Effects of abiotic stress on photosystem II proteins
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39650668
PubMed Central
PMC11515818
DOI
10.32615/ps.2022.043
PII: PS61148
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress, extrinsic protein, intrinsic protein, photosynthesis, photosystem II,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Photosystem II (PSII) represents the most vulnerable component of the photosynthetic machinery and its response in plants subjected to abiotic stress has been widely studied over many years. PSII is a thylakoid membrane-located multiprotein pigment complex that catalyses the light-induced electron transfer from water to plastoquinone with the concomitant production of oxygen. PSII is rich in intrinsic (PsbA and PsbD, namely D1 and D2, CP47 or PsbB and CP43 or PsbC) but also extrinsic proteins. The first ones are more largely conserved from cyanobacteria to higher plants while the extrinsic proteins are different among species. It has been found that extrinsic proteins involved in oxygen evolution change dramatically the PSII efficiency and PSII repair systems. However, little information is available on the effects of abiotic stress on their function and structure.
Zobrazit více v PubMed
Adam Z., Sakamoto W.: Plastid proteases. – In: Theg S., Wollman F.A. (ed.): Plastid Biology. Advances in Plant Biology. Pp. 359-389. Springer, New York: 2014. 10.1007/978-1-4939-1136-3_14 DOI
Akagawa M.: Protein carbonylation: molecular mechanisms, biological implications, and analytical approaches. – Free Radic. Res. 55: 307-320, 2021. 10.1080/10715762.2020.1851027 PubMed DOI
Allakhverdiev S.I., Murata N.: Environmental stress inhibits the synthesis de novo proteins involved in the photodamage–repair cycle of photosystem II in Synechocystis sp. PCC 6803. – BBA-Bioenergetics 1657: 23-32, 2004. 10.1016/j.bbabio.2004.03.003 PubMed DOI
Alric J., Johnson X.: Alternative electron transport pathways in photosynthesis: a confluence of regulation. – Curr. Opin. Plant Biol. 37: 78-86, 2017. 10.1016/j.pbi.2017.03.014 PubMed DOI
Anderson J.M., Chow W.S., De Las Rivas J.: Dynamic flexibility in the structure and function of Photosystem II in higher plant thylakoid membranes: the grana enigma. – Photosynth. Res. 98: 575-587, 2008. 10.1007/s11120-008-9381-3 PubMed DOI
Aro E.-M., Suorsa M., Rokka A. et al..: Dynamics of photo-system II: a proteomic approach to thylakoid protein complexes. – J. Exp. Bot. 56: 347-356, 2005. 10.1093/jxb/eri041 PubMed DOI
Aro E.-M., Virgin I., Andersson B.: Photoinhibition of Photosystem II. Inactivation, protein damage and turn over. – BBA-Bioenergetics 1143: 113-134, 1993. 10.1016/0005-2728(93)90134-2 PubMed DOI
Baker N.R.: Chlorophyll fluorescence. A probe of photosyntheis in vivo. – Annu. Rev. Plant Biol. 59: 89-113, 2008. 10.1146/annurev.arplant.59.032607.092759 PubMed DOI
Barbato R., Tadini L., Cannata R. et al..: Higher order photoprotection mutants reveal the importance of ΔpH-dependent photosynthesis-control in preventing light induced damage to both photosystem II and photosystem I. – Sci. Rep.-UK 10: 6770, 2020. 10.1038/s41598-020-62717-1 PubMed DOI PMC
