The combined effect of Cd and high light stress on the photochemical processes in Arabidopsis thaliana
Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40766736
PubMed Central
PMC12319939
DOI
10.32615/ps.2025.020
PII: PS63182
Knihovny.cz E-zdroje
- Klíčová slova
- OJIP, cadmium, chlorophyll fluorescence, heavy metal, nonphotochemical quenching, photoinhibition, protective mechanisms,
- MeSH
- Arabidopsis * účinky léků účinky záření fyziologie metabolismus MeSH
- chlorofyl metabolismus MeSH
- fotochemické procesy * účinky léků účinky záření MeSH
- fotosyntéza * účinky léků účinky záření MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- fyziologický stres * účinky léků MeSH
- kadmium * toxicita farmakologie MeSH
- oxidační stres účinky léků účinky záření MeSH
- reaktivní formy kyslíku metabolismus MeSH
- světlo * MeSH
- transport elektronů účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- fotosystém II (proteinový komplex) MeSH
- kadmium * MeSH
- reaktivní formy kyslíku MeSH
The adverse effects of cadmium on plants are accompanied by a limitation of photosynthesis, due to the production of reactive oxygen species, leading to oxidative damage to PSII and the disruption of key protein complexes involved in photosynthetic pathways. We investigated the effects of cadmium stress combined with high light in Arabidopsis thaliana, as dependent on the cadmium dose applied. The aim was to investigate the combined effect of the two stressors on photochemical processes with the hypothesis that Cd stress enhances the negative effect of the high light. The plants were treated with 0, 1, 10, and 50 mM Cd added as CdCl2 solution to soil (potted plants), and a high light stress. The highest dose (50 mM) induced a significant oxidative stress, reduced chlorophyll fluorescence parameters related to PSII functioning and increased energy dissipation mechanisms. Elevated Cd contents impaired the electron transport and limited PSII efficiency. OJIP analysis revealed a Cd-induced K- and L-band appearance documenting LHC-PSII limitation. The combination of Cd and high light stress resulted in the photoinhibition effects in PSII, i.e., a decrease in potential and effective yields of PSII.
Zobrazit více v PubMed
Alloway B.J.: Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability. Pp. 614. Springer, Dordrecht: 2013. 10.1007/978-94-007-4470-7 DOI
Baldantoni D., Morra L., Zaccardelli M., Alfani A.: Cadmium accumulation in leaves of leafy vegetables. – Ecotox. Environ. Safe. 123: 89-94, 2016. 10.1016/j.ecoenv.2015.05.019 PubMed DOI
Barták M., Hájek J., Halıcı M.G. et al. : Resistance of primary photosynthesis to photoinhibition in Antarctic lichen PubMed DOI PMC
Bashir H., Qureshi M.I., Ibrahim M.M., Iqbal M.: Chloroplast and photosystems: impact of cadmium and iron deficiency. – Photosynthetica 53: 321-335, 2015. 10.1007/s11099-015-0152-z DOI
Bednaříková M., Váczi P., Lazár D., Barták M.: Photosynthetic performance of Antarctic lichen PubMed DOI
Bellini E., Maresca V., Betti C. et al. : The moss PubMed DOI PMC
Ben Ammar W., Mediouni C., Tray B. et al. : Glutathione and phytochelatin contents in tomato plants exposed to cadmium. – Biol. Plantarum 52: 314-320, 2008. 10.1007/s10535-008-0065-9 DOI
Bharagava R.N., Saxena G.: Bioremediation of Industrial Waste for Environmental Safety. Volume II: Biological Agents and Methods for Industrial Waste Management. Pp. 538. Springer, Singapore: 2020. 10.1007/978-981-13-3426-9 DOI
Bi Y., Chen W., Zhang W. et al. : Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in PubMed DOI
Bussotti F., Kalaji M.H., Desotgiu R. et al. : Misurare la vitalità delle piante per mezzo della fluorescenza della clorofilla. [Measuring the vitality of plants using chlorophyll fluorescence.] Pp. 138. Firenze University Press, Florence: 2012. [In Italian] 10.36253/978-88-6655-216-1 DOI
