Novel Aminoguanidine Hydrazone Analogues: From Potential Antimicrobial Agents to Potent Cholinesterase Inhibitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-19638Y
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000841
European Regional Development Fund
PubMed
34959630
PubMed Central
PMC8704707
DOI
10.3390/ph14121229
PII: ph14121229
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, aminoguanidine, antimicrobial activity, butyrylcholinesterase, cytotoxicity, enzyme inhibition, hydrazones, molecular docking, salicylaldehydes,
- Publikační typ
- časopisecké články MeSH
A series of thirty-one hydrazones of aminoguanidine, nitroaminoguanidine, 1,3-diaminoguanidine, and (thio)semicarbazide were prepared from various aldehydes, mainly chlorobenzaldehydes, halogenated salicylaldehydes, 5-nitrofurfural, and isatin (yields of 50-99%). They were characterized by spectral methods. Primarily, they were designed and evaluated as potential broad-spectrum antimicrobial agents. The compounds were effective against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus with minimum inhibitory concentrations (MIC) from 7.8 µM, as well as Gram-negative strains with higher MIC. Antifungal evaluation against yeasts and Trichophyton mentagrophytes found MIC from 62.5 µM. We also evaluated inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The compounds inhibited both enzymes with IC50 values of 17.95-54.93 µM for AChE and ≥1.69 µM for BuChE. Based on the substitution, it is possible to modify selectivity for a particular cholinesterase as we obtained selective inhibitors of either AChE or BuChE, as well as balanced inhibitors. The compounds act via mixed-type inhibition. Their interactions with enzymes were studied by molecular docking. Cytotoxicity was assessed in HepG2 cells. The hydrazones differ in their toxicity (IC50 from 5.27 to >500 µM). Some of the derivatives represent promising hits for further development. Based on the substitution pattern, it is possible to modulate bioactivity to the desired one.
Zobrazit více v PubMed
Viegas-Junior C., Danuello A., da Silva Bolzani V., Barreiro E.J., Fraga C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem. 2007;14:1829–1852. doi: 10.2174/092986707781058805. PubMed DOI
Pintus E., Kadlec M., Jovičić M., Sedmíková M., Ros-Santaella J.L. Aminoguanidine Protects Boar Spermatozoa against the Deleterious Effects of Oxidative Stress. Pharmaceutics. 2018;10:212. doi: 10.3390/pharmaceutics10040212. PubMed DOI PMC
Vojtaššák J., Blaško M., Danišoviš Ľ., Čársky J., Ďuríková M., Respiská V., Waczulíková I., Böhmer D. In Vitro Evaluation of the Cytotoxicity and Genotoxicity of Resorcylidene Aminoguanidine in Human Diploid Cells B-HNF-1. Folia Biol. 2008;54:109–114. PubMed
Ma Y., Song X., Ma T., Li Y., Bai H., Zhang Z., Hu H., Yuan R., Wen Y., Gao J. Aminoguanidine inhibits IL-1β-induced protein expression of iNOS and COX-2 by blocking the NF-κB signaling pathway in rat articular chondrocytes. Exp. Ther. Med. 2020;20:2623–2630. doi: 10.3892/etm.2020.9021. PubMed DOI PMC
Wei Z.-Y., Chi K.-Q., Yu Z.-K., Liu H.-Y., Sun L.-P., Zheng C.-J., Piao H.-R. Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Bioorg. Med. Chem. Lett. 2016;26:5920–5925. doi: 10.1016/j.bmcl.2016.11.001. PubMed DOI
Wu J., Ma S., Zhang T.-Y., Wei Z.-Y., Wang H.-M., Guo F.-Y., Zheng C.-J., Piao H.-R. Synthesis and biological evaluation of ursolic acid derivatives containing an aminoguanidine moiety. Med. Chem. Res. 2019;28:959–973. doi: 10.1007/s00044-019-02349-x. DOI