Barber J., Andersson B.: Too much of a good thing: light can be bad for photosynthesis. – Trends Biochem. Sci. 17: 61-66, 1992. 10.1016/0968-0004(92)90503-2 PubMed DOI
Barber J., Nield J., Morris E.P. et al..: The structure, function and dynamics of photosystem two. – Physiol. Plantarum 100: 817-827, 1997. 10.1111/j.1399-3054.1997.tb00008.x DOI
Bassi R., Dall'Osto L.: Dissipation of light energy absorbed in excess: the molecular mechanisms. – Annu. Rev. Plant Biol. 72: 47-76, 2021. 10.1146/annurev-arplant-071720-015522 PubMed DOI
Bergantino E., Segalla A., Brunetta A. et al..: Light- and pH-dependent structural changes in the PsbS subunit of photosystem II. – P. Natl. Acad. Sci. USA 100: 15265-15270, 2003. 10.1073/pnas.2533072100 PubMed DOI PMC
Bhattacharjee S.: ROS and oxidative stress: origin and implication. – In: Bhattacharjee S. (ed.): Reactive Oxygen Species in Plant Biology. Pp. 1-31. Springer, New Delhi: 2019. 10.1007/978-81-322-3941-3_1 DOI
Bonardi V., Pesaresi P., Becker T. et al..: Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. – Nature 437: 1179-1182, 2005. 10.1038/nature04016 PubMed DOI
Bondarava N., Un S., Krieger-Liszkay A.: Manganese binding to the 23 kDa extrinsic protein of Photosystem II. – BBA-Bioenergetics 1767: 583-588, 2007. 10.1016/j.bbabio.2007.01.001 PubMed DOI
Bricker T.M., Frankel L.K.: Auxiliary functions of the PsbO, PsbP and PsbQ proteins of higher plant Photosystem II: A critical analysis. – J. Photoch. Photobio. B 104: 165-178, 2011. 10.1016/j.jphotobiol.2011.01.025 PubMed DOI
Bricker T.M., Roose J.L., Fagerlund R.D. et al..: The extrinsic proteins of Photosystem II. – BBA-Bioenergetics 1817: 121-142, 2012. 10.1016/j.bbabio.2011.07.006 PubMed DOI
Bricker T.M., Roose J.L., Zhang P., Frankel L.K.: The PsbP family of proteins. – Photosynth. Res. 116: 235-250, 2013. 10.1007/s11120-013-9820-7 PubMed DOI
Büchel C.: Evolution and function of light harvesting proteins. – J. Plant Physiol. 172: 62-75, 2015. 10.1016/j.jplph.2014.04.018 PubMed DOI
Caffarri S., Tibiletti T., Jennings R.C., Santabarbara S.: A comparison between plant photosystem I and photosystem II architecture and functioning. – Curr. Protein Pept. Sci. 15: 296-331, 2014. 10.2174/1389203715666140327102218 PubMed DOI PMC
Cao P., Su X., Pan X. et al..: Structure, assembly and energy transfer of plant photosystem II supercomplex. – BBA-Bioenergetics 1859: 633-644, 2018. 10.1016/j.bbabio.2018.03.007 PubMed DOI
Cazzaniga S., Dall'Osto L., Kong S.G. et al..: Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against ohotooxidative stress in Arabidopsis. – Plant J. 76: 568-579, 2013. 10.1111/tpj.12314 PubMed DOI
Che Y., Kusama S., Matsui S. et al..: Arabidopsis PsbP-like protein 1 facilitates the assembly of the Photosystem II supercomplexes and optimizes plant fitness under fluctuating light. – Plant Cell Physiol. 61: 1168-1180, 2020. 10.1093/pcp/pcaa045 PubMed DOI
Chen J.-H., Chen S.-T., He N.-Y. et al..: Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. – Nat. Plants 6: 570-580, 2020. 10.1038/s41477-020-0629-z PubMed DOI
Chu H.-A., Chiu Y.-F.: The roles of cytochrome b559 in assembly and photoprotection of Photosystem II revealed by site-directed mutagenesis studies. – Front. Plant Sci. 6: 1261, 2016. 10.3389/fpls.2015.01261 PubMed DOI PMC
