Photosystems under high light stress: throwing light on mechanism and adaptation
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39650670
PubMed Central
PMC11515824
DOI
10.32615/ps.2023.021
PII: PS61250
Knihovny.cz E-zdroje
- Klíčová slova
- light stress, nonphotochemical quenching, photodamage, photosystem, reactive oxygen species, signaling,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
High light stress decreases the photosynthetic rate in plants due to photooxidative damage to photosynthetic apparatus, photoinhibition of PSII, and/or damage to PSI. The dissipation of excess energy by nonphotochemical quenching and degradation of the D1 protein of PSII and its repair cycle help against photooxidative damage. Light stress also activates stress-responsive nuclear genes through the accumulation of phosphonucleotide-3'-phosphoadenosine-5'-phosphate, methylerythritol cyclodiphosphate, and reactive oxygen species which comprise the chloroplast retrograde signaling pathway. Additionally, hormones, such as abscisic acid, cytokinin, brassinosteroids, and gibberellins, play a role in acclimation to light fluctuations. Several alternate electron flow mechanisms, which offset the excess of electrons, include activation of plastid or plastoquinol terminal oxidase, cytochrome b 6/f complex, cyclic electron flow through PSI, Mehler ascorbate peroxidase pathway or water-water cycle, mitochondrial alternative oxidase pathway, and photorespiration. In this review, we provided insights into high light stress-mediated damage to photosynthetic apparatus and strategies to mitigate the damage by decreasing antennae size, enhancing NPQ through the introduction of mutants, expression of algal proteins to improve photosynthetic rates and engineering ATP synthase.
Department of Agriculture Food and Environment University of Pisa Pisa Italy
Division of Plant Physiology ICAR Indian Agricultural Research Institute 110012 New Delhi India
School of Biochemistry Devi Ahilya University 452001 Indore Madhya Pradesh India
Zobrazit více v PubMed
Ahmad N., Khan M.O., Islam E. et al..: Contrasting responses to stress displayed by tobacco overexpressing an algal plastid terminal oxidase in the chloroplast. – Front. Plant Sci. 11: 501, 2020. 10.3389/fpls.2020.00501 PubMed DOI PMC
Alboresi A., Storti M., Cendron L., Morosinotto T.: Role and regulation of class-C flavodiiron proteins in photosynthetic organisms. – Biochem. J. 476: 2487-2498, 2019. 10.1042/bcj20180648 PubMed DOI
Allen J.F., Forsberg J.: Molecular recognition in thylakoid structure and function. – Trends Plant Sci. 6: 317-326, 2001. 10.1016/S1360-1385(01)02010-6 PubMed DOI
Andersson B., Styring S.: Photosystem II: molecular organization, function, and acclimation. – Curr. Top. Bioenerg. 16: 1-81, 1991. 10.1016/B978-0-12-152516-3.50005-X DOI
Aro E.-M., Suorsa M., Rokka A. et al..: Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. – J. Exp. Bot. 56: 347-356, 2005. 10.1093/jxb/eri041 PubMed DOI
Aro E.-M., Virgin I., Andersson B.: Photoinhibition of photosystem II. Inactivation, protein damage and turnover. – BBA-Bioenergetics 1143: 113-134, 1993. 10.1016/0005-2728(93)90134-2 PubMed DOI
Asada K.: The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. – Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 601-639, 1999. 10.1146/annurev.arplant.50.1.601 PubMed DOI
Baena-González E., Aro E.-M.: Biogenesis, assembly and turnover of photosystem II units. – Philos. T. Roy. Soc. B 357: 1451-1460, 2002. 10.1098/rstb.2002.1141 PubMed DOI PMC
Benn G., Bjornson M., Ke H. et al..: Plastidial metabolite MEcPP induces a transcriptionally centered stress-response hub via the transcription factor CAMTA3. – PNAS 113: 8855-8860, 2016. 10.1073/pnas.1602582113 PubMed DOI PMC
Blubaugh D.J., Atamian M., Babcock G.T. et al..: Photoinhibition of hydroxylamine-extracted photosystem II membranes: identification of the sites of photodamage. – Biochemistry 30: 7586-7597, 1991. 10.1021/bi00244a030 PubMed DOI
Bolte S., Marcon E., Jaunario M. et al..: Dynamics of the localization of the plastid terminal oxidase inside the chloroplast. – J. Exp. Bot. 71: 2661-2669, 2020. 10.1093/jxb/eraa074 PubMed DOI
