Methyl Jasmonate Alleviated the Adverse Effects of Cadmium Stress in Pea (Pisum sativum L.): A Nexus of Photosystem II Activity and Dynamics of Redox Balance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35401592
PubMed Central
PMC8987981
DOI
10.3389/fpls.2022.860664
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidants, cadmium toxicity, methyl jasmonate, oxidative stress, photosystem II,
- Publikační typ
- časopisecké články MeSH
The accumulation of cadmium (Cd) in leaves reduces photosynthetic capacity by degrading photosynthetic pigments, reducing photosystem II activity, and producing reactive oxygen species (ROS). Though it was demonstrated that the application of Methyl Jasmonate (MeJA) induces heavy metal (HM) stress tolerance in plants, its role in adjusting redox balance and photosynthetic machinery is unclear. In this study, the role of MeJA in modulating photosystem II (PSII) activity and antioxidant defense system was investigated to reduce the toxic effects of Cd on the growth of pea (Pisum sativum L.) cultivars. One-week-old seedlings of three pea varieties were subjected to Cd stress (0, 50, 100 μm), and MeJA (0, 1, 5, 10 μm) was applied as a foliar spray for 2 weeks. Cadmium stress reduced the growth of all three pea varieties. Cadmium stress decreased photosynthetic pigments [Chl a (58.15%), Chl b (48.97%), total Chl (51.9%) and carotenoids (44.01%)] and efficiency of photosystem II [Fv/Fm (19.52%) and Y(II; 67.67%)], while it substantially increased Cd accumulation along with an increase in ROS (79.09%) and lipid peroxidation (129.28%). However, such adverse effects of Cd stress varied in different pea varieties. Exogenous application of MeJA increased the activity of a battery of antioxidant enzymes [superoxide dismutase (33.68%), peroxidase (29.75%), and catalase (38.86%)], improved photosynthetic pigments and PSII efficiency. This led to improved growth of pea varieties under Cd stress, such as increased fresh and dry weights of shoots and roots. In addition, improvement in root biomass by MeJA was more significant than that of shoot biomass. Thus, the mitigating effect of MeJA was attributed to its role in cellular redox balance and photosynthetic machinery of pea plants when exposed to Cd stress.
Crop Science Institute of Crop Science and Resource Conservation University of Bonn Bonn Germany
Department of Agronomy Faculty of Agriculture Kafrelsheikh University Kafr El Shaikh Egypt
Department of Agronomy Ghazi University Dera Ghazi Khan Pakistan
Department of Biological Sciences Nile University of Nigeria Abuja Nigeria
Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
Institute of Pure and Applied Biology Bahauddin Zakariya University Multan Pakistan
Laboratory Slovak University of Agriculture in Nitradisabled Nitra Slovakia
Zobrazit více v PubMed
Ahmad P., Abd Allah E., Hashem A., Sarwat M., Gucel S. (2016). Exogenous application of selenium mitigates cadmium toxicity in Brassica juncea L.(Czern & Cross) by up-regulating antioxidative system and secondary metabolites. J. Plant Growth Regul. 35, 936–950. doi: 10.1007/s00344-016-9592-3 DOI
Ahmad P., Alyemeni M. N., Wijaya L., Alam P., Ahanger M. A., Alamri S. A. (2017). Jasmonic acid alleviates negative impacts of cadmium stress by modifying osmolytes and antioxidants in faba bean (Vicia faba L.). Arch. Agron. Soil Sci. 63, 1889–1899. doi: 10.1080/03650340.2017.1313406 DOI
Ahmad A., Aslam Z., Iqbal N., Idrees M., Bellitürk K., Rehman S., et al. . (2019). Effect of exogenous application of osmolytes on growth and yield of wheat under drought conditions. J. Environ. Agric. Sci. 21, 6–13.