Song M., Wang S., Wang Z., Fu Z., Zhou S., Cheng H., Liang Z., Deng X. Synthesis, antimicrobial and cytotoxic activities, and molecular docking studies of N-arylsulfonylindoles containing an aminoguanidine, a semicarbazide, and a thiosemicarbazide moiety. Eur. J. Med. Chem. 2019;166:108–118. doi: 10.1016/j.ejmech.2019.01.038. PubMed DOI
Deng X., Song M. Synthesis, antibacterial and anticancer activity, and docking study of aminoguanidines containing an alkynyl moiety. J. Enzyme Inhib. Med. Chem. 2020;35:354–364. doi: 10.1080/14756366.2019.1702654. PubMed DOI PMC
Russell C.C., Stevens A., Pi H., Khazandi M., Ogunniyi A.D., Young K.A., Baker J.R., McCluskey S.N., Page S.W., Trott D.J., et al. Gram-Positive and Gram-Negative Antibiotic Activity of Asymmetric and Monomeric Robenidine Analogues. ChemMedChem. 2018;13:2573–2580. doi: 10.1002/cmdc.201800463. PubMed DOI
Dantas N., de Aquino T.M., de Araújo-Júnior J.X., da Silva-Júnior E., Gomes E.A., Severo Gomes A.A., Siqueira-Júnior J.P., Junior F.J.B.M. Aminoguanidine hydrazones (AGH’s) as modulators of norfloxacin resistance in Staphylococcus aureus that overexpress NorA efflux pump. Chem. Biol. Interact. 2018;280:8–14. doi: 10.1016/j.cbi.2017.12.009. PubMed DOI
Messeder J.C., Tinoco L.W., Figueroa-Villar J.D., Souza E.M., Santa Rita R., de Castro S.L. Aromatic guanyl hydrazones: Synthesis, structural studies and in vitro activity against Trypanosoma cruzi. Bioorg. Med. Chem. Lett. 1995;5:3079–3084. doi: 10.1016/0960-894X(95)00541-5. DOI
Rohilla A., Khare G., Tyagi A.K. A combination of docking and cheminformatics approaches for the identification of inhibitors against 4′ phosphopantetheinyl transferase of Mycobacterium tuberculosis. RSC Adv. 2018;8:328–341. doi: 10.1039/C7RA11198C. DOI
Amidi S., Esfahanizadeh M., Tabib K., Soleimani Z., Kobarfard F. Rational Design and Synthesis of 1-(Arylideneamino)-4-aryl-1H-imidazole-2-amine Derivatives as Antiplatelet Agents. ChemMedChem. 2017;12:962–971. doi: 10.1002/cmdc.201700123. PubMed DOI
Xu H., Wang Y.-Y. Antifungal agents. Part 5: Synthesis and antifungal activities of aminoguanidine derivatives of N-arylsulfonyl-3-acylindoles. Bioorg. Med. Chem. Lett. 2010;20:7274–7277. doi: 10.1016/j.bmcl.2010.10.084. PubMed DOI
Liu D.C., Gao M.J., Huo Q., Ma T., Wang Y., Wu C.Z. Design, synthesis, and apoptosis-promoting effect evaluation of novel pyrazole with benzo[d]thiazole derivatives containing aminoguanidine units. J. Enzyme Inhib. Med. Chem. 2019;34:829–837. doi: 10.1080/14756366.2019.1591391. PubMed DOI PMC
Krátký M., Konečná K., Brablíková M., Janoušek J., Pflégr V., Maixnerová J., Trejtnar F., Vinšová J. Iodinated 1,2-diacylhydrazines, benzohydrazide-hydrazones and their analogues as dual antimicrobial and cytotoxic agents. Bioorg. Med. Chem. 2021;41:116209. doi: 10.1016/j.bmc.2021.116209. PubMed DOI
Krátký M., Konečná K., Brokešová K., Maixnerová J., Trejtnar F., Vinšová J. Optimizing the structure of (salicylideneamino)benzoic acids: Towards selective antifungal and anti-staphylococcal agents. Eur. J. Pharm. Sci. 2021;159:105732. doi: 10.1016/j.ejps.2021.105732. PubMed DOI
Krátký M., Konečná K., Janoušek J., Brablíková M., Janďourek O., Trejtnar F., Stolaříková J., Vinšová J. 4-Aminobenzoic acid derivatives: Converting folate precursor to antimicrobial and cytotoxic agents. Biomolecules. 2020;10:9. doi: 10.3390/biom10010009. PubMed DOI PMC
Krátký M., Bősze S., Baranyai Z., Stolaříková J., Vinšová J. Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide. Bioorg. Med. Chem. Lett. 2017;27:5185–5189. doi: 10.1016/j.bmcl.2017.10.050. PubMed DOI
Soukup O., Winder M., Killi U.K., Wsol V., Jun D., Kuca K., Tobin G. Acetylcholinesterase Inhibitors and Drugs Acting on Muscarinic Receptors- Potential Crosstalk of Cholinergic Mechanisms During Pharmacological Treatment. Curr. Neuropharmacol. 2017;15:637–653. doi: 10.2174/1570159X14666160607212615. PubMed DOI PMC