Burlacot A., Sawyer A., Cuiné S. et al..: Flavodiiron-mediated O2 photoreduction links H2 production with CO2 fixation during the anaerobic induction of photosynthesis. – Plant Physiol. 177: 1639-1649, 2018. 10.1104/pp.18.00721 PubMed DOI PMC
Cardona T., Shao S., Nixon P.J.: Enhancing photosynthesis in plants: the light reactions. – Essays Biochem. 62: 85-94, 2018. 10.1042/EBC20170015 PubMed DOI PMC
Cazzaniga S., Li Z., Niyogi K.K. et al..: The Arabidopsis szl1 mutant reveals a critical role of β-carotene in photosystem I photoprotection. – Plant Physiol. 159: 1745-1758, 2012. 10.1104/pp.112.201137 PubMed DOI PMC
Chang C.C.C., Ślesak I., Jordá L. et al..: Arabidopsis chloroplastic glutathione peroxidases play a role in cross-talk between photooxidative stress and immune responses. – Plant Physiol. 150: 670-683, 2009. 10.1104/pp.109.135566 PubMed DOI PMC
Chaux F., Peltier G., Johnson X.: A security network in PSI photoprotection: regulation of photosynthetic control, NPQ and O2 photoreduction by cyclic electron flow. – Front. Plant Sci. 6: 875, 2015. 10.3389/fpls.2015.00875 PubMed DOI PMC
Chen Z., Gallie D.R.: Ethylene regulates energy-dependent non-photochemical quenching in Arabidopsis through repression of the xanthophyll cycle. – PLoS ONE 10: e0144209, 2015. 10.1371/journal.pone.0144209 PubMed DOI PMC
Chida H., Nakazawa A., Akazaki H. et al..: Expression of the algal cytochrome c6 gene in Arabidopsis enhances photosynthesis and growth. – Plant Cell Physiol. 48: 948-957, 2007. 10.1093/pcp/pcm064 PubMed DOI
Colombo M., Suorsa M., Rossi F. et al..: Photosynthesis control: An underrated short-term regulatory mechanism essential for plant viability. – Plant Signal. Behav. 11: e1165382, 2016. 10.1080/15592324.2016.1165382 PubMed DOI PMC
Cortleven A., Nitschke S., Klaumunzer M. et al..: A novel protective function for cytokinin in the light stress response is mediated by the ARABIDOPSIS HISTIDINE KINASE2 and ARABIDOPSIS HISTIDINE KINASE3 receptors. – Plant Physiol. 164: 1470-1483, 2014. 10.1104/pp.113.224667 PubMed DOI PMC
Czégény G., Mátai A., Hideg É.: UV-B effects on leaves – Oxidative stress and acclimation in controlled environments. – Plant Sci. 248: 57-63, 2016. 10.1016/j.plantsci.2016.04.013 PubMed DOI
Damkjaer J.T., Kereïche S., Johnson M.P. et al..: The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. – Plant Cell 21: 3245-3256, 2009. 10.1105/tpc.108.064006 PubMed DOI PMC
De Souza A.P., Burgess S.J., Doran L. et al..: Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. – Science 377: 851-854, 2022. 10.1126/science.adc9831 PubMed DOI
Derks A., Schaven K., Bruce D.: Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. – BBA-Bioenergetics 1847: 468-485, 2015. 10.1016/j.bbabio.2015.02.008 PubMed DOI
Dietz K.-J.: Efficient high light acclimation involves rapid processes at multiple mechanistic levels. – J. Exp. Bot. 66: 2401-2414, 2015. 10.1093/jxb/eru505 PubMed DOI
Dietz K.-J.: Thiol-based peroxidases and ascorbate peroxidases: Why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? – Mol. Cells 39: 20-25, 2016. 10.14348/molcells.2016.2324 PubMed DOI PMC
Dobrikova A.G., Krasteva V., Apostolova E.L.: Damage and protection of the photosynthetic apparatus from UV-B radiation. I. Effect of ascorbate. – J. Plant Physiol. 170: 251-257, 2013. 10.1016/j.jplph.2012.10.002 PubMed DOI
Edelman M., Mattoo A.K.: D1-protein dynamics in photosystem II: the lingering enigma. – Photosynth. Res. 98: 609-620, 2008. 10.1007/s11120-008-9342-x PubMed DOI
Fagerlund R.D., Forsman J.A., Biswas S. et al..: Stabilization of Photosystem II by the PsbT protein impacts photodamage, repair and biogenesis. – BBA-Bioenergetics 1861: 148234, 2020. 10.1016/j.bbabio.2020.148234 PubMed DOI
Feilke K., Streb P., Cornic G. et al..: Effect of Chlamydomonas plastid terminal oxidase 1 expressed in tobacco on photosynthetic electron transfer. – Plant J. 85: 219-228, 2016. 10.1111/tpj.13101 PubMed DOI
Fiorucci A.-S., Fankhauser C.: Plant strategies for enhancing access to sunlight. – Curr. Biol. 27: R931-R940, 2017. 10.1016/j.cub.2017.05.085 PubMed DOI
Friedland N., Negi S., Vinogradova-Shah T. et al..: Fine-tuning the photosynthetic light harvesting apparatus for improved photosynthetic efficiency and biomass yield. – Sci. Rep.-UK 9: 13028, 2019. 10.1038/s41598-019-49545-8 PubMed DOI PMC
