Access to cationic polyhedral carboranes via dynamic cage surgery with N-heterocyclic carbenes
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-17156S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
34404809
PubMed Central
PMC8371172
DOI
10.1038/s41467-021-25277-0
PII: 10.1038/s41467-021-25277-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Polyhedral boranes and heteroboranes appear almost exclusively as neutral or anionic species, while the cationic ones are protonated at exoskeletal heteroatoms or they are instable. Here we report the reactivity of 10-vertex closo-dicarbadecaboranes with one or two equivalents of N-heterocyclic carbene to 10-vertex nido mono- and/or bis-carbene adducts, respectively. These complexes easily undergo a reaction with HCl to give cages of stable and water soluble 10-vertex nido-type cations with protonation in the form of a BHB bridge or 10-vertex closo-type cations containing one carbene ligand when originating from closo-1,10-dicarbadecaborane. The reaction of a 10-vertex nido mono-carbene adduct with phosphorus trichloride gives nido-11-vertex 2-phospha-7,8-dicarbaundecaborane, which undergoes an oxidation of the phosphorus atom to P = O, while the product of a bis-carbene adduct reaction is best described as a distorted C2B6H8 fragment bridged by the (BH)2PCl2+ moiety.
Department of Chemistry and Biochemistry Auburn University Auburn AL USA
Institute of Inorganic Chemistry Czech Academy of Sciences Řež Czech Republic
Zobrazit více v PubMed
Grimes RN. Carboranes. 3rd edn. Academic Press; 2016.
Hosmane NS. Boron Science: New Technologies and Applications. CRC Press; 2012.
Hnyk D, McKee M. Boron: The Fifth Element. 1st edn. Springer; 2015.
Brown HC, Heim P. Diborane as a mild reducing agent for the conversion of primary, secondary, and tertiary amides into the corresponding amines. J. Am. Chem. Soc. 1964;86:3566–3567. doi: 10.1021/ja01071a037. DOI
Douvris C, Ozerov OV. Hydrodefluorination of perfluoroalkyl groups using silylium-carborane catalysts. Science. 2008;321:1188–1190. doi: 10.1126/science.1159979. PubMed DOI
Yao SL, et al. Bis(silylene)-stabilized monovalent nitrogen complexes. Angew. Chem. Int. Ed. 2020;59:22043–22047. doi: 10.1002/anie.202011598. PubMed DOI PMC
Yao SL, Kostenko A, Xiong Y, Růžička A, Driess M. Redox noninnocent monoatomic silicon(0) complex (“silylone”): its one-electron-reduction induces an intramolecular one-electron-oxidation of silicon(0) to silicon(I) J. Am. Chem. Soc. 2020;142:12608–12612. doi: 10.1021/jacs.0c06238. PubMed DOI
Xiong Y, Yao S, Szilvási T, Růžička A, Driess M. Homocoupling of CO and isocyanide mediated by a C,C′-bis(silylenyl)-substituted ortho-carborane. Chem. Commun. 2020;56:747–750. doi: 10.1039/C9CC08680C. PubMed DOI
Xiong Y, et al. New types of Ge2 and Ge4 assemblies stabilized by a carbanionic dicarborandiyl-silylene ligand. J. Am. Chem. Soc. 2021;143:6229–6237. doi: 10.1021/jacs.1c01722. PubMed DOI
Yao, S. et al. Changing the reactivity of zero- and mono-valent germanium with a redox non-innocent bis(silylenyl)carborane ligand. Angew. Chem. Int. Ed. 60, 14864–14868 (2021). PubMed PMC
Légaré M-A, et al. One-pot, room-temperature conversion of dinitrogen to ammonium chloride at a main-group element. Nat. Chem. 2020;12:1076–1080. doi: 10.1038/s41557-020-0520-6. PubMed DOI
Légaré M-A, et al. The reductive coupling of dinitrogen. Science. 2019;363:1329–1332. doi: 10.1126/science.aav9593. PubMed DOI
Légaré, M.-A. et al. Nitrogen fixation and reduction at boron. Science359, 896–900 (2018). PubMed
Wang Y, et al. A stable neutral diborene containing a B-B double bond. J. Am. Chem. Soc. 2007;129:12412–12413. doi: 10.1021/ja075932i. PubMed DOI
Légaré M-A, Pranckevicius C, Braunschweig H. Metallomimetic chemistry of boron. Chem. Rev. 2019;119:8231–8261. doi: 10.1021/acs.chemrev.8b00561. PubMed DOI
Goettel, J. T. & Braunschweig, H. Recent advances in boron-centered ligands and their transition metal complexes. Coord. Chem. Rev. 380, 184–200 (2019)
Lu W, Do DCH, Kinjo R. A flat carborane with multiple aromaticity beyond Wade-Mingos’ rules. Nat. Commun. 2020;11:3370. doi: 10.1038/s41467-020-17166-9. PubMed DOI PMC
Curran DP, et al. Synthesis and reactions of N‐heterocyclic carbene boranes. Angew. Chem. Int. Ed. 2011;50:10294–10317. doi: 10.1002/anie.201102717. PubMed DOI
Huynh HV. The Organometallic Chemistry of N-Heterocyclic Carbenes. Wiley; 2017.