Ahmad P., Nabi G., Ashraf M. (2011). Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S. Afr. J. Bot. 77, 36–44. doi: 10.1016/j.sajb.2010.05.003 DOI
Ananieva E. A., Christov K. N., Popova L. P. (2004). Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. J. Plant Physiol. 161, 319–328. doi: 10.1078/0176-1617-01022 PubMed DOI
Armstrong D. (1998). Free Radical and Antioxidant Protocols. Totowa, NJ: Springer. PubMed
Askari-Khorasgani O., Rehmani M. I. A., Wani S. H., Kumar A. (2021). “Osmotic stress: an outcome of drought and salinity,” in Handbook of Plant and Crop Physiology (Baca Raton, FL: CRC Press; ), 445–464.
Athar H. R., Ashraf M. (2005). “Photosynthesis under drought stress,” in Handbook of Photosynthesis. 2nd Edn. ed. Pessarakli M.. (New York, USA: CRC press; ), 795–810.
Athar H. U. R., Zafar Z. U., Ashraf M. (2015). Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. J. Agron. Crop Sci. 201, 428–442. doi: 10.1111/jac.12120 DOI
Attaran E., Major I. T., Cruz J. A., Rosa B. A., Koo A. J. K., Chen J., et al. . (2014). Temporal dynamics of growth and photosynthesis suppression in response to Jasmonate signaling. Plant Physiol. 165, 1302–1314. doi: 10.1104/pp.114.239004, PMID: PubMed DOI PMC
Ayyaz A., Farooq M. A., Dawood M., Majid A., Javed M., Athar H. U. R., et al. . (2021). Exogenous melatonin regulates chromium stress-induced feedback inhibition of photosynthesis and antioxidative protection in Brassica napus cultivars. Plant Cell Rep. 40, 2063–2080. doi: 10.1007/s00299-021-02769-3, PMID: PubMed DOI
Baryla A., Carrier P., Franck F., Coulomb C., Sahut C., Havaux M. (2001). Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212, 696–709. doi: 10.1007/s004250000439, PMID: PubMed DOI
Bukhat S., Manzoor H., Zafar Z. U., Azeem F., Rasul S. (2020). Salicylic acid induced photosynthetic adaptability of Raphanus sativus to salt stress is associated with antioxidant capacity. J. Plant Growth Regul. 39, 809–822. doi: 10.1007/s00344-019-10024-z DOI
Bukhat S., Shah T., Manzoor H., Rasul S., Athar H. U. R., Saeed F. (2021). “Jasmonates: debatable role in temperature stress tolerance,” in Plant Growth Regulators for Climate-Smart Agriculture. eds. Fahad S., Sonmez O., Saud S., Wang D., Wu C., Adnan M. (Turan. (USA: CRC Press; ), 224.
Butt U. R., Naz R., Nosheen A., Yasmin H., Keyani R., Hussain I., et al. . (2019). Changes in pathogenesis-related gene expression in response to bioformulations in the apoplast of maize leaves against Fusarium oxysporum. J. Plant Interact. 14, 61–72. doi: 10.1080/17429145.2018.1550217 DOI
Chen J., Yan Z., Li X. (2014). Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotoxicol. Environ. Saf. 104, 349–356. doi: 10.1016/j.ecoenv.2014.01.022, PMID: PubMed DOI
Cherif J., Mediouni C., Ammar W. B., Jemal F. (2011). Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (solarium lycopersicum). J. Environ. Sci. 23, 837–844. doi: 10.1016/S1001-0742(10)60415-9 PubMed DOI