Ghosh D., Mohapatra S., Dogra V.: Improving photosynthetic efficiency by modulating non-photochemical quenching. – Trends Plant Sci. 28: 264-266, 2023. 10.1016/j.tplants.2022.12.016 PubMed DOI
Gollan P.J., Aro E.-M.: Photosynthetic signalling during high light stress and recovery: targets and dynamics. – Philos. T. Roy. Soc. B 375: 20190406, 2020. 10.1098/rstb.2019.0406 PubMed DOI PMC
Gómez R., Carrillo N., Morelli M.P. et al..: Faster photosynthetic induction in tobacco by expressing cyanobacterial flavodiiron proteins in chloroplasts. – Photosynth. Res. 136: 129-138, 2018. 10.1007/s11120-017-0449-9 PubMed DOI
González-Pérez S., Gutiérrez J., García-García F. et al..: Early transcriptional defense responses in Arabidopsis cell suspension culture under high-light conditions. – Plant Physiol. 156: 1439-1456, 2011. 10.1104/pp.111.177766 PubMed DOI PMC
Gu J., Zhou Z., Li Z. et al..: Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. – Field Crop. Res. 200: 58-70, 2017. 10.1016/j.fcr.2016.10.008 DOI
Huang W., Sun H., Tan S.-L., Zhang S.-B.: The water-water cycle is not a major alternative sink in fluctuating light at chilling temperature. – Plant Sci. 305: 110828, 2021. 10.1016/j.plantsci.2021.110828 PubMed DOI
Huang W., Yang Y.J., Hu H., Zhang S.-B.: Moderate photoinhibition of photosystem II protects Photosystem I from photodamage at chilling stress in tobacco leaves. – Front. Plant Sci. 7: 182, 2016. 10.3389/fpls.2016.00182 PubMed DOI PMC
Huang W., Yang Y.-J., Zhang S.-B.: Specific roles of cyclic electron flow around photosystem I in photosynthetic regulation in immature and mature leaves. – J. Plant Physiol. 209: 76-83, 2017. 10.1016/j.jplph.2016.11.013 PubMed DOI
Huang W., Yang Y.-J., Zhang S.-B.: The role of water-water cycle in regulating the redox state of photosystem I under fluctuating light. – BBA-Bioenergetics 1860: 383-390, 2019. 10.1016/j.bbabio.2019.03.007 PubMed DOI
Ilík P., Pavlovič A., Kouřil R. et al..: Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms. – New Phytol. 214: 967-972, 2017. 10.1111/nph.14536 PubMed DOI
Ivanov A.G., Morgan R.M., Gray G.R. et al..: Temperature/light dependent development of selective resistance to photoinhibition of photosystem I. – FEBS Lett. 430: 288-292, 1998. 10.1016/s0014-5793(98)00681-4 PubMed DOI
Ivanov A.G., Sane P.V., Krol M. et al..: Acclimation to temperature and irradiance modulates PSII charge recombination. – FEBS Lett. 580: 2797-2802, 2006. 10.1016/j.febslet.2006.04.018 PubMed DOI
Janečková H., Husičková A., Ferretti U. et al..: The interplay between cytokinins and light during senescence in detached Arabidopsis leaves. – Plant Cell Environ. 41: 1870-1885, 2018. 10.1111/pce.13329 PubMed DOI
Jegerschoeld C., Arellano J.B., Schroder W.P. et al..: Copper (II) inhibition of electron transport through photosystem II studied by EPR spectroscopy. – Biochemistry 34: 12747-12754, 1995. 10.1021/bi00039a034 PubMed DOI
Jin H., Li M., Duan S. et al..: Optimization of light-harvesting pigment improves photosynthetic efficiency. – Plant Physiol. 172: 1720-1731, 2016. 10.1104/pp.16.00698 PubMed DOI PMC
Josse E.-M., Alcaraz J.-P., Labouré A.-M., Kuntz M.: In vitro characterization of a plastid terminal oxidase (PTOX). – Eur. J. Biochem. 270: 3787-3794, 2003. 10.1046/j.1432-1033.2003.03766.x PubMed DOI
Jung J., Kim H.-S.: The chromophores as endogenous sensitizers involved in the photogeneration of singlet oxygen in spinach thylakoids. – Photochem. Photobiol. 52: 1003-1009, 1990. 10.1111/j.1751-1097.1990.tb01817.x DOI
Kataria S., Jajoo A., Guruprasad K.N.: Impact of increasing ultraviolet-B (UV-B) radiation on photosynthetic processes. – J. Photoch. Photobio. B 137: 55-66, 2014. 10.1016/j.jphotobiol.2014.02.004 PubMed DOI
Kato Y., Ozawa S., Takahashi Y., Sakamoto W.: D1 fragmentation in photosystem II repair caused by photo-damage of a two-step model. – Photosynth. Res. 126: 409-416, 2015. 10.1007/s11120-015-0144-7 PubMed DOI
Kirst H., Gabilly S.T., Niyogi K.K. et al..: Photosynthetic antenna engineering to improve crop yields. – Planta 245: 1009-1020, 2017. 10.1007/s00425-017-2659-y PubMed DOI