Croce R., Zucchelli G., Garlaschi F.M. et al..: Excited state equilibration in the photosystem I-light-harvesting I complex: P700 is almost isoenergetic with its antenna. – Biochemistry-US 35: 8572-8579, 1996. 10.1021/bi960214m PubMed DOI
Dall'Osto L., Caffarri S., Bassi R.: A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. – Plant Cell 17: 1217-1232, 2005. 10.1105/tpc.104.030601 PubMed DOI PMC
Dekker J.P., Boekema E.J.: Supramolecular organization of thylakoid membrane proteins in green plants. – BBA-Bioenergetics 1706: 12-39, 2005. 10.1016/j.bbabio.2004.09.009 PubMed DOI
Demmig-Adams B., Moeller D.L., Logan B.A., Adams III W.W.: Positive correlation between levels of retained zeaxanthin + antheraxanthin and degree of photoinhibition in shade leaves of Schefflera arboricola (Hayata) Merrill. – Planta 205: 367-374, 1998. 10.1007/s004250050332 DOI
Dwyer S., Chow W., Yamori W. et al..: Antisense reductions in the PsbO protein of photosystem II leads to decreased quantum yield but similar maximal photosynthetic rates. – J. Exp. Bot. 63: 4781-4795, 2012. 10.1093/jxb/ers156 PubMed DOI PMC
Edelman M., Mattoo A.K.: D1-protein dynamics in photosystem II: the lingering enigma. – Photosynth. Res. 98: 609-620, 2008. 10.1007/s11120-008-9342-x PubMed DOI
Enami I., Okumura A., Nagao R. et al..: Structures and functions of the extrinsic proteins of photosystem II from different species. – Photosynth. Res. 98: 349-363, 2008. 10.1007/s11120-008-9343-9 PubMed DOI
Ferreira K.N., Iverson T.M., Maghlaoui K. et al..: Architecture of the photosynthetic oxygen-evolving center. – Science 303: 1831-1838, 2004. 10.1126/science.1093087 PubMed DOI
Foyer C.H.: Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. – Environ. Exp. Bot. 154: 134-142, 2018. 10.1016/j.envexpbot.2018.05.003 PubMed DOI PMC
Fristedt R., Willig A., Granath P. et al..: Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. – Plant Cell 21: 3950-3964, 2009. 10.1105/tpc.109.069435 PubMed DOI PMC
Grinzato A., Albanese P., Marotta R. et al..: High-light versus low-light: effects on paired Photosystem II supercomplex structural rearrangement in pea plants. – Int. J. Mol. Sci. 21: 8643, 2020. 10.3390/ijms21228643 PubMed DOI PMC
Gupta R.: The oxygen-evolving complex: a super catalyst for life on earth, in response to abiotic stresses. – Plant Signal. Behav. 15: 1824721, 2020. 10.1080/15592324.2020.1824721 PubMed DOI PMC
Gupta R., Sharma R.D., Rao Y.R. et al..: Acclimation potential of Noni (Morinda citrifolia L.) plant to temperature stress is mediated through photosynthetic electron transport rate. – Plant Signal. Behav. 16: 1865687, 2021. 10.1080/15592324.2020.1865687 PubMed DOI PMC
Gururani M.A., Upadhyaya C.P., Strasser R.J. et al..: Physiological and biochemical responses of transgenic potato plants with altered expression of PSII manganese stabilizing protein. – Plant Physiol. Bioch. 58: 182-194, 2012. 10.1016/j.plaphy.2012.07.003 PubMed DOI
Gururani M.A., Upadhyaya C.P., Strasser R.J. et al..: Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. – Plant Sci. 198: 7-16, 2013. 10.1016/j.plantsci.2012.09.014 PubMed DOI