Cai Y., Qi Y., Zhu S.Q. et al. : Effects of cadmium stress on photosynthetic apparatus of tobacco. – Appl. Ecol. Env. Res. 21: 1917-1929, 2023. 10.15666/aeer/2103_19171929 DOI
Chen X., Tao H., Wu Y., Xu X.: Effects of cadmium on metabolism of photosynthetic pigment and photosynthetic system in DOI
Chen Z., Song S., Wen Y. et al. : Toxicity of Cu (II) to the green alga PubMed DOI
Cho U.-H., Seo N.-H.: Oxidative stress in DOI
Chtouki M., Naciri R., Soulaimani A. et al. : Effect of cadmium and phosphorus interaction on tomato: chlorophyll DOI
DalCorso G., Farinati S., Furini A.: Regulatory networks of cadmium stress in plants. – Plant Signal. Behav. 5: 663-667, 2010. 10.4161/psb.5.6.11425 PubMed DOI PMC
Danso O.P., Acheampong A., Zhang Z. et al. : The management of Cd in rice with biochar and selenium: effects, efficiency, and practices. – Carbon Res. 2: 41, 2023. 10.1007/s44246-023-00073-1 DOI
Deng G., Li M., Li H. et al. : Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern ( DOI
Didaran F., Kordrostami M., Ghasemi-Soloklui A.A. et al. : The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors. – J. Photoch. Photobio. B 259: 113004, 2024. 10.1016/j.jphotobiol.2024.113004 PubMed DOI
Dobrikova A.G., Apostolova E.L., Hanć A. et al. : Cadmium toxicity in PubMed DOI
El Rasafi T., Oukarroum A., Haddioui A. et al. : Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies. – Crit. Rev. Env. Sci. Tec. 52: 675-726, 2022. 10.1080/10643389.2020.1835435 DOI
Faizan M., Alam P., Hussain A. et al. : Phytochelatins: key regulator against heavy metal toxicity in plants. – Plant Stress 11: 100355, 2024. 10.1016/j.stress.2024.100355 DOI
Faizan M., Bhat J.A., Hessini K. et al. : Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on PubMed DOI
Faller P., Kienzler K., Krieger-Liszkay A.: Mechanism of Cd PubMed DOI
Faseela P., Sinisha A.K., Brestič M., Puthur J.T.: Chlorophyll DOI
Geiken B., Masojídek J., Rizzuto M. et al. : Incorporation of [ DOI
Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. – BBA-Gen. Subjects 990: 87-92, 1989. 10.1016/S0304-4165(89)80016-9 DOI
Gharbi F., Zribi L., Daly A.B. et al. : Photosynthetic responses of tomato leaves to salt and cadmium stresses: growth and chlorophyll DOI
Gonzalez-Mendoza D., Gil F.E., Santamaría J.M., Zapata-Perez O.: Multiple effects of cadmium on the photosynthetic apparatus of PubMed DOI
Guo Y., Lu Y., Goltsev V. et al. : Comparative effect of tenuazonic acid, diuron, bentazone, dibromothymoquinone and methyl viologen on the kinetics of Chl PubMed DOI
Gururani M.A., Upadhyaya C.P., Strasser R.J. et al. : Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. – Plant Sci. 198: 7-16, 2013. 10.1016/j.plantsci.2012.09.014 PubMed DOI
Hakmaoui A., Ater M., Bóka K., Barón M.: Copper and cadmium tolerance, uptake and effect on chloroplast ultrastructure. Studies on PubMed DOI
Han Z., Wei X., Wan D. et al. : Effect of molybdenum on plant physiology and cadmium uptake and translocation in rape ( PubMed DOI PMC
Haq S.I.U., Benita M.B., de Caralt S.: Photoinhibition and recovery of primary photosynthesis in Antarctic and subantarctic lichens. Analysis of interspecific differences. – Czech Polar Rep. 14: 51-76, 2024. 10.5817/CPR2024-1-4 DOI
Hayat U., din K.u., Haider A. et al. : Salicylic acid-induced antioxidant defense system alleviates cadmium toxicity in wheat. – J. Soil Sci. Plant Nutr. 24: 3068-3086, 2024. 10.1007/s42729-024-01732-x DOI
He L., Yue Z., Chen C. et al. : Enhancing iron uptake and alleviating iron toxicity in wheat by plant growth-promoting bacteria: theories and practices. – Int. J. Agric. Biol. 23: 190-196, 2020. https://www.researchgate.net/publication/337674542_Enhancing_Iron_uptake_and_Alleviating_Iron_Toxicity_in_Wheat_by_Plant_Growth-promoting_Bacteria_Theories_and_Practices