Kono M., Noguchi K., Terashima I.: Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. – Plant Cell Physiol. 55: 990-1004, 2014. 10.1093/pcp/pcu033 PubMed DOI
Kozaki A., Takeba G.: Photorespiration protects C3 plants from photooxidation. – Nature 384: 557-560, 1996. 10.1038/384557a0 DOI
Kozuleva M.A., Ivanov B.N.: Evaluation of the participation of ferredoxin in oxygen reduction in the photosynthetic electron transport chain of isolated pea thylakoids. – Photosynth. Res. 105: 51-61, 2010. 10.1007/s11120-010-9565-5 PubMed DOI
Kozuleva M.A., Ivanov B.N., Vetoshkina D.V., Borisova-Mubarakshina M.M.: Minimizing an electron flow to molecular oxygen in photosynthetic electron transfer chain: an evolutionary view. – Front. Plant Sci 11: 211, 2020. 10.3389/fpls.2020.00211 PubMed DOI PMC
Kozuleva M.A., Petrova A.A., Mamedov M.D. et al..: O2 reduction by photosystem I involves phylloquinone under steady-state illumination. – FEBS Lett. 588: 4364-4368, 2014. 10.1016/j.febslet.2014.10.003 PubMed DOI
Krieger A., Weis E.: The role of calcium in the pH-dependent control of Photosystem II. – Photosynth. Res. 37: 117-130, 1993. 10.1007/BF02187470 PubMed DOI
Kromdijk J., Głowacka K., Leonelli L. et al..: Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. – Science 354: 857-861, 2016. 10.1126/science.aai8878 PubMed DOI
Kudoh H., Sonoike K.: Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. – Planta 215: 541-548, 2002. 10.1007/s00425-002-0790-9 PubMed DOI
Külheim C., Ågren, J., Jansson S.: Rapid regulation of light harvesting and plant fitness in the field. – Science 297: 91-93, 2002. 10.1126/science.1072359 PubMed DOI
Larkum A.W.D., Karge M., Reifarth F. et al..: Effect of monochromatic UV-B radiation on electron transfer reactions of Photosystem II. – Photosynth. Res. 68: 49-60, 2001. 10.1023/A:1011884031354 PubMed DOI
Laureau C., de Paepe R., Latouche G. et al..: Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialis L. – Plant Cell Environ. 36: 1296-1310, 2013. 10.1111/pce.12059 PubMed DOI
Li L., Aro E.-M., Millar A.H.: Mechanisms of photodamage and protein turnover in photoinhibition. – Trends Plant Sci. 23: 667-676, 2018. 10.1016/j.tplants.2018.05.004 PubMed DOI
Li X.-P., Björkman O., Shih C. et al..: A pigment-binding protein essential for regulation of photosynthetic light harvesting. – Nature 403: 391-395, 2000. 10.1038/35000131 PubMed DOI
Li X.-P., Müller-Moulé P., Gilmore A.M., Niyogi K.K.: PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. – PNAS 99: 15222-15227, 2002. 10.1073/pnas.232447699 PubMed DOI PMC
Lima-Melo Y., Alencar V.T.C.B., Lobo A.K.M. et al..: Photoinhibition of photosystem I provides oxidative protection during imbalanced photosynthetic electron transport in Arabidopsis thaliana. – Front. Plant Sci. 10: 916, 2019. 10.3389/fpls.2019.00916 PubMed DOI PMC
López-Calcagno P.E., Brown K.L., Simkin A.J. et al..: Stimulating photosynthetic processes increases productivity and water-use efficiency in the field. – Nat. Plants 6: 1054-1063, 2020. 10.1038/s41477-020-0740-1 PubMed DOI
Lu Y., Hall D.A., Last R.L.: A small zinc finger thylakoid protein plays a role in maintenance of photosystem II in Arabidopsis thaliana. – Plant Cell 23: 1861-1875, 2011. 10.1105/tpc.111.085456 PubMed DOI PMC
Malnoë A., Schultink A., Shahrasbi S. et al..: The plastid lipocalin LCNP is required for sustained photoprotective energy dissipation in Arabidopsis. – Plant Cell 30: 196-208, 2018. 10.1105/tpc.17.00536 PubMed DOI PMC
Mekala N.R., Suorsa M., Rantala M. et al..: Plants actively avoid state transitions upon changes in light intensity: Role of light-harvesting complex II protein dephosphorylation in high light. – Plant Physiol. 168: 721-734, 2015. 10.1104/pp.15.00488 PubMed DOI PMC
Merilo E., Jalakas P., Kollist H., Brosché M.: The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity, elevated CO2, and exogenous ABA. – Mol. Plant 8: 657-659, 2015. 10.1016/j.molp.2015.01.014 PubMed DOI
Messinger J., Renger G.: Photosynthetic water splitting. – In: Renger G. (ed.): Primary Processes of Photosynthesis: Basic Principles and Apparatus. Part II. Pp. 295-353. Royal Society Chemistry, Cambridge: 2008.