Dhindsa R., Plumb-Dhindsa P., Thorpe T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101. doi: 10.1093/jxb/32.1.93 DOI
Dobrikova A. G., Apostolova E. L., Hanć A., Yotsova E., Borisova P., Sperdouli I., et al. . (2021). Cadmium toxicity in Salvia sclarea L.: an integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. Ecotoxicol. Environ. Saf. 209:111851. doi: 10.1016/j.ecoenv.2020.111851, PMID: PubMed DOI
Farid M., Ali S., Rizwan M., Ali Q., Saeed R., Nasir T., et al. . (2018). Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid. Ecotoxicol. Environ. Saf. 151, 255–265. doi: 10.1016/j.ecoenv.2018.01.017, PMID: PubMed DOI
Farooq M. A., Zhang K., Islam F., Wang J., Athar H. U., Nawaz A., et al. . (2018). Physiological and iTRAQ-based quantitative proteomics analysis of methyl Jasmonate-induced tolerance in Brassica napus Under arsenic stress. Proteomics 18:1700290. doi: 10.1002/pmic.201700290 PubMed DOI
Foyer C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 154, 134–142. doi: 10.1016/j.envexpbot.2018.05.003, PMID: PubMed DOI PMC
Foyer C. H., Neukermans J., Queval G., Noctor G., Harbinson J. (2012). Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot. 63, 1637–1661. doi: 10.1093/jxb/ers013 PubMed DOI
Garg N., Manchanda G. (2009). ROS generation in plants: boon or bane? Plant Biosyst. 143, 81–96. doi: 10.1080/11263500802633626 DOI
Gill S. S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. doi: 10.1016/j.plaphy.2010.08.016, PMID: PubMed DOI
Goussi R., Manaa A., Derbali W., Ghnaya T., Abdelly C., Barbato R. (2018). Combined effects of NaCl and Cd2+ stress on the photosynthetic apparatus of Thellungiella salsuginea. Biochim. Biophys. Acta Bioenerg. 1859, 1274–1287. doi: 10.1016/j.bbabio.2018.10.001, PMID: PubMed DOI
Haider F. U., Virk A. L., Rehmani M. I. A., Skalicky M., Ata-ul-Karim S. T., Ahmad N., et al. . (2022). Integrated application of thiourea and biochar improves maize growth, antioxidant activity and reduces cadmium bioavailability in cadmium-contaminated soil. Front. Plant Sci. 12:809322. doi: 10.3389/fpls.2021.809322, PMID: PubMed DOI PMC
Hsu Y. T., Kao C. H. (2007). Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil 298, 231–241. doi: 10.1007/s11104-007-9357-7 DOI
Huang L., Wang Q., Zhou Q., Ma L., Wu Y., Liu Q., et al. . (2020). Cadmium uptake from soil and transport by leafy vegetables: a meta-analysis. Environ. Pollut. 264:114677. doi: 10.1016/j.envpol.2020.114677, PMID: PubMed DOI
Jackson M. L. (2005). Soil Chemical Analysis: Advanced Course. Madison: UW-Madison Libraries Parallel Press.
Kaya C., Ugurlar F., Ashraf M., Noureldeen A., Darwish H., Ahmad P. (2021). Methyl Jasmonate and sodium nitroprusside jointly alleviate cadmium toxicity in wheat (Triticum aestivum L.) plants by modifying nitrogen metabolism, cadmium detoxification, and AsA–GSH cycle. Front. Plant Sci. 12:654780. doi: 10.3389/fpls.2021.654780, PMID: PubMed DOI PMC
Keramat B., Kalantari K. M., Arvin M. J. (2009). Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). Afr. J. Microbiol. Res. 3, 240–244.