Hernandez H.P.V.: Effects of heavy metals ions on primary photosynthetic processes in Antarctic filamentous alga DOI
Hikosaka K.: Photosynthesis, chlorophyll fluorescence and photochemical reflectance index in photoinhibited leaves. – Funct. Plant Biol. 48: 815-826, 2021. 10.1071/FP20365 PubMed DOI
Huang X., Chen H., Chen H. et al. : Spatiotemporal heterogeneity of chlorophyll content and fluorescence response within rice ( PubMed DOI PMC
Jiang C.-D., Jiang G.-M., Wang X. et al. : Increased photosynthetic activities and thermostability of photosystem II with leaf development of elm seedlings ( DOI
Jin H., Liu B., Luo L. et al. : HYPERSENSITIVE TO HIGH LIGHT1 interacts with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 and functions in protection of photosystem II from photodamage in PubMed DOI PMC
Johnson M.P., Ruban A.V.: Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced ΔpH. – J. Biol. Chem. 286: 19973-19981, 2011. 10.1074/jbc.M111.237255 PubMed DOI PMC
Johnson M.P., Zia A., Ruban A.V.: Elevated ΔpH restores rapidly reversible photoprotective energy dissipation in PubMed DOI
Kalaji H.M., Jajoo A., Oukarroum A. et al. : The use of chlorophyll fluorescence kinetics analysis to study the performance of photosynthetic machinery in plants. – In: Ahmad P., Rasool S. (ed.): Emerging Technologies and Management of Crop Stress Tolerance: A Sustainable Approach. Pp. 347-384. Academic Press, San Diego: 2014. 10.1016/B978-0-12-800875-1.00015-6 DOI
Kalaji H.M., Loboda T.: Photosystem II of barley seedlings under cadmium and lead stress. – Plant Soil Environ. 53: 511-516, 2007. 10.17221/2191-PSE DOI
Kang Y., Qin H., Wang G. et al. : Selenium nanoparticles mitigate cadmium stress in tomato through enhanced accumulation and transport of sulfate/selenite and polyamines. – J. Agr. Food Chem. 72: 1473-1486, 2024. 10.1021/acs.jafc.3c07504 PubMed DOI PMC
Krall J.P., Edwards G.E.: Relationship between photosystem II activity and CO DOI
Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluorescence parameters for the determination of Q PubMed DOI
Krüger G.H.J., De Villiers M.F., Strauss A.J. et al. : Inhibition of photosystem II activities in soybean ( DOI
Küpper H., Parameswaran A., Leitenmaier B. et al. : Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator PubMed DOI
Li J., Yi C., Zhang C. et al. : Effects of light quality on leaf growth and photosynthetic fluorescence of PubMed DOI PMC
Li X.-P., Björkman O., Shih C. et al. : A pigment-binding protein essential for regulation of photosynthetic light harvesting. – Nature 403: 391-395, 2000. 10.1038/35000131 PubMed DOI
Lichtenthaler H.K., Buschmann C., Knapp M.: How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio R DOI
Lin Y.-F., Aarts M.G.M.: The molecular mechanism of zinc and cadmium stress response in plants. – Cell. Mol. Life Sci. 69: 3187-3206, 2012. 10.1007/s00018-012-1089-z PubMed DOI PMC
Linger P., Ostwald A., Haensler J.: DOI
Liu L., Li W., Song W., Guo M.: Remediation techniques for heavy metal-contaminated soils: principles and applicability. – Sci. Total Environ. 633: 206-219, 2018. 10.1016/j.scitotenv.2018.03.161 PubMed DOI
Maksymiec W., Wójcik M., Krupa Z.: Variation in oxidative stress and photochemical activity in PubMed DOI
Malnoë A.: Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. – Environ. Exp. Bot. 154: 123-133, 2018. 10.1016/j.envexpbot.2018.05.005 DOI
Manzoor H., Mehwish, Bukhat S. et al. : Methyl jasmonate alleviated the adverse effects of cadmium stress in pea ( PubMed DOI PMC
Martínez-Peñalver A., Graña E., Reigosa M.J., Sánchez-Moreiras A.M.: The early response of DOI
Maslać A., Maslać M., Tkalec M.: The impact of cadmium on photosynthetic performance and secondary metabolites in the lichens
Matsuoka T., Onozawa A., Sonoike K., Kore-eda S.: Crassulacean acid metabolism induction in PubMed DOI PMC