Masunari A., Tavares L.C. A new class of nifuroxazide analogues: Synthesis of 5-nitrothiophene derivatives with antimicrobial activity against multidrug-resistant Staphylococcus aureus. Bioorg. Med. Chem. 2007;15:4229–4236. doi: 10.1016/j.bmc.2007.03.068. PubMed DOI
Abraham R.J., Stevens A.J., Young K.A., Russell C., Qvist A., Khazandi M., Wong H.S., Abraham S., Ogunniyi A.D., Page S.W., et al. Robenidine Analogues as Gram-Positive Antibacterial Agents. J. Med. Chem. 2016;59:2126–2138. doi: 10.1021/acs.jmedchem.5b01797. PubMed DOI
Şoica C., Fuliaş A., Vlase G., Dehelean C., Vlase T., Ledeţi I. Synthesis and thermal behavior of new ambazone complexes with some transitional cations. J. Therm. Anal. Calorim. 2014;118:1305–1311. doi: 10.1007/s10973-014-3858-4. DOI
Parvathaneni V., Gupta V. Utilizing Drug Repurposing Against COVID-19—Efficacy, Limitations, and Challenges. Life Sci. 2020;259:118275. doi: 10.1016/j.lfs.2020.118275. PubMed DOI PMC
Yuan X., Jia C., Ma Y., Yang D., Ruic C., Qin Z. Synthesis, insecticidal and fungicidal activities of methyl 2-(methoxyimino)-2-(2-((1-(N’- nitrocarbamimidoyl)-2-hydrocarbylidenehydrazinyl)methyl)phenyl)acetates. RSC Adv. 2016;6:19916–19922. doi: 10.1039/C5RA27359E. DOI
Kumler W.D., Sah P.P.T. Nitroguanylhydrazones of Aldehydes: Their Antitubercular Activity, Ultraviolet Absorption Spectra and Structure. J. Am. Pharm. Assoc. 1952;41:375–379. doi: 10.1002/jps.3030410712. PubMed DOI
Contreras J.M., Rival Y.M., Chayer S., Bourguignon J.J., Wermuth C.G. Aminopyridazines as Acetylcholinesterase Inhibitors. J. Med. Chem. 1999;42:730–741. doi: 10.1021/jm981101z. PubMed DOI
Ferreira Neto D.C., de Souza Ferreira M., da Conceição Petronilho E., Alencar Lima J., de Azeredo S.O.F., de Oliveira Carneiro Brum J., do Nascimento C.J., Figueroa Villar J.D. A new guanylhydrazone derivative as a potential acetylcholinesterase inhibitor for Alzheimer’s disease: Synthesis, molecular docking, biological evaluation and kinetic studies by nuclear magnetic resonance. RSC Adv. 2017;7:33944. doi: 10.1039/C7RA04180B. DOI
da Conceição Petronilho E., do Nascimento Rennó M., Gonçalves Castro N., da Silva F.M.R., da Cunha Pinto A., Figueroa-Villar J.D. Design, synthesis, and evaluation of guanylhydrazones as potential inhibitors or reactivators of acetylcholinesterase. J. Enzyme Inhib. Med. Chem. 2016;31:1069–1078. doi: 10.3109/14756366.2015.1094468. PubMed DOI
Šekutor M., Mlinaric-Majerski K., Hrenar T., Tomic S., Primožič I. Adamantane-substituted guanylhydrazones: Novel inhibitors of butyrylcholinesterase. Bioorg. Chem. 2012;41–42:28–34. doi: 10.1016/j.bioorg.2012.01.004. PubMed DOI
Krátký M., Štěpánková Š., Brablíková M., Svrčková K., Švarcová M., Vinšová J. Novel Iodinated Hydrazide-hydrazones and their Analogues as Acetyl- and Butyrylcholinesterase Inhibitors. Curr. Top. Med. Chem. 2020;20:2106–2117. doi: 10.2174/1568026620666200819155503. PubMed DOI
Krátký M., Svrčková K., Vu Q.A., Štěpánková Š., Vinšová J. Hydrazones of 4-(Trifluoromethyl)benzohydrazide as New Inhibitors of Acetyl- and Butyrylcholinesterase. Molecules. 2021;26:989. doi: 10.3390/molecules26040989. PubMed DOI PMC
Krátký M., Štěpánková Š., Houngbedji N.-H., Vosátka R., Vorčáková K., Vinšová J. 2-Hydroxy-N-phenylbenzamides and their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase. Biomolecules. 2019;9:698. doi: 10.3390/biom9110698. PubMed DOI PMC
Lineweaver H., Burk D. The Determination of Enzyme Dissociation Constants. J. Am. Chem. Soc. 1934;56:658–666. doi: 10.1021/ja01318a036. DOI
