Access to cationic polyhedral carboranes via dynamic cage surgery with N-heterocyclic carbenes

. 2021 Aug 17 ; 12 (1) : 4971. [epub] 20210817

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34404809

Grantová podpora
19-17156S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 34404809
PubMed Central PMC8371172
DOI 10.1038/s41467-021-25277-0
PII: 10.1038/s41467-021-25277-0
Knihovny.cz E-zdroje

Polyhedral boranes and heteroboranes appear almost exclusively as neutral or anionic species, while the cationic ones are protonated at exoskeletal heteroatoms or they are instable. Here we report the reactivity of 10-vertex closo-dicarbadecaboranes with one or two equivalents of N-heterocyclic carbene to 10-vertex nido mono- and/or bis-carbene adducts, respectively. These complexes easily undergo a reaction with HCl to give cages of stable and water soluble 10-vertex nido-type cations with protonation in the form of a BHB bridge or 10-vertex closo-type cations containing one carbene ligand when originating from closo-1,10-dicarbadecaborane. The reaction of a 10-vertex nido mono-carbene adduct with phosphorus trichloride gives nido-11-vertex 2-phospha-7,8-dicarbaundecaborane, which undergoes an oxidation of the phosphorus atom to P = O, while the product of a bis-carbene adduct reaction is best described as a distorted C2B6H8 fragment bridged by the (BH)2PCl2+ moiety.

Zobrazit více v PubMed

Grimes RN. Carboranes. 3rd edn. Academic Press; 2016.

Hosmane NS. Boron Science: New Technologies and Applications. CRC Press; 2012.

Hnyk D, McKee M. Boron: The Fifth Element. 1st edn. Springer; 2015.

Brown HC, Heim P. Diborane as a mild reducing agent for the conversion of primary, secondary, and tertiary amides into the corresponding amines. J. Am. Chem. Soc. 1964;86:3566–3567. doi: 10.1021/ja01071a037. DOI

Douvris C, Ozerov OV. Hydrodefluorination of perfluoroalkyl groups using silylium-carborane catalysts. Science. 2008;321:1188–1190. doi: 10.1126/science.1159979. PubMed DOI

Yao SL, et al. Bis(silylene)-stabilized monovalent nitrogen complexes. Angew. Chem. Int. Ed. 2020;59:22043–22047. doi: 10.1002/anie.202011598. PubMed DOI PMC

Yao SL, Kostenko A, Xiong Y, Růžička A, Driess M. Redox noninnocent monoatomic silicon(0) complex (“silylone”): its one-electron-reduction induces an intramolecular one-electron-oxidation of silicon(0) to silicon(I) J. Am. Chem. Soc. 2020;142:12608–12612. doi: 10.1021/jacs.0c06238. PubMed DOI

Xiong Y, Yao S, Szilvási T, Růžička A, Driess M. Homocoupling of CO and isocyanide mediated by a C,C′-bis(silylenyl)-substituted ortho-carborane. Chem. Commun. 2020;56:747–750. doi: 10.1039/C9CC08680C. PubMed DOI

Xiong Y, et al. New types of Ge2 and Ge4 assemblies stabilized by a carbanionic dicarborandiyl-silylene ligand. J. Am. Chem. Soc. 2021;143:6229–6237. doi: 10.1021/jacs.1c01722. PubMed DOI

Yao, S. et al. Changing the reactivity of zero- and mono-valent germanium with a redox non-innocent bis(silylenyl)carborane ligand. Angew. Chem. Int. Ed. 60, 14864–14868 (2021). PubMed PMC

Légaré M-A, et al. One-pot, room-temperature conversion of dinitrogen to ammonium chloride at a main-group element. Nat. Chem. 2020;12:1076–1080. doi: 10.1038/s41557-020-0520-6. PubMed DOI

Légaré M-A, et al. The reductive coupling of dinitrogen. Science. 2019;363:1329–1332. doi: 10.1126/science.aav9593. PubMed DOI

Légaré, M.-A. et al. Nitrogen fixation and reduction at boron. Science359, 896–900 (2018). PubMed

Wang Y, et al. A stable neutral diborene containing a B-B double bond. J. Am. Chem. Soc. 2007;129:12412–12413. doi: 10.1021/ja075932i. PubMed DOI

Légaré M-A, Pranckevicius C, Braunschweig H. Metallomimetic chemistry of boron. Chem. Rev. 2019;119:8231–8261. doi: 10.1021/acs.chemrev.8b00561. PubMed DOI