Merlos Rodrigo M.A., Anjum N.A., Heger Z. et al. : Role of phytochelatins in redox caused stress in plants and animals. – In: Shanker A.K., Shanker C. (ed.): Abiotic and Biotic Stress in Plants: Recent Advances and Future Perspectives. InTech, London: 2016. 10.5772/62160 DOI
Mou R.X., Cao Z.Y., Lin X.Y. et al. : Characterization of the phytochelatins and their derivatives in rice exposed to cadmium based on high-performance liquid chromatography coupled with data-dependent hybrid linear ion trap orbitrap mass spectrometry. – Rapid Commun. Mass Spectrom. 30: 1891-1900, 2016. 10.1002/rcm.7669 PubMed DOI
Moustakas M., Dobrikova A., Sperdouli I. et al. : Photosystem II tolerance to excess zinc exposure and high light stress in DOI
Moustakas M., Hanć A., Dobrikova A. et al. : Spatial heterogeneity of cadmium effects on PubMed DOI PMC
Naciri R., Chtouki M., Oukarroum A. et al. : Mechanisms of cadmium mitigation in tomato plants under orthophosphate and polyphosphate fertilization regimes. – Ecotox. Environ. Safe. 274: 116219, 2024. 10.1016/j.ecoenv.2024.116219 PubMed DOI
Nishijo M., Nakagawa H., Suwazono Y. et al. : Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case – control analysis of a follow-up study in Japan. – BMJ Open 7: e015694, 2017. 10.1136/bmjopen-2016-015694 PubMed DOI PMC
Orekhova A., Barták M., Casanova-Katny A., Hájek J.: Resistance of Antarctic moss PubMed DOI
Pagliano C., Raviolo M., Dalla Vecchia F. et al. : Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice ( PubMed DOI
Parmar P., Kumari N., Sharma V.: Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. – Bot. Stud. 54: 45, 2013. 10.1186/1999-3110-54-45 PubMed DOI PMC
Peng J.-S., Gong J.-M.: Vacuolar sequestration capacity and long-distance metal transport in plants. – Front. Plant Sci. 5: 19, 2014. 10.3389/fpls.2014.00019 PubMed DOI PMC
Piotto F.A., Carvalho M.E.A., Souza L.A. et al. : Estimating tomato tolerance to heavy metal toxicity: cadmium as study case. – Environ. Sci. Pollut. R. 25: 27535-27544, 2018. 10.1007/s11356-018-2778-4 PubMed DOI
Pogson B.J., Niyogi K.K., Björkman O., DellaPenna D.: Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in PubMed DOI PMC
Radeva V., Petrov V., Minkov I. et al. : Effect of cadmium on DOI
Rafique M., Noreen Z., Usman S. et al. Mitigation of adverse effect of cadmium toxicity in lettuce ( PubMed DOI PMC
Roháček K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. – Photosynthetica 40: 13-29, 2002. 10.1023/A:1020125719386 DOI
Shabbir A., Shah A.A., Usman S. et al. : Efficacy of malic and tartaric acid in mitigation of cadmium stress in PubMed DOI PMC
Sharma A., Kumar V., Shahzad B. et al. : Photosynthetic response of plants under different abiotic stresses: a review. – J. Plant Growth Regul. 39: 509-531, 2020. 10.1007/s00344-019-10018-x DOI
Sharma N., Nagar S., Thakur M. et al. : Photosystems under high light stress: throwing light on mechanism and adaptation. – Photosynthetica 61: 250-263, 2023. 10.32615/ps.2023.021 PubMed DOI PMC
Shay P.-E., Kubien D.S.: Field analysis of photoprotection in co-occurring cool climate C PubMed DOI
Singh H., Kumar D., Soni V.: Performance of chlorophyll PubMed DOI PMC
Singh H., Kumar D., Soni V.: Impact of mercury on photosynthetic performance of PubMed DOI PMC
Song Y., Jin L., Wang X.: Cadmium absorption and transportation pathways in plants. – Int. J. Phytoremediat. 19: 133-141, 2017. 10.1080/15226514.2016.1207598 PubMed DOI
Soni S., Jha A.B., Dubey R.S., Sharma P.: Mitigating cadmium accumulation and toxicity in plants: the promising role of nanoparticles. – Sci. Total Environ. 912: 168826, 2024. 10.1016/j.scitotenv.2023.168826 PubMed DOI
Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll DOI
Szopiński M., Sitko K., Gieroń Ż. et al. : Toxic effects of Cd and Zn on the photosynthetic apparatus of the PubMed DOI PMC