Kranner I., Colville L. (2011). Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ. Exp. Bot. 72, 93–105. doi: 10.1016/j.envexpbot.2010.05.005 DOI
Lambrev P. H., Miloslavina Y., Jahns P., Holzwarth A. R. (2012). On the relationship between non-photochemical quenching and photoprotection of photosystem II. Biochim. Biophy. Acta-Bioener. 1817, 760–769. doi: 10.1016/j.bbabio.2012.02.002, PMID: PubMed DOI
Maksymiec W., Wojcik M., Krupa Z. (2007). Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66, 421–427. doi: 10.1016/j.chemosphere.2006.06.025, PMID: PubMed DOI
Miller N., Rice-Evans C. (1996). Spectrophotometric determination of antioxidant activity. Redox Rep. 2, 161–171. doi: 10.1080/13510002.1996.11747044 PubMed DOI
Nazir M. F., Sarfraz Z., Mangi N., Shah M. K. N., Mahmood T., Mahmood T., et al. . (2021). Post-Anthesis mobilization of stem assimilates in wheat under induced stress. Sustain. For. 13:5940. doi: 10.3390/su13115940 DOI
Ogbaga C. C., Athar H.-U.-R. (2019). The need to incorporate fast and slow relaxation kinetic parameters into photosynthesis-measuring systems. Sci. Afr. 4:e00106. doi: 10.1016/j.sciaf.2019.e00106 DOI
Ogbaga C. C., Stepien P., Athar H.-U.-R., Ashraf M. (2018). Engineering Rubisco activase from thermophilic cyanobacteria into high-temperature sensitive plants. Crit. Rev. Biotechnol. 38, 559–572. doi: 10.1080/07388551.2017.1378998, PMID: PubMed DOI
Per T. S., Khan N. A., Masood A., Fatma M. (2016). Methyl Jasmonate alleviates cadmium-induced photosynthetic damages through increased s-assimilation and glutathione production in mustard. Front. Plant Sci. 7:1933. doi: 10.3389/fpls.2016.01933, PMID: PubMed DOI PMC
Qiu X., Xu Y., Xiong B., Dai L., Huang S., Dong T., et al. . (2020). Effects of exogenous methyl jasmonate on the synthesis of endogenous jasmonates and the regulation of photosynthesis in citrus. Physiol. Plant. 170, 398–414. doi: 10.1111/ppl.13170, PMID: PubMed DOI
Rady M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci. Hortic. 129, 232–237. doi: 10.1016/j.scienta.2011.03.035 DOI
Rizwan M., Ali S., Abbas T., Adrees M., Zia-ur-Rehman M., Ibrahim M., et al. . (2018). Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under cd stress with different water conditions. J. Environ. Manag. 206, 676–683. doi: 10.1016/j.jenvman.2017.10.035, PMID: PubMed DOI
Romero-Puertas M., Rodríguez-Serrano M., Corpas F., Gomez M. D., Del Rio L., Sandalio L. (2004). Cadmium-induced subcellular accumulation of O2·− and H2O2 in pea leaves. Plant Cell Environ. 27, 1122–1134. doi: 10.1111/j.1365-3040.2004.01217.x DOI
Ruban A. V., Johnson M. P., Duffy C. D. (2012). The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta-Bioener. 1817, 167–181. doi: 10.1016/j.bbabio.2011.04.007, PMID: PubMed DOI
Schreiber U., Klughammer C. (2008). Non-photochemical fluorescence quenching and quantum yields in PS I and PS II: analysis of heat-induced limitations using Maxi-Imaging-PAM and Dual-PAM-100. PAM Application Notes 1, 15–18., PMID: PubMed
Shahzad A., Qin M., Elahie M., Naeem M., Bashir T., Yasmin H., et al. . (2021). Bacillus pumilus induced tolerance of maize (Zea mays L.) against cadmium (cd) stress. Sci. Rep. 11, 17196. doi: 10.1038/s41598-021-96786-7, PMID: PubMed DOI PMC
Shahzadi A. K., Bano H., Ogbaga C. C., Ayyaz A., Parveen R., Zafar Z. U., et al. . (2021). Coordinated impact of ion exclusion, antioxidant and photosynthetic potential in salt tolerance of Luffa acutangula (L.) Roxb. (ridge gourd). Plant Physiol. Biochem. 167, 517–528. doi: 10.1016/j.plaphy.2021.08.017, PMID: PubMed DOI
Sirhindi G., Mir M. A., Abd-Allah E. F., Ahmad P., Gucel S. (2016). Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in Glycine max under nickel toxicity. Front. Plant Sci. 7:591. doi: 10.3389/fpls.2016.00591 PubMed DOI PMC
Taiz L., Zeiger E., Moller I. S., Murphy A. (eds.). (2015). Plant Physiology and Development. Massachusetts, USA: Sinauer Associates Inc.
