magnetic resonance. RSC Adv. 2017;7:33944. doi: 10.1039/C7RA04180B. DOI

da Conceição Petronilho E., do Nascimento Rennó M., Gonçalves Castro N., da Silva F.M.R., da Cunha Pinto A., Figueroa-Villar J.D. Design, synthesis, and evaluation of guanylhydrazones as potential inhibitors or reactivators of acetylcholinesterase. J. Enzyme Inhib. Med. Chem. 2016;31:1069–1078. doi: 10.3109/14756366.2015.1094468. PubMed DOI

Šekutor M., Mlinaric-Majerski K., Hrenar T., Tomic S., Primožič I. Adamantane-substituted guanylhydrazones: Novel inhibitors of butyrylcholinesterase. Bioorg. Chem. 2012;41–42:28–34. doi: 10.1016/j.bioorg.2012.01.004. PubMed DOI

Krátký M., Štěpánková Š., Brablíková M., Svrčková K., Švarcová M., Vinšová J. Novel Iodinated Hydrazide-hydrazones and their Analogues as Acetyl- and Butyrylcholinesterase Inhibitors. Curr. Top. Med. Chem. 2020;20:2106–2117. doi: 10.2174/1568026620666200819155503. PubMed DOI

Krátký M., Svrčková K., Vu Q.A., Štěpánková Š., Vinšová J. Hydrazones of 4-(Trifluoromethyl)benzohydrazide as New Inhibitors of Acetyl- and Butyrylcholinesterase. Molecules. 2021;26:989. doi: 10.3390/molecules26040989. PubMed DOI PMC

Krátký M., Štěpánková Š., Houngbedji N.-H., Vosátka R., Vorčáková K., Vinšová J. 2-Hydroxy-N-phenylbenzamides and their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase. Biomolecules. 2019;9:698. doi: 10.3390/biom9110698. PubMed DOI PMC

Lineweaver H., Burk D. The Determination of Enzyme Dissociation Constants. J. Am. Chem. Soc. 1934;56:658–666. doi: 10.1021/ja01318a036. DOI

Dvir H., Silman I., Harel M., Rosenberry T.L., Sussman J.L. Acetylcholinesterase: From 3D Structure to Function. Chem. Biol. Interact. 2010;187:10–22. doi: 10.1016/j.cbi.2010.01.042. PubMed DOI PMC

Ordentlich A., Barak D., Kronman C., Ariel N., Segall Y., Velan B., Shafferman A. Contribution of Aromatic Moieties of Tyrosine 133 and of the Anionic Subsite Tryptophan 86 to Catalytic Efficiency and Allosteric Modulation of Acetylcholinesterase. J. Biol. Chem. 1995;270:2082–2091. doi: 10.1074/jbc.270.5.2082. PubMed DOI

Nicolet Y., Lockridge O., Masson P., Fontecilla-Camps J.C., Nachon F. Crystal Structure of Human Butyrylcholinesterase and of Its Complexes with Substrate and Products. J. Biol. Chem. 2003;278:41141–41147. doi: 10.1074/jbc.M210241200. PubMed DOI

Krátký M., Vinšová J. Salicylanilide Ester Prodrugs as Potential Antimicrobial Agents—A Review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI

Castillo-Melendez J.A., Golding B.T. Optimisation of the Synthesis of Guanidines from Amines via Nitroguanidines Using 3,5-Dimethyl-N-nitro-1H-pyrazole-1-carboxamidine. Synthesis. 2004;10:1655–1663. doi: 10.1055/s-2004-829130. DOI

Zhou N., Zhao Y. Conjugated Oligoyne-Bridged [60] Fullerene Molecular Dumbbells: Syntheses and Thermal and Morphological Properties. J. Org. Chem. 2010;75:1498–1516. doi: 10.1021/jo9021748. PubMed DOI

Prasad R.N., McKay A.F. Acylation of guanidines and guanylhydrazones. Canad. J. Chem. 1967;45:2247. doi: 10.1139/v67-362. DOI

King H., Wright J. 466. 2-amino-1: 3: 4-indotriazine. The reaction between isatin and aminoguanidine. J. Chem. Soc. 1948:2314–2318. doi: 10.1039/jr9480002314. DOI

Yadav L.D.S., Singh S., Singh A. Novel clay-catalysed cyclisation of salicylaldehyde semicarbazones to 2H-benz[e]-1,3-oxazin-2-ones under microwave irradiation. Tetrahedron Lett. 2002;43:8551–8553. doi: 10.1016/S0040-4039(02)02065-8. DOI

Hunan University. Aixi H., Jiao Y., Xiaoxiao S., Ailin L., Wenwen K. 2-(2-Benzylidene Hydrazino)-5-(1,2,4-Triazole-1-yl)Thiazole, and Preparation and Applications Thereof. No. CN104774199. Patent. 2017 March 8;

Ebetino F.F., Gever G. Chemotherapeutic Nitrofurans. VII.1 The Formation of 5-Nitrofurfurylidene Derivatives of Some Aminoguanidines, Aminotriazoles, and Related Compounds. J. Org. Chem. 1962;27:188–191. doi: 10.1021/jo01048a047. DOI

Chung M.C., Guido R.V.C., Martinelli T.F., Goncalves M.F., Polli M.C., Botelho K.C.A., Varanda E.A., Colli W., Miranda M.T.M., Ferreira E.I. Synthesis and in vitro evaluation of potential antichagasic hydroxymethylnitrofurazone (NFOH-121): A new nitrofurazone prodrug. Bioorg. Med. Chem. 2003;11:4779–4783. doi: 10.1016/j.bmc.2003.07.004. PubMed DOI

Dann O., Möller E.F. Über die wachstumshemmenden Eigenschaften von Nitroverbindungen. Chem. Ber. 1949;82:76–92. doi: 10.1002/cber.19490820115. DOI

European Committee for Antimicrobial Susceptibility Testing (EUCAST) EUCAST Discussion Document E. Dis 5.1. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003;9:1–7. PubMed

European Committee for Antimicrobial Susceptibility Testing (EUCAST) EUCAST Definitive Document EDEF 7.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts. [(accessed on 26 January 2021)]. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7_3_1_Yeast_testing__definitive.pdf.

European Committee for Antimicrobial Susceptibility Testing (EUCAST) EUCAST Definitive Document E. DEF 9.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds. [(accessed on 26 January 2021)]. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_9_3_1_Mould_testing__definitive.pdf. PubMed

Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Naturforsch. C J. Biosci. 2004;59:293–296. doi: 10.1515/znc-2004-3-430. PubMed DOI

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...