Goettel, J. T. & Braunschweig, H. Recent advances in boron-centered ligands and their transition metal complexes. Coord. Chem. Rev. 380, 184–200 (2019)

Lu W, Do DCH, Kinjo R. A flat carborane with multiple aromaticity beyond Wade-Mingos’ rules. Nat. Commun. 2020;11:3370. doi: 10.1038/s41467-020-17166-9. PubMed DOI PMC

Curran DP, et al. Synthesis and reactions of N‐heterocyclic carbene boranes. Angew. Chem. Int. Ed. 2011;50:10294–10317. doi: 10.1002/anie.201102717. PubMed DOI

Huynh HV. The Organometallic Chemistry of N-Heterocyclic Carbenes. Wiley; 2017.

Fisher SP, et al. Nonclassical applications of closo-carborane anions: from main group chemistry and catalysis to energy storage. Chem. Rev. 2019;119:8262–8290. doi: 10.1021/acs.chemrev.8b00551. PubMed DOI

Hosmane, N. S. & Eagling, R. (eds) Handbook of Boron Science with Applications in Organometallics, Catalysis, Materials and Medicine: Boron in Materials Chemistry Vol. 3 (World Scientific Publishing Company, 2018).

Brynda J, et al. Carborane-based carbonic anhydrase inhibitors. Angew. Chem. Int. Ed. 2013;52:13760–13763. doi: 10.1002/anie.201307583. PubMed DOI

Hosmane, N. S. & Eagling, R. Handbook of Boron Science with Applications in Organometallics, Catalysis, Materials and Medicine: Boron in Medicine Vol. 4 (World Scientific Publishing, 2018).

Williams RE. Carboranes and boranes; polyhedra and polyhedral fragments. Inorg. Chem. 1971;10:210–214. doi: 10.1021/ic50095a046. DOI

Wade, K. The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D15, 792–793 (1971)

Rudolph RW. Boranes and heteroboranes: a paradigm for the electron requirements of clusters? Acc. Chem. Res. 1976;9:446–452. doi: 10.1021/ar50108a004. DOI

Mingos, D. M. P. Polyhedral skeletal electron pair approach. A generalised principle for condensed polyhedra. J. Chem. Soc. Chem. Commun. 12, 706–708 (1983)

Mingos DMP. Polyhedral skeletal electron pair approach. Acc. Chem. Res. 1984;17:311–319. doi: 10.1021/ar00105a003. DOI

Stauber JM, et al. A super-oxidized radical cationic icosahedral boron cluster. J. Am. Chem. Soc. 2020;142:12948–12953. doi: 10.1021/jacs.0c06159. PubMed DOI

Hamilton, E. J. M. et al. Unusual cationic tris(dimethylsulfide)-substituted closo-boranes: preparation and characterization of [1,7,9-(Me2S)3-B12H9] BF4 and [1,2,10-(Me2S)3-B10H7] BF4. Inorg. Chem. 51, 2374–2380 (2012).. PubMed

Ioppolo JA, Clegg JK, Rendina LM. Dicarba-closo-dodecaborane(12) derivatives of phosphonium salts: easy formation of nido-carborane phosphonium zwitterions. Dalton Trans. 2007;20:1982–1985. doi: 10.1039/b700689f. PubMed DOI

Kataki-Anastasakou. A. et. al. Carborane guests for cucurbit[7]uril facilitate strong binding and on-demand removal. J. Am. Chem. Soc. 142, 20513–20518 (2020). PubMed PMC

Willans CE, Kilner CA, Fox MA. Deboronation and deprotonation of ortho‐carborane with N‐heterocyclic carbenes. Chem. Eur. J. 2010;16:10644–10648. doi: 10.1002/chem.201001730. PubMed DOI

Zheng F, Xie Z. Reaction of o-carboranes with sterically demanding N-heterocyclic carbene: synthesis and structural characterization of 1:1 adducts. Dalton Trans. 2012;41:12907–12914. doi: 10.1039/c2dt31765f. PubMed DOI

Vrána J, et al. Investigation of thiaborane closo–nido conversion pathways promoted by N-heterocyclic carbenes. Inorg. Chem. 2019;58:2471–2482. doi: 10.1021/acs.inorgchem.8b03037. PubMed DOI