Guskov A., Kern J., Gabdulkhakov A. et al..: Cyanobacterial photosystem II at 2.9 Å-resolution and the role of quinones, lipids, channels and chloride. – Nat. Struct. Mol. Biol. 16: 334-342, 2009. 10.1038/nsmb.1559 PubMed DOI
He W., Yan K., Zhang Y. et al..: Contrasting photosynthesis, photoinhibition and oxidative damage in honeysuckle (Lonicera japonica Thunb.) under iso-osmotic salt and drought stresses. – Environ. Exp. Bot. 182: 104313, 2021. 10.1016/j.envexpbot.2020.104313 DOI
Henmi T., Miyao M., Yamamoto Y.: Release and reactive-oxygen-mediated damage of the oxygen-evolving complex subunits of PSII during photoinhibition. – Plant Cell Physiol. 45: 243-250, 2004. 10.1093/pcp/pch027 PubMed DOI
Horton P., Ruban A.V., Walters R.G.: Regulation of light harvesting in green plants. – Annu. Rev. Plant Phys. 47: 655-684, 1996. 10.1146/annurev.arplant.47.1.655 PubMed DOI
Huang W., Yang Y.J., Hu H. et al..: Evidence for the role of cyclic electron flow in photoprotection for oxygen-evolving complex. – J. Plant Physiol. 194: 54-60, 2016. 10.1016/j.jplph.2016.02.016 PubMed DOI
Ido K., Nield J., Fukao Y. et al..: Cross-linking evidence for multiple interactions of the PsbP and PsbQ proteins in a higher plant photosystem II supercomplex. – J. Biol. Chem. 289: 20150-20157, 2014. 10.1074/jbc.M114.574822 PubMed DOI PMC
Ifuku K.: The PsbP and PsbQ family proteins in the photosynthetic machinery of chloroplasts. – Plant Physiol. Bioch. 81: 108-114, 2014. 10.1016/j.plaphy.2014.01.001 PubMed DOI
Ifuku K., Nagao R.: Evolution and function of the extrinsic subunits of Photosystem II. – In: Shen J.R.., Satoh K., Allakhverdiev S.I. (ed.): Photosynthesis: Molecular Approaches to Solar Energy Conversion. Advances in Photosynthesis and Respiration. Pp. 429-446. Springer, Cham: 2021. 10.1007/978-3-030-67407-6_16 DOI
Ifuku K., Yamamoto J., Ono T. et al..: PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of Photosystem II in higher plants. – Plant Physiol. 139: 1175-1184, 2005. 10.1104/pp.105.068643 PubMed DOI PMC
Ishihara S., Takabayashi A., Ido K. et al..: Distinct function for the two PsbP-like proteins PPL1 and PPl2 in the chloroplast thylakoid lumen. – Plant Physiol. 145: 668-679, 2007. 10.1104/pp.107.105866 PubMed DOI PMC
Johansson E., Olsson O., Nyström T.: Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. – J. Biol. Chem. 279: 22204-22208, 2004. 10.1074/jbc.M402652200 PubMed DOI
Johnson M.P., Wientjes E.: The relevance of dynamic thylakoid organisation to photosynthetic regulation. – BBA-Bioenergetics 1861: 148039, 2020. 10.1016/j.bbabio.2019.06.011 PubMed DOI
Kale R., Hebert A.E., Frankel L.K. et al..: Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of Photosystem II. – P. Natl. Acad. Sci. USA 114: 2988-2993, 2017. 10.1073/pnas.1618922114 PubMed DOI PMC
Kato Y., Sun X., Zhang L., Sakamoto W.: Cooperative D1 degradation in the Photosystem II repair mediated by chloroplastic proteases in Arabidopsis. – Plant Physiol. 159: 1428-1439, 2012. 10.1104/pp.112.199042 PubMed DOI PMC
Kereïche S., Kiss A.Z., Kouřil R. et al..: The PsbS protein controls the macro-organisation of photosystem II complexes in the grana membranes of higher plant chloroplasts. – FEBS Lett. 584: 759-764, 2010. 10.1016/j.febslet.2009.12.031 PubMed DOI