Fisher SP, et al. Nonclassical applications of closo-carborane anions: from main group chemistry and catalysis to energy storage. Chem. Rev. 2019;119:8262–8290. doi: 10.1021/acs.chemrev.8b00551. PubMed DOI
Hosmane, N. S. & Eagling, R. (eds) Handbook of Boron Science with Applications in Organometallics, Catalysis, Materials and Medicine: Boron in Materials Chemistry Vol. 3 (World Scientific Publishing Company, 2018).
Brynda J, et al. Carborane-based carbonic anhydrase inhibitors. Angew. Chem. Int. Ed. 2013;52:13760–13763. doi: 10.1002/anie.201307583. PubMed DOI
Hosmane, N. S. & Eagling, R. Handbook of Boron Science with Applications in Organometallics, Catalysis, Materials and Medicine: Boron in Medicine Vol. 4 (World Scientific Publishing, 2018).
Williams RE. Carboranes and boranes; polyhedra and polyhedral fragments. Inorg. Chem. 1971;10:210–214. doi: 10.1021/ic50095a046. DOI
Wade, K. The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. J. Chem. Soc. D15, 792–793 (1971)
Rudolph RW. Boranes and heteroboranes: a paradigm for the electron requirements of clusters? Acc. Chem. Res. 1976;9:446–452. doi: 10.1021/ar50108a004. DOI
Mingos, D. M. P. Polyhedral skeletal electron pair approach. A generalised principle for condensed polyhedra. J. Chem. Soc. Chem. Commun. 12, 706–708 (1983)
Mingos DMP. Polyhedral skeletal electron pair approach. Acc. Chem. Res. 1984;17:311–319. doi: 10.1021/ar00105a003. DOI
Stauber JM, et al. A super-oxidized radical cationic icosahedral boron cluster. J. Am. Chem. Soc. 2020;142:12948–12953. doi: 10.1021/jacs.0c06159. PubMed DOI
Hamilton, E. J. M. et al. Unusual cationic tris(dimethylsulfide)-substituted closo-boranes: preparation and characterization of [1,7,9-(Me2S)3-B12H9] BF4 and [1,2,10-(Me2S)3-B10H7] BF4. Inorg. Chem. 51, 2374–2380 (2012).. PubMed
Ioppolo JA, Clegg JK, Rendina LM. Dicarba-closo-dodecaborane(12) derivatives of phosphonium salts: easy formation of nido-carborane phosphonium zwitterions. Dalton Trans. 2007;20:1982–1985. doi: 10.1039/b700689f. PubMed DOI
Kataki-Anastasakou. A. et. al. Carborane guests for cucurbit[7]uril facilitate strong binding and on-demand removal. J. Am. Chem. Soc. 142, 20513–20518 (2020). PubMed PMC
Willans CE, Kilner CA, Fox MA. Deboronation and deprotonation of ortho‐carborane with N‐heterocyclic carbenes. Chem. Eur. J. 2010;16:10644–10648. doi: 10.1002/chem.201001730. PubMed DOI
Zheng F, Xie Z. Reaction of o-carboranes with sterically demanding N-heterocyclic carbene: synthesis and structural characterization of 1:1 adducts. Dalton Trans. 2012;41:12907–12914. doi: 10.1039/c2dt31765f. PubMed DOI
Vrána J, et al. Investigation of thiaborane closo–nido conversion pathways promoted by N-heterocyclic carbenes. Inorg. Chem. 2019;58:2471–2482. doi: 10.1021/acs.inorgchem.8b03037. PubMed DOI
Wang H, Zhang J, Lin Z, Xie Z. Synthesis and structural characterization of carbene-stabilized carborane-fused azaborolyl radical cation and dicarbollyl-fused azaborole. Organometallics. 2016;35:2579–2582. doi: 10.1021/acs.organomet.6b00545. DOI