Minagawa J.: State transitions – the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. – BBA-Bioenergetics 1807: 897-905, 2011. 10.1016/j.bbabio.2010.11.005 PubMed DOI
Morales A., Kaiser E.: Photosynthetic acclimation to fluctuating irradiance in plants. – Front. Plant Sci. 11: 268, 2020. 10.3389/fpls.2020.00268 PubMed DOI PMC
Muh F., Zouni A.: Light-induced water oxidation in photosystem II. – Front. Biosci.-Landmark 16: 3072-3132, 2011. 10.2741/3900 PubMed DOI
Mullineaux C.W.: Photosynthesis: Rewiring an angiosperm. – Nat. Plants 2: 16018, 2016. 10.1038/nplants.2016.18 PubMed DOI
Mulo P., Sakurai I., Aro E.-M.: Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. – BBA-Bioenergetics 1817: 247-257, 2012. 10.1016/j.bbabio.2011.04.011 PubMed DOI
Munekage Y., Hojo M., Meurer J. et al..: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. – Cell 110: 361-371, 2002. 10.1016/S0092-8674(02)00867-X PubMed DOI
Murata N., Allakhverdiev S.I., Nishiyama Y.: The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. – BBA-Bioenergetics 1817: 1127-1133, 2012. 10.1016/j.bbabio.2012.02.020 PubMed DOI
Murata N., Nishiyama Y.: ATP is a driving force in the repair of photosystem II during photoinhibition. – Plant Cell Environ. 41: 285-299, 2018. 10.1111/pce.13108 PubMed DOI
Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I.: Photoinhibition of photosystem II under environmental stress. – BBA-Bioenergetics 1767: 414-421, 2007. 10.1016/j.bbabio.2006.11.019 PubMed DOI
Naranjo B., Penzler J.-F., Rühle T., Leister D.: NTRC effects on non-photochemical quenching depends on PGR5. – Antioxidants 10: 900, 2021. 10.3390/antiox10060900 PubMed DOI PMC
Nath K., Jajoo A., Poudyal R.S. et al..: Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. – FEBS Lett. 587: 3372-3381, 2013. 10.1016/j.febslet.2013.09.015 PubMed DOI
Nawrocki W.J., Bailleul B., Picot D. et al..: The mechanism of cyclic electron flow. – BBA-Bioenergetics 1860: 433-438, 2019. 10.1016/j.bbabio.2018.12.005 PubMed DOI
Nelson C.J., Alexova R., Jacoby R.P., Millar A.H.: Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labeling. – Plant Physiol. 166: 91-108, 2014. 10.1104/pp.114.243014 PubMed DOI PMC
Nicol L., Croce R.: The PsbS protein and low pH are necessary and sufficient to induce quenching in the light-harvesting complex of plants LHCII. – Sci. Rep.-UK 11: 7415, 2021. 10.1038/s41598-021-86975-9 PubMed DOI PMC
Nicol L., Nawrocki W.J., Croce R.: Disentangling the sites of non-photochemical quenching in vascular plants. – Nat. Plants 5: 1177-1183, 2019. 10.1038/s41477-019-0526-5 PubMed DOI PMC
Nosalewicz A., Okoń K., Skorupka M.: Non-photochemical quenching under drought and fluctuating light. – Int. J. Mol. Sci. 23: 5182, 2022. 10.3390/ijms23095182 PubMed DOI PMC
Pfannschmidt T., Nilsson A., Allen J.F.: Photosynthetic control of chloroplast gene expression. – Nature 397: 625-628, 1999. 10.1038/17624 DOI
Pietrzykowska M., Suorsa M., Semchonok D.A. et al..: The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. – Plant Cell 26: 3646-3660, 2014. 10.1105/tpc.114.127373 PubMed DOI PMC
Powles S.B.: Photoinhibition of photosynthesis induced by visible light. – Annu. Rev. Plant Physiol. 35: 15-44, 1984. 10.1146/annurev.pp.35.060184.000311 DOI
Rantala M., Tikkanen M., Aro E.-M.: Proteomic characterization of hierarchical megacomplex formation in Arabidopsis thylakoid membrane. – Plant J. 92: 951-962, 2017. 10.1111/tpj.13732 PubMed DOI
Raven J.A.: Speedy small stomata? – J. Exp. Bot. 65: 1415-1424, 2014. 10.1093/jxb/eru032 PubMed DOI
Ribas-Carbo M., Berry J.A., Yakir D. et al..: Electron partitioning between the cytochrome and alternative pathways in plant mitochondria. – Plant Physiol. 109: 829-837, 1995. 10.1104/pp.109.3.829 PubMed DOI PMC