Knoppová J., Yu J., Konik P. et al..: CyanoP is involved in the early steps of Photosystem II assembly in the cyanobacterium Synechocystis sp. PCC 6803. – Plant Cell Physiol. 57: 1921-1931, 2016. 10.1093/pcp/pcw115 PubMed DOI
Kosmala A., Bocian A., Rapacz M. et al..: Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. – J. Exp. Bot. 60: 3595-3609, 2009. 10.1093/jxb/erp205 PubMed DOI
Kress E., Jahns P.: The dynamics of energy dissipation and xanthophyll conversion in Arabidopsis indicate an indirect photoprotective role of zeaxanthin in slowly inducible and relaxing components of non-photochemical quenching of excitation energy. – Front. Plant Sci. 8: 2094, 2017. 10.3389/fpls.2017.02094 PubMed DOI PMC
Li L., Aro E.-M., Millar A.H.: Mechanisms of photodamage and protein turnover in photoinhibition. – Trends Plant Sci. 23: 667-676, 2018. 10.1016/j.tplants.2018.05.004 PubMed DOI
Li X.P., Björkman O., Shih C. et al..: A pigment-binding protein essential for regulation of photosynthetic light harvesting. – Nature 403: 391-395, 2000. 10.1038/35000131 PubMed DOI
Longoni F.P., Goldschmidt-Clermont M.: Thylakoid protein phosphorylation in chloroplasts. – Plant Cell Physiol. 62: 1094-1107, 2021. 10.1093/pcp/pcab043 PubMed DOI
Matsui S., Ishihara S., Ido K. et al..: Functional analysis of PsbP-like protein 1 (PPL1) in Arabidopsis. – In: Kuang T., Lu C., Zhang L. (ed.): Photosynthesis Research for Food, Fuel and the Future. Advanced Topics in Science and Technology in China. Pp. 415-417. Springer, Berlin-Heidelberg: 2013. 10.1007/978-3-642-32034-7_86 DOI
Matsubara S., Chow W.S.: Populations of photoinactivated photosystem II characterized by Chl fluorescence lifetime in vivo. – P. Natl. Acad. Sci. USA 101: 18234-18239, 2004. 10.1073/pnas.0403857102 PubMed DOI PMC
Mattila H., Mishra K.B., Kuusisto I. et al..: Effects of low temperature on photoinhibition and singlet oxygen production in four natural accessions of Arabidopsis. – Planta 252: 19, 2020. 10.1007/s00425-020-03423-0 PubMed DOI PMC
Miyao M., Murata N.: The Cl− effect on photosynthetic oxygen evolution: interaction of Cl− with 18-kDa, 24-kDa and 33-kDa proteins. – FEBS Lett. 180: 303-308, 1985. 10.1016/0014-5793(85)81091-7 DOI
Müh F., Zouni A.: Structural basis of light-harvesting in the photosystem II core complex. – Protein Sci. 29: 1090-1119, 2020. 10.1002/pro.3841 PubMed DOI PMC
Murakami R., Ifuku K., Takabayashi A. et al..: Functional dissection of two Arabidopsis PsbO proteins: PsbO1 and PsbO2. – FEBS J. 272: 2165-2175, 2005. 10.1111/j.1742-4658.2005.04636.x PubMed DOI
Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I.: Photoinhibition of photosystem II under environmental stress. – Biochim. Biophys. Acta 1767: 414-421, 2007. 10.1016/j.bbabio.2006.11.019 PubMed DOI
Murchie E.H., Ruban A.V.: Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. – Plant J. 101: 885-896, 2020. 10.1111/tpj.14601 PubMed DOI
Nath K., Jajoo A., Poudyal R.S. et al..: Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. – FEBS Lett. 587: 3372-3381, 2013a. 10.1016/j.febslet.2013.09.015 PubMed DOI
Nath K., Poudyal R.S., Eom J.S. et al..: Loss-of-function of OsSTN8 suppresses the photosystem II core protein phosphorylation and interferes with the photosystem II repair mechanism in rice (Oryza sativa). – Plant J. 76: 675-686, 2013b. 10.1111/tpj.12331 PubMed DOI
