Exogenous Sodium Nitroprusside Mitigates Salt Stress in Lentil (Lens culinaris Medik.) by Affecting the Growth, Yield, and Biochemical Properties
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33925107
PubMed Central
PMC8125612
DOI
10.3390/molecules26092576
PII: molecules26092576
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress tolerance, antioxidant enzymes, legumes, mitigation, reactive oxygen species,
- MeSH
- antioxidancia metabolismus MeSH
- čočka chemie účinky léků fyziologie MeSH
- fyziologický stres účinky léků MeSH
- listy rostlin chemie účinky léků metabolismus MeSH
- nitroprusid farmakologie MeSH
- peroxid vodíku metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- solný stres účinky léků MeSH
- vývoj rostlin účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- nitroprusid MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku MeSH
Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.
College of Agriculture Bahauddin Zakariya University Bahadur Sub Campus Layyah Layyah 31200 Pakistan
Department of Agronomy Bahauddin Zakariya University Multan 60000 Pakistan
Department of Agronomy Faculty of Agriculture Kafrelsheikh University Kafrelsheikh 33156 Egypt
Department of Agronomy Ghazi University Dera Ghazi Khan 32200 Pakistan
Department of Agronomy MNS University of Agriculture Multan 60000 Pakistan
Department of Biology College of Science Taif University P O Box 11099 Taif 21944 Saudi Arabia
Zobrazit více v PubMed
Abdelhamid M.T., El-Masry R.R., Darwish D.S., Abdalla M.M., Oba S., Ragab R., EL-Sabagh A., EL-Kholy M.A., Omer E. Priming and Pretreatment of Seeds and Seedlings. Springer; Singapore: 2019. Mechanisms of seed priming involved in salt stress amelioration; pp. 219–251.
EL-Sabagh A., Hossain A., Barutçular C., Iqbal M.A., Islam M.S., Fahad S., Erman M. Environment, Climate, Plant and Vegetation Growth. Springer; Cham, Switzerland: 2020. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: An outlook of arid and semi-arid regions; pp. 503–533.
Islam M.S., Akhter M.M., El-Sabagh A., Liu L.Y., Nguyen N.T., Ueda A., Masaoka Y., Saneoka H. Comparative studies on growth and physiological responses to saline and alkaline stresses of Foxtail millet (Setaria italica L.) and Proso millet (Panicum miliaceum L.) Aust. J. Crop Sci. 2011;5:1269–1277.
Ali Q., Daud M.K., Haider M.Z., Ali S., Rizwan M., Aslam N., Noman A., Iqbal N., Shahzad F., Deeba F., et al. Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol. Biochem. 2017;119:50–59. doi: 10.1016/j.plaphy.2017.08.010. PubMed DOI
Yang Y., Guo Y. Unravelling salt signaling in plants. J. Integr. Plant Biol. 2018;60:796–804. PubMed
Morari F., Meggio F., Lunardon A., Scudiero E., Forestan C., Farinati S., Varotto S. Time course of biochemical, physiological, and molecular responses to field-mimicked conditions of drought, salinity, and recovery in two maize lines. Front. Plant Sci. 2015;6:314. doi: 10.3389/fpls.2015.00314. PubMed DOI PMC
Monsur M.B., Ivy N.A., Haque M.M., Hasanuzzaman M., EL-Sabagh A., Rohman M.M. Oxidative stress tolerance mechanism in rice under salinity. Phyton Int. J. Exp. Bot. 2020;89:497–517.
Ashraf M., Shahzad S.M., Imtiaz M., Rizwan M.S. Salinity effects on nitrogen metabolism in plants—Focusing on the activities of nitrogen metabolizing enzymes: A review. J. Plant Nutr. 2018;41:1065–1081. doi: 10.1080/01904167.2018.1431670. DOI
Khan H.A., Siddique K.H.M., Munir R., Colmer T.D. Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. J. Plant Physiol. 2015;182:1–12. doi: 10.1016/j.jplph.2015.05.002. PubMed DOI
Manchanda G., Garg N. Salinity and its effects on the functional biology of legumes. Acta Physiol. Plant. 2008;30:595–618. doi: 10.1007/s11738-008-0173-3. DOI
Hasan M.K., Islam M.S., Islam M.R., Ismaan H.N., EL-Sabagh A., Barutçular C., Saneoka H. Water relations and dry matter accumulation of black gram and mungbean as affected by salinity. Thai J. Agric. Sci. 2019;52:54–67.
EL-Sabagh A., Hossain A., Islam M.S., Barutçular C., Ratnasekera D., Kumar N., Meena R.S., Gharib H.S., Saneoka H., Teixeira da Silva J.A. Sustainable soybean production and abiotic stress management in saline environments: A critical review. Aust. J. Crop Sci. 2019;13:228–236. doi: 10.21475/ajcs.19.13.02.p1285. DOI
Farooq M., Hussain M., Wakeel A., Siddique K.H.M. Salt stress in maize effects resistance mechanisms and management: A review. Agron. Sustain. Dev. 2015;35:461–481. doi: 10.1007/s13593-015-0287-0. DOI
Rasool S., Ahmad A., Siddiqi T.O., Ahmad P. Changes in growth, lipid per oxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta. Physiol. Plant. 2013;35:1039–1050. doi: 10.1007/s11738-012-1142-4. DOI
Ahmad P. Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch. Agron. Soil Sci. 2010;56:575–588. doi: 10.1080/03650340903164231. DOI
Liu L., Nakamura Y., Taliman N.A., Sabagh A.E., Moghaieb R.E., Saneoka H. Differences in the growth and physiological responses of the leaves of Peucedanum japonicum and Hordeum vulgare exposed to salinity. Agriculture. 2020;10:317. doi: 10.3390/agriculture10080317. DOI
Islam M.S., Hasan M.K., Islam B., Renu N.A., Hakim M.A., Islam M.R., Chowdhury M.K., Ueda A., Saneoka H., Raza M.A., et al. Responses of water and pigments status, dry matter partitioning, seed production, and traits of yield and quality to foliar application of GA3 in Mungbean (Vigna radiata L.) Front. Agron. 2021;2:596850. doi: 10.3389/fagro.2020.596850. DOI
Patil G., Do T., Vuong T.D., Valliyodan B., Lee J.D., Chaudhary J., Shannon J.G., Nguyen H.T. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci. Rep. 2016;6:19199. doi: 10.1038/srep19199. PubMed DOI PMC
Golezani K.G., Yengabad F.M. Physiological responses of lentil (Lens culinaris Medik.) to salinity. Int. J. Agric. Crop Sci. 2012;4:531–535.
Wang B., Jiang H., Bi Y., He X., Wang Y., Zheng X., Prusky D. Preharvest multiple sprays with sodium nitroprusside promote wound healing of harvested muskmelons by activation of phenylpropanoid metabolism. Postharvest Biol. Technol. 2019;158:110988. doi: 10.1016/j.postharvbio.2019.110988. DOI
Som P.R. Nitric oxide induced resistance in tea plants against Glomerella cingulata (stoneman) spauld & schrenk. BIOINFOLET. 2020;17:336–342.
Li G., Zhu S., Wu W., Zhang C., Peng Y., Wang Q., Shi J. Exogenous nitric oxide (NO) induces disease against Monilinia fructicola through activating the phenylpropanoid pathway in peach fruit. J. Sci. Food Agric. 2017;97:3030–3038. doi: 10.1002/jsfa.8146. PubMed DOI
Lai T.F., Wang Y.Y., Li B.Q., Qin G.Z., Tian S.P. Defensive responses of tomato fruit to exogenous nitric oxide during postharvest storage. Postharvest Biol. Technol. 2011;62:127–132. doi: 10.1016/j.postharvbio.2011.05.011. DOI
Lu R., Liu Z., Shao Y., Su J., Li X., Sun F., Zhang Y., Li S., Zhang Y., Cui J., et al. Nitric oxide enhances rice resistance to rice black-streaked dwarf virus infection. Rice. 2020;13:24. doi: 10.1186/s12284-020-00382-8. PubMed DOI PMC
Hameed A., Farooq T., Hameed A., Sheikh M.A. Sodium nitroprusside mediated priming memory invokes water-deficit stress acclimation in wheat plants through physio-biochemical alterations. Plant Physiol. Biochem. 2021;160:329–340. doi: 10.1016/j.plaphy.2021.01.037. PubMed DOI
Kram N.A., Hafeez N., Farid-ul-Haq M., Ahmad A., Sadiq M., Ashraf M. Foliage application and seed priming with nitric oxide causes mitigation of salinity-induced metabolic adversaries in broccoli (Brassica oleracea L.) plants. Acta Physiol. Plant. 2020;42:155.
Lee H.J., Lee J.H., Lee S.G., An S., Lee H.S., Choi C.K., Kim S.K. Foliar application of biostimulants affects physiological responses and improves heat stress tolerance in Kimchi cabbage. Hortic. Environ. Biotechnol. 2019;60:841–851. doi: 10.1007/s13580-019-00193-x. DOI
Diao Q., Cao Y., Fan H., Zhang Y. Transcriptome analysis deciphers the mechanisms of exogenous nitric oxide action on the response of melon leaves to chilling stress. Biol. Plant. 2020;64:465–472. doi: 10.32615/bp.2020.021. DOI
Ahmad P., Alam P., Balawi T.H., Atalayan F.H., Ahanger M.A., Ashraf M. Sodium nitroprusside (SNP) improves tolerance to arsenic (As) toxicity in Vicia faba through the modifications of biochemical attributes, antioxidants, ascorbate-glutathione cycle and glyoxalase cycle. Chemosphere. 2020;244:125480. doi: 10.1016/j.chemosphere.2019.125480. PubMed DOI
Karthik S., Pavan G., Krishnan V., Sathish S., Manickavasagam M. Sodium nitroprusside enhances regeneration and alleviates salinity stress in soybean (Glycine max Merrill) Biocatal. Agric. Biotechnol. 2019 doi: 10.1016/j.bcab.2019.101173. DOI
Campos F.V., Oliveria J.A., Pereira M.G., Farnese F.S. Nitric oxide and phytohormone interactions in the response of Lactuca sativa to salinity stress. Planta. 2019;250:1475–1479. doi: 10.1007/s00425-019-03236-w. PubMed DOI
Kausar F., Shahbaz M. Interactive effect of foliar application of nitric oxide (NO) and salinity on wheat (Triticum aestivum L.) Pak. J. Bot. 2013;45:67–73.
Ahmad P., Abdel-Latif A.A., Hashem A., Abd-Allah E.F., Gucel S., Tran L.S.P. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front. Plant Sci. 2016;7:347. doi: 10.3389/fpls.2016.00347. PubMed DOI PMC
Zhang Y.Y., Liu J., Liu Y.L. Nitric oxide alleviates growth inhibition of maize seedlings under salt stress. J. Plant Physiol. Mol. Biol. 2004;30:455–459. PubMed
Manai J., Kalai T., Gouia H., Corpas F.J. Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants. J. Soil Sci. Plant Nutr. 2014;14:433–446. doi: 10.4067/S0718-95162014005000034. DOI
Habib N., Ashraf M., Shahbaz M. Effect of exogenously applied nitric oxide on some key physiological attributes of rice (Oryza sativa L.) plants under salt stress. Pak. J. Bot. 2013;45:1563–1569.
Liu S., Dong Y., Xu L., Kong J. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regul. 2013;73:67–78. doi: 10.1007/s10725-013-9868-6. DOI
Sahay S., Gupta M. An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide. 2017;67:39–52. doi: 10.1016/j.niox.2017.04.011. PubMed DOI
Mohasseli V., Sadeghi S. Exogenously applied sodium nitroprusside improves physiological attributes and essential oil yield of two drought susceptible and resistant specie of Thymus under reduced irrigation. Ind. Crop. Prod. 2019;130:130–136. doi: 10.1016/j.indcrop.2018.12.058. DOI
Yamasaki S., Dillenburg L.C. Measurements of leaf relative water content in Araucaria angustifolia. Rev. Bras. Fisiol. Veg. 1999;11:69–75.
Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968;125:189–198. doi: 10.1016/0003-9861(68)90654-1. PubMed DOI
Rao K.V.M., Sresty T.V.S. Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci. 2000;157:113–128. PubMed
Giannopolitis C.N., Ries S.K. Superoxide dismutase I. Occurrence in higher plants. J. Plant Physiol. 1977;59:309–314. doi: 10.1104/pp.59.2.309. PubMed DOI PMC
Aebi H. Catalase in vitro. Method Enzymol. 1984;105:121–126. PubMed
Chance B., Maehly A.C. Assay of catalases and peroxidases. Method Enzymol. 1995;2:764–775. PubMed
Bandeoglu E., Eyidogan F., Yucel M., Oktem H.A. Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul. 2004;42:69–77. doi: 10.1023/B:GROW.0000014891.35427.7b. DOI
Ibrahim E.A. Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 2016;192:38–46. doi: 10.1016/j.jplph.2015.12.011. PubMed DOI
Garg N., Bharti A. Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress. Mycorrhiza. 2018;28:727–746. doi: 10.1007/s00572-018-0856-6. PubMed DOI
Garg N., Manchanda G. ROS generation in plants: Boon or bane? Plant Biosyst. 2009;143:81–96. doi: 10.1080/11263500802633626. DOI
Mostofa M.G., Fujita M., Tran L.S.P. Nitric oxide mediates hydrogen peroxide- and salicylic acid-induced salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regul. 2015;77:265–277. doi: 10.1007/s10725-015-0061-y. DOI
Hasanuzzaman M., Hossain M.A., Fujita M. Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol. Rep. 2011;5:353–365. doi: 10.1007/s11816-011-0189-9. PubMed DOI
Demir M., Arif I. Effects of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius L.) Turk. J. Agric. 2003;27:221–227.
Leshem Y.Y., Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. J. Plant Physiol. 1996;148:258–263. doi: 10.1016/S0176-1617(96)80251-3. DOI
Li Y., He N., Hou J., Xu L., Liu C., Zhang J., Wang Q., Zhang X., Wu X. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front. Ecol. Evol. 2018;6:64. doi: 10.3389/fevo.2018.00064. DOI
Zeng C.L., Liu L., Wang B.R., Wu X.M., Zhou Y. Physiological effects of exogenous nitric oxide on Brassica juncea seedlings under NaCl stress. Biol. Plant. 2011;55:345–348. doi: 10.1007/s10535-011-0051-5. DOI
Habib N., Ashraf M. Effect of exogenously applied nitric oxide on water relations and ionic composition of rice (Oryza sativa L.) plants under salt stress. Pak. J. Bot. 2014;46:111–116.
Farag M., Najeeb U., Yang J., Hu Z., Fang Z.M. Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury. Plant Physiol. Biochem. 2017;111:166–173. doi: 10.1016/j.plaphy.2016.11.024. PubMed DOI
Farooq M., Gogoi N., Barthakur S., Baroowa B., Bharadwaj N., Alghamdi S.S., Siddique K.H.M. Drought stress in grain legumes during reproduction and grain filling. J. Agron. Crop Sci. 2017;203:81–102. doi: 10.1111/jac.12169. DOI
Khan H.A., Siddique K.H.M., Colmer T.D. Salt sensitivity in chickpea is determined by sodium toxicity. Planta. 2016;244:623–637. doi: 10.1007/s00425-016-2533-3. PubMed DOI
Vadez V., Krishnamurthy L., Serraj R., Gaur P.M., Upadhyaya H.D., Hoisington D.A., Varshney R.K., Turner N.C., Siddique K.H.M. Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crop. Res. 2007;104:123–129. doi: 10.1016/j.fcr.2007.05.014. DOI
Ahmed S. Effect of soil salinity on the yield and yield components of mungbean. Pak. J. Bot. 2009;41:63–68.
Zheng C.F., Dong J.G., Liu F.L., Dai T.B., Liu W.C., Jing Q., Cao W. Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ. Exp. Bot. 2009;67:222–227. doi: 10.1016/j.envexpbot.2009.05.002. DOI
Begara-Morales J.C., Sanchez-Calvo B., Chaki M., Valderrama R., MataPerez C., Lopez-Jaramillo J., Padilla M.N., Carreras A., Corpas F.J., Barroso J.B. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitro sylation. J. Exp. Bot. 2014;65:527–538. doi: 10.1093/jxb/ert396. PubMed DOI PMC
Khan M.N., Siddiqui M.H., Mohammad F., Naeem M. Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide. 2012;27:210–218. doi: 10.1016/j.niox.2012.07.005. PubMed DOI
Dong Y.J., Jinc S.S., Liu S., Xu L.L., Kong J. Effects of exogenous nitric oxide on growth of cotton seedlings under NaCl stress. J. Soil Sci. Plant Nutr. 2014;14:1–13. doi: 10.4067/S0718-95162014005000001. DOI