Roach T., Krieger-Liszkay A.: The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana. – BBA-Bioenergetics 1817: 2158-2165, 2012. 10.1016/j.bbabio.2012.09.011 PubMed DOI
Rochaix J.D.: Regulation and dynamics of the light-harvesting system. – Annu. Rev. Plant Biol. 65: 287-309, 2014. 10.1146/annurev-arplant-050213-040226 PubMed DOI
Rog I., Chaturvedi A.K., Tiwari V., Danon A.: Low light-regulated intramolecular disulfide fine-tunes the role of PTOX in Arabidopsis. – Plant J. 109: 585-597, 2022. 10.1111/tpj.15579 PubMed DOI
Rott M., Martins N.F., Thiele W. et al..: ATP synthase repression in tobacco restricts photosynthetic electron transport, CO2 assimilation, and plant growth by overacidification of the thylakoid lumen. – Plant Cell 23: 304-321, 2011. 10.1105/tpc.110.079111 PubMed DOI PMC
Ruban A.V.: Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. – Plant Physiol. 170: 1903-1916, 2016. 10.1104/pp.15.01935 PubMed DOI PMC
Ruban A.V., Johnson M.P., Duffy C.D.P.: The photoprotective molecular switch in the photosystem II antenna. – BBA-Bioenergetics 1817: 167-181, 2012. 10.1016/j.bbabio.2011.04.007 PubMed DOI
Ruban A.V., Wilson S.: The mechanism of non-photochemical quenching in plants: localization and driving forces. – Plant Cell Physiol. 62: 1063-1072, 2021. 10.1093/pcp/pcaa155 PubMed DOI
Rutherford A.W., Osyczka A., Rappaport F.: Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: Redox tuning to survive life in O2. – FEBS Lett. 586: 603-616, 2012. 10.1016/j.febslet.2011.12.039 PubMed DOI
Sarvikas P., Hakala M., Pätsikkä E. et al..: Action spectrum of photoinhibition in leaves of wild type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana. – Plant Cell Physiol. 47: 391-400, 2006. 10.1093/pcp/pcj006 PubMed DOI
Schuster M., Gao Y., Schöttler M.A. et al..: Limited responsiveness of chloroplast gene expression during acclimation to high light in tobacco. – Plant Physiol. 182: 424-435, 2020. 10.1104/pp.19.00953 PubMed DOI PMC
Shahinnia F., Tula S., Hensel G. et al..: Plastid-targeted cyanobacterial flavodiiron proteins maintain carbohydrate turnover and enhance drought stress tolerance in barley. – Front. Plant Sci. 11: 613731, 2021. 10.3389/fpls.2020.613731 PubMed DOI PMC
Shin M., Tagawa K., Arnon D.: Crystallization of Ferredoxin-Tpn reductase and its role in the photosynthetic apparatus of chloroplasts. – Biochem. Z. 338: 84-93, 1963. PubMed
Shumbe L., Chevalier A., Legeret B. et al..: Singlet oxygen-induced cell death in Arabidopsis under high-light stress is controlled by OXI1 kinase. – Plant Physiol. 170: 1757-1771, 2016. 10.1104/pp.15.01546 PubMed DOI PMC
Simkin A.J., Kapoor L., Doss G.P.C. et al..: The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. – Photosynth. Res. 152: 23-42, 2022. 10.1007/s11120-021-00892-6 PubMed DOI
Slavov C., Schrameyer V., Reus M. et al..: “Super-quenching” state protects Symbiodinium from thermal stress – implications for coral bleaching. – BBA-Bioenergetics 1857: 840-847, 2016. 10.1016/j.bbabio.2016.02.002 PubMed DOI
Song Y., Feng L., Alyafei M.A.M. et al..: Function of chloroplasts in plant stress responses. – Int. J. Mol. Sci. 22: 13464, 2021. 10.3390/ijms222413464 PubMed DOI PMC
Sonoike K.: Photoinhibition of photosystem I. – Physiol. Plantarum 142: 56-64, 2011. 10.1111/j.1399-3054.2010.01437.x PubMed DOI
Sonoike K., Terashima I., Iwaki M., Itoh S.: Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus L. by weak illumination at chilling temperatures. – FEBS Lett. 362: 235-238, 1995. 10.1016/0014-5793(95)00254-7 PubMed DOI
Spetea C., Rintamäki E., Schoefs B.: Changing the light environment: chloroplast signalling and response mechanisms. – Philos. T. Roy. Soc. B 369: 20130220, 2014. 10.1098/rstb.2013.0220 PubMed DOI PMC