Nawrocki W.J., Liu X., Raber B. et al..: Molecular origins of induction and loss of photoinhibition-related energy dissipation qI. – Sci. Adv. 7: eabj0055, 2021. 10.1126/sciadv.abj0055 PubMed DOI PMC
Nicol L., Nawrocki W.J., Croce R.: Disentangling the sites of non-photochemical quenching in vascular plants. – Nat. Plants 5: 1177-1183, 2019. 10.1038/s41477-019-0526-5 PubMed DOI PMC
Nield J., Barber J.: Refinement of the structural model for the Photosystem II supercomplex of higher plants. – BBA-Bioenergetics 1757: 353-361, 2006. 10.1016/j.bbabio.2006.03.019 PubMed DOI
Nilkens M., Kress E., Lambrev P. et al..: Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. – BBA-Bioenergetics 1797: 466-475, 2010. 10.1016/j.bbabio.2010.01.001 PubMed DOI
Nishiyama Y., Allakhverdiev S.I., Yamamoto H. et al..: Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. – Biochemistry-US 43: 11321-11330, 2004. 10.1021/bi036178q PubMed DOI
Nishiyama Y., Murata N.: Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. – Appl. Microbiol. Biot. 98: 8777-8796, 2014. 10.1007/s00253-014-6020-0 PubMed DOI
Nishiyama Y., Yamamoto H., Allakhverdiev S.I. et al..: Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. – EMBO J. 20: 5587-5594, 2001. 10.1093/emboj/20.20.5587 PubMed DOI PMC
Pagliano C., Saracco G., Barber J.: Structural, functional and auxiliary proteins of photosystem II. – Photosynth. Res. 116: 167-188, 2013. 10.1007/s11120-013-9803-8 PubMed DOI
Pan T., Liu M., Kreslavski V.D. et al..: Non-stomatal limitation of photosynthesis by soil salinity. – Crit. Rev. Environ. Sci. Technol. 51: 791-825, 2021. 10.1080/10643389.2020.1735231 DOI
Pawłowicz I., Kosmala A., Rapacz M.: Expression pattern of the psbO gene and its involvement in acclimation of the photosynthetic apparatus during abiotic stresses in Festuca arundinacea and F. pratensis. – Acta Physiol. Plant. 34: 1915-1924, 2012. 10.1007/s11738-012-0992-0 DOI
Pinnola A., Bassi R.: Molecular mechanisms involved in plant photoprotection. – Biochem. Soc. T. 46: 467-482, 2018. 10.1042/BST20170307 PubMed DOI
Popelkova H., Yocum C.F.: PsbO, the manganese-stabilizing protein: Analysis of the structure–function relations that provide insights into its role in photosystem II. – J. Photoch. Photobio. B 104: 179-190, 2011. 10.1016/j.jphotobiol.2011.01.015 PubMed DOI
Pospíšil P., Yamamoto Y.: Damage to photosystem II by lipid peroxidation products. – BBA-Gen. Subjects 1861: 457-466, 2017. 10.1016/j.bbagen.2016.10.005 PubMed DOI
Quick W.P., Stitt M.: An examination of the factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. – BBA-Bioenergetics 977: 287-296, 1989. 10.1016/S0005-2728(89)80082-9 DOI
Rantala M., Rantala S., Aro E.-M.: Composition, phosphorylation and dynamic organization of photosynthetic protein complexes in plant thylakoid membrane. – Photoch. Photobio. Sci. 19: 604-619, 2020. 10.1039/D0PP00025F PubMed DOI
Roach T., Kreiger-Liszkay A.: Regulation of photosynthetic electron transport and photoinhibition. – Curr. Protein Pept. Sci. 15: 351-362, 2014. 10.2174/1389203715666140327105143 PubMed DOI PMC