Wang H, Zhang J, Lin Z, Xie Z. Synthesis and structural characterization of carbene-stabilized carborane-fused azaborolyl radical cation and dicarbollyl-fused azaborole. Organometallics. 2016;35:2579–2582. doi: 10.1021/acs.organomet.6b00545. DOI

Wang H, Chan TL, Xie Z. Cyclic amino(carboranyl) silylene: synthesis, structure and reactivity. Chem. Commun. 2018;54:385–388. doi: 10.1039/C7CC08690C. PubMed DOI

Wang H, Zhang J, Xie Z. Reversible photothermal isomerization of carborane-fused azaborole to borirane: synthesis and reactivity of carbene-stabilized carborane-fused borirane. Angew. Chem. Int. Ed. 2017;56:9198–9201. doi: 10.1002/anie.201704642. PubMed DOI

Zheng F, Xie Z. Reaction of N-heterocyclic carbenes with 13-vertex closo-carboranes: synthesis and structural characterization of zwitterionic salts of 13-vertex nido-carboranes. Org. Chem. Front. 2015;2:55–59. doi: 10.1039/C4QO00287C. DOI

Zhang J, Xie Z. Synthesis, structure, and reactivity of 13- and 14-vertex carboranes. Acc. Chem. Res. 2014;47:1623–1633. doi: 10.1021/ar500091h. PubMed DOI

Adams RD, Kiprotich J, Peryshkov DV, Wong YO. Cage opening of a carborane ligand by metal cluster complexes. Chem. Eur. J. 2016;22:6501–6504. doi: 10.1002/chem.201601075. PubMed DOI

Tok, O. L. et al. Click dehydrogenation of carbon-substituted nido-5,6-C2B8H12 carboranes: a general route to closo-1,2-C2B8H10 derivatives. Inorg. Chem. 55, 8839–8843 (2016). PubMed

Bakardjiev, M. Transformation of various multicenter bondings within bicapped-square antiprismatic motifs: Z-rearrangement. Dalton Trans. 10.1039/D0DT04225K (2021). PubMed

Bakardjiev M, Stibr B, Holub J, Padělková Z, Růžička A. Simple synthesis, halogenation, and rearrangement of closo-1,6-C2B8H10. Organometallics. 2015;34:450–454. doi: 10.1021/om500988z. DOI

Plesek J, Stibr B, Hermanek S. Chemistry of boranes. VI. The reaction of bis-dialkylsulphido-dodecahydrodecaboranes with hydrohalogens. General preparation of 6- (or 5-)halogentridecahydrodecaboranes. Collect Czech. Chem. Commun. 1966;31:4744–4745. doi: 10.1135/cccc19664744. DOI

Henderson W. & McIndoe J. S. Mass Spectrometry of Inorganic, Coordination and Organometallic Compounds: Tools - Techniques – Tips (Wiley, 2005).

Štíbr, B. et al. Phosphacarborane chemistry: the synthesis of the parent phosphadicarbaboranes nido-7,8,9-PC2B8H11 and [nido-7,8,9-PC2B8H10]−, and their 10-Cl derivatives–analogs of the cyclopentadienide anion. Eur. J. Inorg. Chem. 9, 2320–2326 (2002)

Kudinov, A. R. et al. Synthesis, structure, electrochemistry, and Mössbauer effect studies of the ferraphosphadicarbollides [(C5R5)Fe(PC2B8H10)] (R = H, Me). Eur. J. Inorg. Chem. 13, 4190–4196 (2007).

Brown, D. A. et al. A Pentuply-bridging carbonyl group: crystal and molecular structure of a salt of the l-Oxo-2-phenyl-1,2-dicarbadodecaborate(12) anion, [H] +[O(Ph)C2B10H10]-(L = 1,8-N,N,N’,N’-tetramethylnaphthalenediamine). J. Chem. Soc. Chem. Commun. 12, 889–891 (1987).

Holub J, Ormsby DL, Kennedy JD, Greatrex R, Štíbr B. Phosphacarborane chemistry. New cluster isomers in the eleven-vertex nido-phosphadicarbaborane series: synthesis of the nido phosphadicarbaboranes 7,8,11-PC2B8H11, [7,8,11-PC2B8H10]− and 7-Ph-7,8,10-PC2B8H10. Inorg. Chem. Commun. 2000;3:178–181. doi: 10.1016/S1387-7003(00)00039-3. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...