Strodtkötter I., Padmasree K., Dinakar C. et al..: Induction of the AOX1D isoform of alternative oxidase in A. thaliana T-DNA insertion lines lacking isoform AOX1A is insufficient to optimize photosynthesis when treated with antimycin A. – Mol. Plant 2: 284-297, 2009. 10.1093/mp/ssn089 PubMed DOI
Suh H.J., Kim C.S., Jung J.: Cytochrome b6/f complex as an indigenous photodynamic generator of singlet oxygen in thylakoid membranes. – Photochem. Photobiol. 71: 103-109, 2000. 10.1562/0031-8655(2000)0710103CBFCAA2.0.CO2 PubMed DOI
Sun H., Shi Q., Zhang S.B., Huang W.: Coordination of cyclic electron flow and water–water cycle facilitates photoprotection under fluctuating light and temperature stress in the epiphytic orchid Dendrobium officinale. – Plants-Basel 10: 606, 2021. 10.3390/plants10030606 PubMed DOI PMC
Sun H., Yang Y.J., Huang W.: The water-water cycle is more effective in regulating redox state of photosystem I under fluctuating light than cyclic electron transport. – BBA-Bioenergetics 1861: 148235, 2020. 10.1016/j.bbabio.2020.148235 PubMed DOI
Suorsa M., Järvi S., Grieco M. et al..: PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. – Plant Cell 24: 2934-2948, 2012. 10.1105/tpc.112.097162 PubMed DOI PMC
Suorsa M., Rantala M., Danielsson R. et al..: Dark-adapted spinach thylakoid protein heterogeneity offers insights into the photosystem II repair cycle. – BBA-Bioenergetics 1837: 1463-1471, 2014. 10.1016/j.bbabio.2013.11.014 PubMed DOI
Suzuki N., Miller G., Salazar C. et al..: Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. – Plant Cell 25: 3553-3569, 2013. 10.1105/tpc.113.114595 PubMed DOI PMC
Szilárd A., Sass L., Deák Z., Vass I.: The sensitivity of Photosystem II to damage by UV-B radiation depends on the oxidation state of the water-splitting complex. – BBA-Bioenergetics 1767: 876-882, 2007. 10.1016/j.bbabio.2006.11.020 PubMed DOI
Takagi D., Takumi S., Hashiguchi M. et al..: Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. – Plant Physiol. 171: 1626-1634, 2016. 10.1104/pp.16.00246 PubMed DOI PMC
Takahashi S., Bauwe H., Badger M.: Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. – Plant Physiol. 144: 487-494, 2007. 10.1104/pp.107.097253 PubMed DOI PMC
Telfer W.H., Kunkel J.G.: The function and evolution of insect storage hexamers. – Annu. Rev. Entomol. 36: 205-228, 1991. 10.1146/annurev.en.36.010191.001225 PubMed DOI
Tian Y.-N., Zhong R.-H., Wei J.-B. et al.: Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem II repair. – Mol. Plant 14: 1149-1167, 2021. 10.1016/j.molp.2021.04.006 PubMed DOI
Tikkanen M., Mekala N.R., Aro E.-M.: Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. – BBA-Bioenergetics 1837: 210-215, 2014. 10.1016/j.bbabio.2013.10.001 PubMed DOI
Tikkanen M., Rantala S., Aro E.-M.: Electron flow from PSII to PSI under high light is controlled by PGR5 but not by PSBS. – Front. Plant Sci. 6: 521, 2015. 10.3389/fpls.2015.00521 PubMed DOI PMC
Townsend A.J., Ware M.A., Ruban A.V.: Dynamic interplay between photodamage and photoprotection in photosystem II. – Plant Cell Environ. 41: 1098-1112, 2018. 10.1111/pce.13107 PubMed DOI
Tula S., Shahinnia F., Melzer M. et al..: Providing an additional electron sink by the introduction of cyanobacterial flavodiirons enhances growth of A. thaliana under various light intensities. – Front. Plant Sci. 11: 902, 2020. 10.3389/fpls.2020.00902 PubMed DOI PMC
Tyystjärvi E., Aro E.-M.: The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. – PNAS 93: 2213-2218, 1996. 10.1073/pnas.93.5.2213 PubMed DOI PMC
Vass I.: Molecular mechanisms of photodamage in the Photosystem II complex. – BBA-Bioenergetics 1817: 209-217, 2012. 10.1016/j.bbabio.2011.04.014 PubMed DOI
Vass I., Aro E.-M.: Photoinhibition of photosynthetic electron transport. – In: Renger G. (ed.): Primary Processes of Photosynthesis: Principles and Apparatus. Part 1. Pp. 393-425. RSC Publishing, 2008.