Rochaix J.D.: Role of thylakoid protein kinases in photosynthetic acclimation. – FEBS Lett. 581: 2768-2775, 2007. 10.1016/j.febslet.2007.04.038 PubMed DOI
Roose J.L., Frankel L.K., Bricker T.M.: Documentation of significant electron transport defects on the reducing side of Photosystem II upon removal of the PsbP and PsbQ extrinsic proteins. – Biochemistry-US 49: 36-41, 2010. 10.1021/bi9017818 PubMed DOI
Roose J.L., Wegener K.M., Pakrasi H.B.: The extrinsic proteins of Photosystem II. – Photosynth. Res. 92: 369-387, 2007. 10.1007/s11120-006-9117-1 PubMed DOI
Ruban A.V., Wilson S.: The mechanism of non-photochemical quenching in plants: localization and driving forces. – Plant Cell Physiol. 62: 1063-1072, 2021. 10.1093/pcp/pcaa155 PubMed DOI
Samol I., Shapiguzov A., Ingelsson B. et al..: Identification of a photosystem II phosphatase involved in light acclimation in Arabidopsis. – Plant Cell 24: 2596-2609, 2012. 10.1105/tpc.112.095703 PubMed DOI PMC
Sasi S., Venkatesh J., Daneshi R.F. et al..: Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. – Plants-Basel 7: 100, 2018. 10.3390/plants7040100 PubMed DOI PMC
Schmidt S.B., Husted S.: The biochemical properties of manganese in plants. – Plants-Basel 8: 381, 2019. 10.3390/plants8100381 PubMed DOI PMC
Schwenkert S., Umate P., Dal Bosco C. et al..: PsbI affects the stability, function, and phosphorylation patterns of photosystem II assemblies in tobacco. – J. Biol. Chem. 281: 34227-34238, 2006. 10.1074/jbc.M604888200 PubMed DOI
Seidler A.: The extrinsic polypeptides of Photosystem II. – BBA-Bioenergetics 1277: 35-60, 1996. 10.1016/S0005-2728(96)00102-8 PubMed DOI
Shen J.R.: The structure of Photosystem II and the mechanism of water oxidation in photosynthesis. – Annu. Rev. Plant Biol. 66: 23-48, 2015. 10.1146/annurev-arplant-050312-120129 PubMed DOI
Shen J.R., Henmi T., Kamiya N.: Structure and function of photosystem II. – In: Fromme P. (ed.): Photosynthetic Protein Complexes: A Structural Approach. Pp. 83-106. Wiley-Blackwell, Weinheim: 2008. 10.1002/9783527623464.ch4 DOI
Shevela D., Kern J.F., Govindjee et al..: Photosystem II. – eLS 2: 1-20, 2021. 10.1002/9780470015902.a0029372 DOI
Shi L.X., Schröder W.P.: The low molecular mass subunits of the photosynthetic supracomplex, photosystem II. – BBA-Bioenergetics 1608: 75-96, 2004. 10.1016/j.bbabio.2003.12.004 PubMed DOI
Sun X.W., Peng L.W., Guo J.K. et al..: Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis. – Plant Cell 19: 1347-1361, 2007. 10.1105/tpc.106.049510 PubMed DOI PMC
Suorsa M., Sirpiö S., Allahverdiyeva Y. et al..: PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. – J. Biol. Chem. 281: 145-150, 2006. 10.1074/jbc.M510600200 PubMed DOI
Takahashi S., Whitney S.M., Badger M.R.: Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. – P. Natl. Acad. Sci. USA 106: 3237-3242, 2009. 10.1073/pnas.0808363106 PubMed DOI PMC
Teardo E., de Laureto P.P., Bergantino E. et al..: Evidences for interaction of PsbS with photosynthetic complexes in maize thylakoids. – BBA-Bioenergetics 1767: 703-711, 2007. 10.1016/j.bbabio.2006.12.002 PubMed DOI
Tikkanen M., Aro E.-M.: Integrative regulatory network of plant thylakoid energy transduction. – Trends Plant Sci. 19: 10-17, 2014. 10.1016/j.tplants.2013.09.003 PubMed DOI