Tayyab N., Naz R., Yasmin H., Nosheen A., Keyani R., Sajjad M., et al. . (2020). Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PloS One 15:e0232269. doi: 10.1371/journal.pone.0232269, PMID: PubMed DOI PMC
Tikkanen M., Grebe S. (2018). Switching off photoprotection of photosystem I – a novel tool for gradual PSI photoinhibition. Physiol. Plant. 162, 156–161. doi: 10.1111/ppl.12618, PMID: PubMed DOI
Umer Chattha M., Arif W., Khan I., Soufan W., Bilal Chattha M., Hassan M. U., et al. . (2021). Mitigation of cadmium induced oxidative stress by using organic amendments to improve the growth and yield of mash beans [Vigna mungo (L.)]. Agronomy 11:2152. doi: 10.3390/agronomy11112152 DOI
Velikova V., Yordanov I., Edreva A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151, 59–66. doi: 10.1016/S0168-9452(99)00197-1 DOI
Walia H., Wilson C., Condamine P., Liu X., Ismail A. M., Close T. J. (2007). Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ. 30, 410–421. doi: 10.1111/j.1365-3040.2006.01628.x, PMID: PubMed DOI
Wei T., Li X., Yashir N., Li H., Sun Y., Hua L., et al. . (2021). Effect of exogenous silicon and methyl jasmonate on the alleviation of cadmium-induced phytotoxicity in tomato plants. Environ. Sci. Pollut. Res. 28, 51854–51864. doi: 10.1007/s11356-021-14252-3, PMID: PubMed DOI
Wildermuth M. C., Fall R. (1996). Light-dependent isoprene emission (characterization of a thylakoid-bound isoprene synthase in Salix discolor chloroplasts). Plant Physiol. 112, 171–182. doi: 10.1104/pp.112.1.171, PMID: PubMed DOI PMC
Yan Z., Zhang W., Chen J., Li X. (2015). Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum by regulating metal uptake and antioxidative capacity. Biol. Plant. 59, 373–381. doi: 10.1007/s10535-015-0491-4 DOI
Yasir T. A., Khan A., Skalicky M., Wasaya A., Rehmani M. I. A., Sarwar N., et al. . (2021). Exogenous sodium nitroprusside mitigates salt stress in lentil (Lens culinaris Medik.) by affecting the growth, yield, and biochemical properties. Molecules 26:2576. doi: 10.3390/molecules26092576, PMID: PubMed DOI PMC
Yu X., Fei P., Xie Z., Zhang W., Zhao Q., Zhang X. (2019). Effects of methyl jasmonate on growth, antioxidants, and carbon and nitrogen metabolism of Glycyrrhiza uralensis under salt stress. Biol. Plant. 63, 89–96. doi: 10.32615/bp.2019.011 DOI
Zaid A., Mohammad F. (2018). Methyl jasmonate and nitrogen interact to alleviate cadmium stress in Mentha arvensis by regulating physio-biochemical damages and ROS detoxification. J. Plant Growth Regul. 37, 1331–1348. doi: 10.1007/s00344-018-9854-3 DOI
Zhao X.-F., Lin C., Rehmani M. I., Wang Q.-S., Wang S.-H., Hou P.-F., et al. . (2013). Effect of nitric oxide on alleviating cadmium toxicity in rice (Oryza sativa L.). J. Integr. Agric. 12, 1540–1550. doi: 10.1016/S2095-3119(13)60417-7 DOI
Zhou W., Leul M. (1999). Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul. 27, 99–104. doi: 10.1023/A:1006165603300 DOI