Vass I., Kirilovsky D., Etienne A.-L.: UV-B radiation-induced donor- and acceptor-side modifications of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. – Biochemistry 38: 12786-12794, 1999. 10.1021/bi991094w PubMed DOI
Vass I., Styring S., Hundal T. et al..: Reversible and irreversible intermediates during photoinhibition of photosystem II: Stable reduced QA species promote chlorophyll triplet formation. – PNAS 89: 1408-1412, 1992. 10.1073/pnas.89.4.1408 PubMed DOI PMC
Vass I., Szilárd A., Sicora C.: Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus. – In: Pessarakli M. (ed.): Handbook of Photosynthesis. 2nd Edition. Pp. 827-843. CRC Press, Boca Raton: 2005. https://www.researchgate.net/publication/268374096_43_Adverse_Effects_of_UV-B_Light_on_the_Structure_and_Function_of_the_Photosynthetic_Apparatus
Vicino P., Carrillo J., Gómez R. et al..: Expression of flavodiiron proteins Flv2-Flv4 in chloroplasts of Arabidopsis and tobacco plants provides multiple stress tolerance. – Int. J. Mol. Sci. 22: 1178, 2021. 10.3390/ijms22031178 PubMed DOI PMC
Vishwakarma A., Tetali S.D., Selinski J. et al..: Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana. – Ann. Bot.-London 116: 555-569, 2015. 10.1093/aob/mcv122 PubMed DOI PMC
Wada S., Yamamoto H., Suzuki Y. et al..: Flavodiiron protein substitutes for cyclic electron flow without competing CO2 assimilation in rice. – Plant Physiol. 176: 1509-1518, 2018. 10.1104/pp.17.01335 PubMed DOI PMC
Walker J.E.: The ATP synthase: the understood, the uncertain and the unknown. – Biochem. Soc. T. 41: 1-16, 2013. 10.1042/BST20110773 PubMed DOI
Wang F., Sun H., Rong L. et al..: Genotypic-dependent alternation in D1 protein turnover and PSII repair cycle in psf mutant rice (Oryza sativa L.), as well as its relation to light-induced leaf senescence. – Plant Growth Regul. 95: 121-136, 2021. 10.1007/s10725-021-00730-8 DOI
Wang L., Kim C., Xu X. et al..: Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. – PNAS 113: E3792-E3800, 2016. 10.1073/pnas.1603562113 PubMed DOI PMC
Watson S.J., Sowden R.G., Jarvis P.: Abiotic stress-induced chloroplast proteome remodelling: a mechanistic overview. – J. Exp. Bot. 69: 2773-2781, 2018. 10.1093/jxb/ery053 PubMed DOI
Wei Z., Cady C.W., Brudvig G.W., Hou H.J.M.: Photodamage of a Mn (III/IV)-oxo mixed-valence compound and photosystem II: evidence that a high-valent manganese species is responsible for UV-induced photodamage of the oxygen-evolving complex in photosystem II. – J. Photoch. Photobio. B 104: 118-125, 2011. 10.1016/j.jphotobiol.2011.01.017 PubMed DOI
Welc R., Luchowski R., Kluczyk D. et al..: Mechanisms shaping the synergism of zeaxanthin and PsbS in photoprotective energy dissipation in the photosynthetic apparatus of plants. – Plant J. 107: 418-433, 2021. 10.1111/tpj.15297 PubMed DOI
Werner C., Correia O., Beyschlag W.: Characteristic patterns of chronic and dynamic photoinhibition of different functional groups in a Mediterranean ecosystem. – Funct. Plant Biol. 29: 999-1011, 2002. 10.1071/pp01143 PubMed DOI
Woodson J.D.: Chloroplast quality control – balancing energy production and stress. – New Phytol. 212: 36-41, 2016. 10.1111/nph.14134 PubMed DOI
Wu J., Rong L., Lin W. et al..: Functional redox links between lumen thiol oxidoreductase1 and serine/threonine-protein kinase STN7. – Plant Physiol. 186: 964-976, 2021. 10.1093/plphys/kiab091 PubMed DOI PMC
Xiao Y., Savchenko T., Baidoo E.E.K. et al..: Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. – Cell 149: 1525-1535, 2012. 10.1016/j.cell.2012.04.038 PubMed DOI
Yadav S.K., Khatri K., Rathore M.S., Jha B.: Introgression of Ufcyt c6, a thylakoid lumen protein from a green seaweed Ulva fasciata Delile enhanced photosynthesis and growth in tobacco. – Mol. Biol. Rep. 45: 1745-1758, 2018. 10.1007/s11033-018-4318-1 PubMed DOI
Yokono M.A., Takabayashi S., Akimoto S., Tanaka A.: A megacomplex composed of both photosystem reaction centres in higher plants. – Nat. Commun. 6: 6675, 2015. 10.1038/ncomms7675 PubMed DOI
Zavafer A., Chow W.S., Cheah M.H.: The action spectrum of Photosystem II photoinactivation in visible light. – J. Photoch. Photobio. B 152: 247-260, 2015. 10.1016/j.jphotobiol.2015.08.007 PubMed DOI
Zavafer A., Mancilla C.: Concepts of photochemical damage of Photosystem II and the role of excessive excitation. – J. Photoch. Photobio. C 47: 100421, 2021. 10.1016/j.jphotochemrev.2021.100421 DOI
Zhang D.W., Xu F., Zhang Z.W. et al..: Effects of light on cyanide-resistant respiration and alternative oxidase function in Arabidopsis seedlings. – Plant Cell Environ. 33: 2121-2131, 2010. 10.1111/j.1365-3040.2010.02211.x PubMed DOI
Zhang M., Zeng Y., Peng R. et al..: N6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants. – Nat. Commun. 13: 7441, 2022. 10.1038/s41467-022-35146-z PubMed DOI PMC
Zulfugarov I.S., Tovuu A., Eu Y.-J. et al..: Production of superoxide from Photosystem II in a rice (Oryza sativa L.) mutant lacking PsbS. – BMC Plant Biol. 14: 242, 2014. 10.1186/s12870-014-0242-2 PubMed DOI PMC