Tietz S., Hall C.C., Cruz J.A., Kramer D.M.: NPQ PubMed DOI
Todorenko D., Volgusheva A., Timofeev N. et al. : Multiple PubMed DOI
Tomar R.S., Jajoo A.: Photosynthetic response in wheat plants caused by the phototoxicity of fluoranthene. – Funct. Plant Biol. 46: 725-731, 2019. 10.1071/fp18328 PubMed DOI
Van Belleghem F., Cuypers A., Semane B. et al. : Subcellular localization of cadmium in roots and leaves of PubMed DOI
Vanhoudt N., Horemans N., Biermans G. et al. : Uranium affects photosynthetic parameters in DOI
Verma N., Prasad S.M.: Interplay of hydrogen peroxide and nitric oxide: systemic regulation of photosynthetic performance and nitrogen metabolism in cadmium challenged cyanobacteria. – Physiol. Mol. Biol. Pla. 27: 2181-2199, 2021. 10.1007/s12298-021-01083-2 PubMed DOI PMC
Waheed A., Zhang Q., Xu H. et al. : Mitigation of cadmium stress by salicylic acid: physiological and biochemical responses in NM-2006, NM-92, and Mash-88 mung bean varieties. – J. Hazard. Mater. 485: 136878, 2025. 10.1016/j.jhazmat.2024.136878 PubMed DOI
Wang C., Gu Q., Zhao L. et al. : Photochemical efficiency of photosystem II in inverted leaves of soybean [ PubMed DOI PMC
Wang H., Wang X.-Q., Zeng Z.-L. et al. : Photosynthesis under fluctuating light in the CAM plant PubMed DOI
Wang Q., Xie D., Peng L. et al. : Phytotoxicity of atrazine combined with cadmium on photosynthetic apparatus of the emergent plant species PubMed DOI
Wang S., Duo J., Wufuer R. et al. : The binding ability of mercury (Hg) to Photosystem I and II explained the difference in its toxicity on the two photosystems of PubMed DOI PMC
Wang S., Wufuer R., Duo J. et al. : Cadmium caused different toxicity to Photosystem I and Photosystem II of freshwater unicellular algae PubMed DOI PMC
Wei J., Huang H., Zhang S. et al. : Functions of violaxanthin de-epoxidase-related (VDR) in the photoprotective response to high-light stress. – Plant Growth Regul. 104: 187-200, 2024. 10.1007/s10725-024-01158-6 DOI
Wen X., Qiu N., Lu Q., Lu C.: Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte PubMed DOI
White A.J., Critchley C.: Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. – Photosynth. Res. 59: 63-72, 1999. 10.1023/A:1006188004189 DOI
Wodala B., Eitel G., Gyula T.N. et al. : Monitoring moderate Cu and Cd toxicity by chlorophyll fluorescence and P700 absorbance in pea leaves. – Photosynthetica 50: 380-386, 2012. 10.1007/s11099-012-0045-3 DOI
Wu Y., Ma L., Liu Q. et al. : The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant PubMed DOI
Xin J., Zhao X.H., Tan Q.L. et al. : Effects of cadmium exposure on the growth, photosynthesis, and antioxidant defense system in two radish ( DOI
Yang X., Li J., Yang Z. et al. : Plant growth promoting bacteria and citric acid promote growth and cadmium phytoremediation in ryegrass. – Int. J. Phytoremediat. 26: 382-392, 2024. 10.1080/15226514.2023.2243631 PubMed DOI
Zhao H., Wang W., Fan Y. et al. : Physiological, photosynthetic characteristic and transcriptome analysis of PubMed DOI PMC
Zhou L., Zhou L., Wu H. et al. : Application of chlorophyll fluorescence analysis technique in studying the response of lettuce ( PubMed DOI PMC
Zhou R., Xu J., Li L. et al. : Exploration of the effects of cadmium stress on photosynthesis in PubMed DOI PMC
Zhou W., Juneau P., Qiu B.: Growth and photosynthetic responses of the bloom-forming cyanobacterium PubMed DOI
Zhou X., El-Sappah A.H., Khaskhoussi A. et al. : Nanoparticles: a promising tool against environmental stress in plants. – Front. Plant Sci. 15: 1509047, 2025. 10.3389/fpls.2024.1509047 PubMed DOI PMC
Zsiros O., Nagy G., Patai R. et al. : Similarities and differences in the effects of toxic concentrations of cadmium and chromium on the structure and functions of thylakoid membranes in PubMed DOI PMC