Dvir H., Silman I., Harel M., Rosenberry T.L., Sussman J.L. Acetylcholinesterase: From 3D Structure to Function. Chem. Biol. Interact. 2010;187:10–22. doi: 10.1016/j.cbi.2010.01.042. PubMed DOI PMC
Ordentlich A., Barak D., Kronman C., Ariel N., Segall Y., Velan B., Shafferman A. Contribution of Aromatic Moieties of Tyrosine 133 and of the Anionic Subsite Tryptophan 86 to Catalytic Efficiency and Allosteric Modulation of Acetylcholinesterase. J. Biol. Chem. 1995;270:2082–2091. doi: 10.1074/jbc.270.5.2082. PubMed DOI
Nicolet Y., Lockridge O., Masson P., Fontecilla-Camps J.C., Nachon F. Crystal Structure of Human Butyrylcholinesterase and of Its Complexes with Substrate and Products. J. Biol. Chem. 2003;278:41141–41147. doi: 10.1074/jbc.M210241200. PubMed DOI
Krátký M., Vinšová J. Salicylanilide Ester Prodrugs as Potential Antimicrobial Agents—A Review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI
Castillo-Melendez J.A., Golding B.T. Optimisation of the Synthesis of Guanidines from Amines via Nitroguanidines Using 3,5-Dimethyl-N-nitro-1H-pyrazole-1-carboxamidine. Synthesis. 2004;10:1655–1663. doi: 10.1055/s-2004-829130. DOI
Zhou N., Zhao Y. Conjugated Oligoyne-Bridged [60] Fullerene Molecular Dumbbells: Syntheses and Thermal and Morphological Properties. J. Org. Chem. 2010;75:1498–1516. doi: 10.1021/jo9021748. PubMed DOI
Prasad R.N., McKay A.F. Acylation of guanidines and guanylhydrazones. Canad. J. Chem. 1967;45:2247. doi: 10.1139/v67-362. DOI
King H., Wright J. 466. 2-amino-1: 3: 4-indotriazine. The reaction between isatin and aminoguanidine. J. Chem. Soc. 1948:2314–2318. doi: 10.1039/jr9480002314. DOI
Yadav L.D.S., Singh S., Singh A. Novel clay-catalysed cyclisation of salicylaldehyde semicarbazones to 2H-benz[e]-1,3-oxazin-2-ones under microwave irradiation. Tetrahedron Lett. 2002;43:8551–8553. doi: 10.1016/S0040-4039(02)02065-8. DOI
Hunan University. Aixi H., Jiao Y., Xiaoxiao S., Ailin L., Wenwen K. 2-(2-Benzylidene Hydrazino)-5-(1,2,4-Triazole-1-yl)Thiazole, and Preparation and Applications Thereof. No. CN104774199. Patent. 2017 March 8;
Ebetino F.F., Gever G. Chemotherapeutic Nitrofurans. VII.1 The Formation of 5-Nitrofurfurylidene Derivatives of Some Aminoguanidines, Aminotriazoles, and Related Compounds. J. Org. Chem. 1962;27:188–191. doi: 10.1021/jo01048a047. DOI
Chung M.C., Guido R.V.C., Martinelli T.F., Goncalves M.F., Polli M.C., Botelho K.C.A., Varanda E.A., Colli W., Miranda M.T.M., Ferreira E.I. Synthesis and in vitro evaluation of potential antichagasic hydroxymethylnitrofurazone (NFOH-121): A new nitrofurazone prodrug. Bioorg. Med. Chem. 2003;11:4779–4783. doi: 10.1016/j.bmc.2003.07.004. PubMed DOI
Dann O., Möller E.F. Über die wachstumshemmenden Eigenschaften von Nitroverbindungen. Chem. Ber. 1949;82:76–92. doi: 10.1002/cber.19490820115. DOI
European Committee for Antimicrobial Susceptibility Testing (EUCAST) EUCAST Discussion Document E. Dis 5.1. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003;9:1–7. PubMed
European Committee for Antimicrobial Susceptibility Testing (EUCAST) EUCAST Definitive Document EDEF 7.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts. [(accessed on 26 January 2021)]. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7_3_1_Yeast_testing__definitive.pdf.
European Committee for Antimicrobial Susceptibility Testing (EUCAST) EUCAST Definitive Document E. DEF 9.3.1. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds. [(accessed on 26 January 2021)]. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_9_3_1_Mould_testing__definitive.pdf. PubMed
Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Naturforsch. C J. Biosci. 2004;59:293–296. doi: 10.1515/znc-2004-3-430. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC