Similarities and Differences in the Effects of Toxic Concentrations of Cadmium and Chromium on the Structure and Functions of Thylakoid Membranes in Chlorella variabilis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32733513
PubMed Central
PMC7358611
DOI
10.3389/fpls.2020.01006
Knihovny.cz E-zdroje
- Klíčová slova
- P700, cadmium, chromium, circular dichroism, electron microscopy, green alga, photosystem II, small-angle neutron scattering,
- Publikační typ
- časopisecké články MeSH
Trace metal contaminations in natural waters, wetlands, and wastewaters pose serious threats to aquatic ecosystems-mainly via targeting microalgae. In this work, we investigated the effects of toxic amounts of chromium and cadmium ions on the structure and function of the photosynthetic machinery of Chlorella variabilis cells. To halt the propagation of cells, we used high concentrations of Cd and Cr, 50-50 mg L-1, in the forms of CdCl2 x 2.5 H2O and K2Cr2O7, respectively. Both treatments led to similar, about 50% gradual diminishment of the chlorophyll contents of the cells in 48 h, which was, however, accompanied by a small (~10%) but statistically significant enrichment (Cd) and loss (Cr) of ß-carotene. Both Cd and Cr inhibited the activity of photosystem II (PSII)-but with more severe inhibitions with Cr. On the contrary, the PsbA (D1) protein of PSII and the PsbO protein of the oxygen-evolving complex were retained more in Cr-treated cells than in the presence of Cd. These data and the higher susceptibility of P700 redox transients in Cr-treated cells suggest that, unlike with Cd, PSII is not the main target in the photochemical apparatus. These differences at the level of photochemistry also brought about dissimilarities at higher levels of the structural complexity of the photosynthetic apparatus. Circular dichroism (CD) spectroscopy measurements revealed moderate perturbations in the macro-organization of the protein complexes-with more pronounced decline in Cd-treated cells than in the cells with Cr. Also, as reflected by transmission electron microscopy and small-angle neutron scattering, the thylakoid membranes suffered shrinking and were largely fragmented in Cd-treated cells, whereas no changes could be discerned with Cr. The preservation of integrity of membranes in Cr-treated cells was most probably aided by high proportion of the de-epoxidized xanthophylls, which were absent with Cd. It can thus be concluded that beside strong similarities of the toxic effects of Cr and Cd, the response of the photosynthetic machinery of C. variabilis to these two trace metal ions substantially differ from each other-strongly suggesting different inhibitory and protective mechanisms following the primary toxic events.
Department of Physics Faculty of Science University of Ostrava Ostrava Czechia
Department of Plant Anatomy ELTE Eötvös Loránd University Budapest Hungary
Institute for Solid State Physics and Optics Wigner Research Centre for Physics Budapest Hungary
Institute of Biophysics Biological Research Centre Szeged Hungary
Institute of Plant Biology Biological Research Centre Szeged Hungary
Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge TN United States
Zobrazit více v PubMed
Ait Ali N. A., Juneau P., Didur O., Perreault F., Popovic R. (2008). Effect of dichromate on photosystem II activity in xanthophyll-deficient mutants of Chlamydomonas reinhardtii. Photosynth. Res. 95, 45–53. 10.1007/s11120-007-9227-4 PubMed DOI
Alidoust L., Zahiri H. S., Maleki H., Soltani N., Vali H., Noghabi K. A. (2019). Nostoc entohytum cell response to cadmium exposure: A possible role of chaperon proteins GroEl and HtpG in cadmium-induced stress. Ecotoxicol. Environ. Saf. 169, 40–49. 10.1016/j.ecoenv.2018.10.104 PubMed DOI
Andosch A., Affenzeller M. J., Lütz C., Lütz-Meindl U. (2012). A freshwater green alga under cadmium stress: ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. J. Plant Physiol. 169 (15), 1489–1500. 10.1016/j.jplph.2012.06.002 PubMed DOI
Baby J., Raj J. S., Biby E. T., Sankarganesh P., Jeevitha M. V., Ajisha S. U., et al. (2010). Toxic effect of heavy metals on aquatic environment. Int. J. Biol. Chem. Sci. 4, 939–952. 10.4314/ijbcs.v4i4.62976 DOI
Bethmann S., Melzer M., Schwarz N., Jahns P. (2019). The zeaxanthin epoxidase is degraded along with the D1 protein during photoinhibition of photosystem. Plant Direct 3, 1–13. 10.1002/pld3.185 PubMed DOI PMC
Chen Z., Song S., Wen Y. (2016). Reduction of Cr (VI) into Cr (III) by organelles of Chlorella vulgaris in aqueous solution: an organelle-level attempt. Sci. Total Environ. 572, 361–368. 10.1016/j.scitotenv.2016.07.217 PubMed DOI
Cheng J., Qiu H., Chang Z., Jiang Z., Yin W. (2016). The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris. SpringerPlus 5, 1290. 10.1186/s40064-016-2963-1 PubMed DOI PMC
Conway H. L. (1978). Sorption of arsenic and cadmium and their effects on growth, micronutrient utilization and photosynthetic pigment composition of Asterionella formosa. J. Fish. Res. Bd. Can. 35, 286–294. 10.1139/f78-052 DOI
Daum B., Nicastro D., Austin I. I. J., McIntosh J. R., Kühlbrandt W. (2010). Arrangement of Photosystem II and ATP Synthase in Chloroplast Membranes of Spinach and Pea. Plant Cell 22, 1299–1312. 10.1105/tpc.109.071431 PubMed DOI PMC
Demmig-Adams B., Garab G., Adams W., Govindjee (2014). “Non-Photochemical quenching and Ebergy Dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration 40,” in Including bioonergy and related processes (Dordrecht: Springer; ).
Du J., Qiu B., Gomes M. P., Juneau P., Dai G. (2019). Influence of light intensity on cadmium uptake and toxicity in the cyanobacteria Synechocystis sp. PCC6803. Aquat. Toxicol. 211, 163–172. 10.1016/j.aquatox.2019.03.016 PubMed DOI
Eskling M., Arvidsson P. O., Akerlund H. E. (1997). The xanthophyll cycle, its regulation and components. Physiol. Plantarum 100, 806–816. 10.1111/j.1399-3054.1997.tb00007.x DOI
Faller P., Kienzler K., Krieger-Liszkay A. (2005). Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochim. Biophys. Acta (BBA) - Bioenerg. 1706 (1–2), 158–164. 10.1016/j.bbabio.2004.10.005 PubMed DOI
Frey M., Seidel C., Edwards M., Parks J., McNeell L. (2004). Occurrence survey of boron and hexavalent chromium. American Water Works Association Research Foundation, Denver, CO (Report No. 91044F).
Garab G., van Amerongen H. (2009). Linear dichroism and circular dichroism in photosynthesis research. Photosynth. Res. 101, 135–146. 10.1007/s11120-009-9424-4 PubMed DOI PMC
Garab G., Kieleczawa J., Sutherland J. C., Bustamante C., Hind G. (1991). Organization of pigment-protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll fo-less mutant of barley as revealed by circular dichroism. Photochem. Photobiol. 54, 273–281. 10.1111/j.1751-1097.1991.tb02016.x DOI
Goss R., Garab G. (2001). Non-photochemical chlorophyll fluorescence quenching and structural rearrangements induced by low pH in intact cells of Chlorella fusca (Chlorophyceae) and Mantoniella squamata (Prasinophyceae). Photosynth. Res. 67, 185–197. 10.1023/A:1010681511105 PubMed DOI
Govindjee (2004). “Chlorophyll a fluorescence: a bit of basics and history,” in G.C. Papageorgiou, Govindjee, eds, Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, vol. 19 (Dordrecht: Springer; ), 1–42.
Grzyb J., Waloszek A., Latowski D., Więckowski S. (2004). Effect of cadmium on ferredoxin:NADP+ oxidoreductase activity. J. Inorg. Biochem. 98 (8), 1338–1346. 10.1016/j.jinorgbio.2004.04.004 PubMed DOI
Havaux M., Dall’osto L., Bassi R. (2007). Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol. 145 (4), 1506–1520. 10.1104/pp.107.108480 PubMed DOI PMC
Hayat M. A. (1970). “Principles and Techniques of Electron Microscopy,” in Biological Applications, vol. 1 (New York, NY: Van Nostrand Reinhold; ), 264–274.
Idrees N., Tabassum B., Abd Allah E. F., Hashem A., Sarah R., Hashim M. (2018). Groundwater contamination with cadmium concentrations in some West U.P. Regions India Saudi J. Biol. Sci. 25, 1365–1368. 10.1016/j.sjbs.2018.07.005 PubMed DOI PMC
Jeffrey S. W., Mantoura R. F. T., Bjørnland T. (2005). “Phytoplankton pigments in oceanography,” in Guidelines to modern methods. Eds. Jeffrey S. W., Mantoura R. F. C., Wright S. W. (France: UNESCO Publishing, Paris; ), 447.
Kabata-Pendias A., Pendias H. (2001). Trace Elements in Soils and Plants. 3rd Ed (Boca Raton – London – New York – Washington: CRC Press; ).
Karnovsky M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolality or use in electron microscopy. J. Cell. Biol. 27, 137–138.
Kovács L., Damkjær J., Kereïche S., Cristian Ilioaia C., Ruban A. V., Boekema E. J., et al. (2006). Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18, 3106–3120. 10.1105/tpc.106.045641 PubMed DOI PMC
Kumar K. S., Dahms H. U., Lee J. S., Kim H. C., Lee W. C., Shin K. H. (2014). Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicol. Environ. Saf. 104, 51–71. 10.1016/j.ecoenv.2014.01.042 PubMed DOI
Lambrev P. H., Akhtar P. (2019). Macroorganisation and flexibility of thylakoid membranes. Biochem. J. 476, 2981–3018. 10.1042/BCJ20190080 PubMed DOI
Lazár D. (2006). The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant Biol. 33, 9–30. 10.1071/FP05095 PubMed DOI
Liberton M., Page L. E., O'Dell W. B., O'Neill H., Mamontov E., Urban V. S., et al. (2013). Organization and Flexibility of Cyanobacterial Thylakoid Membranes Examined by Neutron Scattering. J. Biol. Chem. 288, 3632–3640. 10.1074/jbc.M112.416933 PubMed DOI PMC
Lysenko E. A., Klaus A. A., Kartashov A. V., Kusnetsov V. V. (2019). Distribution of Cd and other cations between the stroma and thylakoids: a quantitative approach to the search for Cd targets in chloroplasts. Photosynth. Res. 139, 337–358. 10.1007/s11120-018-0528-6 PubMed DOI
Machado M. D., Soares E. V. (2015). Use of a fluorescence-based approach to assess short-term responses of the alga Pseudokirchneriella to metal stress. J. Appl. Phycol. 27, 805–813. 10.1007/s10811-014-0351-1 DOI
Maret W., Moulis J. M. (2013). The Bioinorganic Chemistry of Cadmium in the Context of Its Toxicity. Met Ions Life Sci. 11, 1–29. 10.1007/978-94-007-5179-8_1 PubMed DOI
Millonig G. (1961). Advantage of phosphate buffer for OsO4 solutions for fixation. J. Appl. Phys. 32, 1637.
Mota R., Pereira S. B., Meazzini M., Fernandes R., Santos A., Evans C. A., et al. (2015). Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles. J. Proteomics 120, 75–94. 10.1016/j.jprot.2015.03.004 PubMed DOI
Nagy G., Pieper J., Krumova S. B., Kovács L., Trapp M., Garab G., et al. (2012). Dynamic properties of photosystem II membranes at physiological temperatures characterized by elastic incoherent neutron scattering. Increased flexibility associated with the inactivation of the oxygen evolving complex. Photosynth. Res. 111, 113–124. 10.1007/s11120-011-9701-x PubMed DOI
Nagy G., Kovács L., Ünnep R., Zsiros O., Almásy L., Rosta L., et al. (2013). Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small-angle neutron scattering. Eur. Phys. J. E 36, 69. 10.1140/epje/i2013-13069-0 PubMed DOI
Nagy G., Posselt D., Kovács L., Holm J. K., Szabó M., Ughy B., et al. (2011). Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering. Biochem. J. 436, 225–230. 10.1042/BJ20110180 PubMed DOI
Nagy G., Ünnep R., Zsiros O., Tokutsue R., Takizawae K., Porcarc L., et al. (2014). Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc. Nat. Am. Soc 111, 5042–5047. 10.1073/pnas.1322494111 PubMed DOI PMC
Oliveira H. (2012). Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity. J. Bot. 2012, 1–8. 10.1155/2012/375843 DOI
Panda S. K., Choudhury S. (2005). Chromium stress in plants. Braz. J. Plant Physiol. 17, 95–102. 10.1590/S1677-04202005000100008 DOI
Pinto E., Sigaud-Kutner T. C. S., Leitão M. A. S., Okamoto O. K., Morse D., Colepicolo P. (2003). Heavy metal-induced oxidative stress in algae. J. Phycol. 39, 1008–1018. 10.1111/j.0022-3646.2003.02-193.x DOI
Qian H., Sun Z., Sun L., Jiang Y., Wei Y., Xie J., et al. (2013). Phosphorus availability changes chromium toxicity in the freshwater alga Chlorella vulgaris. Chemosphere 93 (6), 885–891. 10.1016/j.chemosphere.2013.05.035 PubMed DOI
Reinhold C., Niczyporuk S., Beran K. C., Jahns P. (2008). Short-term down-regulation of zeaxanthin epoxidation inArabidopsis thalianain response to photo-oxidative stress conditions. Biochim. Biophys. Acta 1777, 462–469. 10.1016/j.bbabio.2008.03.002 PubMed DOI
Reynolds E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell. Biol. 17, 208–212. 10.1083/jcb.17.1.208 PubMed DOI PMC
Samadani M., François Perreault F., Oukarroum A., Dewez D. (2018). Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121. Chemosphere 191, 174–182. 10.1016/j.chemosphere.2017.10.017 PubMed DOI
Shah K., Kumar R. G., Verma S., Dubey R. S. (2001). Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 161, 1135–1144. 10.1016/S0168-9452(01)00517-9 DOI
Strasser R. J., Tsimilli-Michael M., Srivastava A. (2004). “Analysis of the Chlorophyll a Fluorescence Transient Chlorophyll a Fluorescence,” in Advances in Photosynthesis and Respiration, vol. 19 Eds. Papageorgiou G. C., Govindjee (Dordrecht: Springer; ), 321–362.
Tóth S. Z., Schansker G., Strasser R. J. (2007). A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth. Res. 93, 193–203. 10.1007/s11120-007-9179-8 PubMed DOI
Tóth T., Zsiros O., Kis M., Garab G., Kovács L. (2012). Cadmium exerts its toxic effects on photosynthesis via acascade mechanism in the cyanobacterium, SynechocystisPCC 6803. Plant Cell Environ. 35, 2075–2086. 10.1111/j.1365-3040.2012.02537.x PubMed DOI
Tóth T. N., Rai N., Solymosi K., Zsiros O., Schröder W. P., Garab G., et al. (2016). Fingerprinting the macro-organisation of pigment–protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Biochim. Biophys. Acta 1857, 1479–1489. 10.1016/j.bbabio.2016.04.287 PubMed DOI
Todorenko D., Timofeev N., Kovalenko I., Kukarskikh G., Matorin D., Antal T. (2020). Chromium effects on photosynthetic electron transport in pea (Pisum sativum L.). Planta 251, 11. 10.1007/s00425-019-03304-1 PubMed DOI
Ünnep R., Nagy G., Markó M., Garab G. (2014). Monitoring thylakoid ultrastructural changes in vivo using small-angle neutron scattering. Plant Physiol. Biochem. 81, 197–207. 10.1016/j.plaphy.2014.02.005 PubMed DOI
Van Assche F., Clijsters H. (1990). Effects of Metals on Enzyme Activity in Plants. Plant Cell Environ. 13, 195–206. 10.1111/j.1365-3040.1990.tb01304.x DOI
Vass I. (2012). Molecular mechanisms of photodamage in the Photosystem II complex. Biochim. Biophys. Acta –Bioenerg. 1817, 209–217. 10.1016/j.bbabio.2011.04.014 PubMed DOI
Volland S., Lütz C., Michalkec B., Lütz-Meindla U. (2012). Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias. Aquat. Toxicol. 109, 59– 69. 10.1016/j.aquatox.2011.11.013 PubMed DOI PMC
Volland S., Bayer E., Baumgartner V., Andosch A., Lütz C., Sima E., et al. (2014). Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J. Plant Physiol. 171 (2), 154–163. 10.1016/j.jplph.2013.10.002 PubMed DOI PMC
Wagner G. J. (1993). Accumulation of cadmium in crop plants and its consequences to human health. Adv. Agron. 51, 173–212. 10.1016/S0065-2113(08)60593-3 DOI
Wang S., Zhang D., Pan X. (2013). Effects of cadmium on the activities of photosystems of Chlorella pyrenoidosa and the protective role of cyclic electron flow. Chemosphere 93, 230–237. 10.1016/j.chemosphere.2013.04.070 PubMed DOI
Yılmaz A. B., Yanar A., Alkan E. N. (2017). Review of heavy metal accumulation on aquatic environment in Northern East Mediterrenean Sea part I: some essential metals. Rev. Environ. Health 32 (1-2), 119–163. 10.1515/reveh-2016-0065 PubMed DOI
Yu D., CDC/ATSDR Planners. Coles C., Doyle J., Fowler B., Gehle K., et al. (2011). Chromium Toxicity (Atlanta, USA: Agency for Toxic Substances and Disease Registry Case Studies in Environmental Medicine (CSEM)).
Yu Z., Hao R., Zhang L., Zhu Y. (2018). Effects of TiO2, SiO2, Ag and CdTe/CdS quantum dots nanoparticles on toxicity of cadmium towards Chlamydomonas reinhardtii. Ecotoxicol Environ. Saf. 156, 75–86. 10.1016/j.ecoenv.2018.03.007 PubMed DOI
Effects of abiotic stress on photosystem II proteins
Biodistribution and Cellular Internalization of Inactivated SARS-CoV-2 in Wild-Type Mice