Tikkanen M., Grieco M., Kangasjärvi S., Aro E.-M.: Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light. – Plant Physiol. 152: 723-735, 2010. 10.1104/pp.109.150250 PubMed DOI PMC
Tikkanen M., Grieco M., Nurmi M. et al..: Regulation of the photosynthetic apparatus under fluctuating growth light. – Philos. T. Roy. Soc. B 367: 3486-3493, 2012. 10.1098/rstb.2012.0067 PubMed DOI PMC
Tikkanen M., Mekala N.R., Aro E.-M.: Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. – BBA-Bioenergetics 1837: 210-215, 2014. 10.1016/j.bbabio.2013.10.001 PubMed DOI
Tikkanen M., Nurmi M., Kangasjärvi S., Aro E.-M.: Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. – BBA-Bioenergetics 1777: 1432-1437, 2008. 10.1016/j.bbabio.2008.08.004 PubMed DOI
Tomita M., Ifuku K., Sato F., Noguchi T.: FTIR evidence that the PsbP extrinsic protein induces protein conformational changes around the oxygen-evolving Mn cluster in Photosystem II. – Biochemistry-US 48: 6318-6325, 2009. 10.1021/bi9006308 PubMed DOI
Umena Y., Kawakami K., Shen J.R., Kamiya N.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. – Nature 473: 55-60, 2011. 10.1038/nature09913 PubMed DOI
Vinyard D.J., Ananyev G.M., Dismukes G.C.: Photosystem II: the reaction center of oxygenic photosynthesis. – Annu. Rev. Biochem. 82: 577-606, 2013. 10.1146/annurev-biochem-070511-100425 PubMed DOI
Wang Y., Noguchi K., Ono N. et al..: Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth. – P. Natl. Acad. Sci. USA 111: 533-538, 2014. 10.1073/pnas.1305438111 PubMed DOI PMC
Weisz D.A., Johnson V.M., Niedzwiedzki D.M. et al..: A novel chlorophyll protein complex in the repair cycle of photosystem II. – P. Natl. Acad. Sci. USA 116: 21907-21913, 2019. 10.1073/pnas.1909644116 PubMed DOI PMC
Wu G., Ma L., Yuan C. et al..: Formation of light-harvesting complex II aggregates from LHCII–PSI–LHCI complexes in rice plants under high light. – J. Exp. Bot. 72: 4938-4948, 2021a. 10.1093/jxb/erab188 PubMed DOI
Wu J., Hu J., Wang L. et al..: Responses of Phragmites australis to copper stress: A combined analysis of plant morphology, physiology and proteomics. – Plant Biol. 23: 351-362, 2021b. 10.1111/plb.13175 PubMed DOI
Xu P., Roy L.M., Croce R.: Functional organization of photosystem II antenna complexes: CP29 under the spotlight. – BBA-Bioenergetics 858: 815-822, 2017. 10.1016/j.bbabio.2017.07.003 PubMed DOI
Yamamoto Y., Aminaka R., Yoshioka M. et al..: Quality control of photosystem II: impact of light and heat stresses. – Photosynth. Res. 98: 589-608, 2008. 10.1007/s11120-008-9372-4 PubMed DOI
Yi X., Hargett S.R., Frankel L.K., Brickel T.M.: The PsbQ protein is required in Arabidopsis for Photosystem II assembly/stability and photoautotrophy under low light conditions. – J. Biol. Chem. 281: 26260-26267, 2006. 10.1074/jbc.M603582200 PubMed DOI
Zavafer A.: A theoretical framework of the hybrid mechanism of photosystem II photodamage. – Photosynth. Res. 149: 107-120, 2021. 10.1007/s11120-021-00843-1 PubMed DOI
Zsiros O., Nagy G., Patai R. et al..: Similarities and differences in the effects of toxic concentrations of cadmium and chromium on the structure and functions of thylakoid membranes in Chlorella variabilis. – Front. Plant Sci. 11: 1006, 2020. 10.3389/fpls.2020.01006 PubMed DOI PMC