Wang H, Chan TL, Xie Z. Cyclic amino(carboranyl) silylene: synthesis, structure and reactivity. Chem. Commun. 2018;54:385–388. doi: 10.1039/C7CC08690C. PubMed DOI
Wang H, Zhang J, Xie Z. Reversible photothermal isomerization of carborane-fused azaborole to borirane: synthesis and reactivity of carbene-stabilized carborane-fused borirane. Angew. Chem. Int. Ed. 2017;56:9198–9201. doi: 10.1002/anie.201704642. PubMed DOI
Zheng F, Xie Z. Reaction of N-heterocyclic carbenes with 13-vertex closo-carboranes: synthesis and structural characterization of zwitterionic salts of 13-vertex nido-carboranes. Org. Chem. Front. 2015;2:55–59. doi: 10.1039/C4QO00287C. DOI
Zhang J, Xie Z. Synthesis, structure, and reactivity of 13- and 14-vertex carboranes. Acc. Chem. Res. 2014;47:1623–1633. doi: 10.1021/ar500091h. PubMed DOI
Adams RD, Kiprotich J, Peryshkov DV, Wong YO. Cage opening of a carborane ligand by metal cluster complexes. Chem. Eur. J. 2016;22:6501–6504. doi: 10.1002/chem.201601075. PubMed DOI
Tok, O. L. et al. Click dehydrogenation of carbon-substituted nido-5,6-C2B8H12 carboranes: a general route to closo-1,2-C2B8H10 derivatives. Inorg. Chem. 55, 8839–8843 (2016). PubMed
Bakardjiev, M. Transformation of various multicenter bondings within bicapped-square antiprismatic motifs: Z-rearrangement. Dalton Trans. 10.1039/D0DT04225K (2021). PubMed
Bakardjiev M, Stibr B, Holub J, Padělková Z, Růžička A. Simple synthesis, halogenation, and rearrangement of closo-1,6-C2B8H10. Organometallics. 2015;34:450–454. doi: 10.1021/om500988z. DOI
Plesek J, Stibr B, Hermanek S. Chemistry of boranes. VI. The reaction of bis-dialkylsulphido-dodecahydrodecaboranes with hydrohalogens. General preparation of 6- (or 5-)halogentridecahydrodecaboranes. Collect Czech. Chem. Commun. 1966;31:4744–4745. doi: 10.1135/cccc19664744. DOI
Henderson W. & McIndoe J. S. Mass Spectrometry of Inorganic, Coordination and Organometallic Compounds: Tools - Techniques – Tips (Wiley, 2005).
Štíbr, B. et al. Phosphacarborane chemistry: the synthesis of the parent phosphadicarbaboranes nido-7,8,9-PC2B8H11 and [nido-7,8,9-PC2B8H10]−, and their 10-Cl derivatives–analogs of the cyclopentadienide anion. Eur. J. Inorg. Chem. 9, 2320–2326 (2002)
Kudinov, A. R. et al. Synthesis, structure, electrochemistry, and Mössbauer effect studies of the ferraphosphadicarbollides [(C5R5)Fe(PC2B8H10)] (R = H, Me). Eur. J. Inorg. Chem. 13, 4190–4196 (2007).
Brown, D. A. et al. A Pentuply-bridging carbonyl group: crystal and molecular structure of a salt of the l-Oxo-2-phenyl-1,2-dicarbadodecaborate(12) anion, [H] +[O(Ph)C2B10H10]-(L = 1,8-N,N,N’,N’-tetramethylnaphthalenediamine). J. Chem. Soc. Chem. Commun. 12, 889–891 (1987).
Holub J, Ormsby DL, Kennedy JD, Greatrex R, Štíbr B. Phosphacarborane chemistry. New cluster isomers in the eleven-vertex nido-phosphadicarbaborane series: synthesis of the nido phosphadicarbaboranes 7,8,11-PC2B8H11, [7,8,11-PC2B8H10]− and 7-Ph-7,8,10-PC2B8H10. Inorg. Chem. Commun. 2000;3:178–181. doi: 10.1016/S1387-7003(00)00039-3. DOI
Boron-based octahedral dication experimentally detected: DFT surface confirms its availability