• This record comes from PubMed

Changing the Reactivity of Zero- and Mono-Valent Germanium with a Redox Non-Innocent Bis(silylenyl)carborane Ligand

. 2021 Jun 25 ; 60 (27) : 14864-14868. [epub] 20210601

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
EXC 2008 - 390540038 Deutsche Forschungsgemeinschaft
DR-226/21-1 Deutsche Forschungsgemeinschaft

Using the chelating C,C'-bis(silylenyl)-ortho-dicarborane ligand, 1,2-(RSi)2 -1,2-C2 B10 H10 [R=PhC(NtBu)2 ], leads to the monoatomic zero-valent Ge complex ("germylone") 3. The redox non-innocent character of the carborane scaffold has a drastic influence on the reactivity of 3 towards reductants and oxidants. Reduction of 3 with one molar equivalent of potassium naphthalenide (KC10 H8 ) causes facile oxidation of Ge0 to GeI along with a two-electron reduction of the C2 B10 cluster core and subsequent GeI -GeI coupling to form the dianionic bis(silylene)-supported Ge2 complex 4. In contrast, oxidation of 3 with one molar equivalent of [Cp2 Fe][B{C6 H3 (CF3 )2 }4 ] as a one-electron oxidant furnishes the dicationic bis(silylene)-supported Ge2 complex 5. The Ge0 atom in 3 acts as donor towards GeCl2 to form the trinuclear mixed-valent Ge0 →GeII ←Ge0 complex 6, from which dechlorination with KC10 H8 affords the neutral Ge2 complex 7 as a diradical species.

See more in PubMed

Majhi P. K., Sasamori T., Chem. Eur. J. 2018, 24, 9441–9455. PubMed

Frenking G., Hermann M., Andrada D. M., Holzmann N., Chem. Soc. Rev. 2016, 45, 1129–1144. PubMed

Zhao L., Hermann M., Holzmann N., Frenking G., Coord. Chem. Rev. 2017, 344, 163–204.

Yao S., Xiong Y., Driess M., Acc. Chem. Res. 2017, 50, 2026–2037. PubMed

Tonner R., Öxler F., Neumüller B., Petz W., Frenking G., Angew. Chem. Int. Ed. 2006, 45, 8038–8042; PubMed

Angew. Chem. 2006, 118, 8206–8211.

Tonner R., Frenking G., Angew. Chem. Int. Ed. 2007, 46, 8695–8698; PubMed

Angew. Chem. 2007, 119, 8850–8853. PubMed

Alcarazo M., Lehmann C. W., Anoop A., Thiel W., Fu A., Nat. Chem. 2009, 1, 295–301. PubMed

Dyker C. A., Bertrand G., Nat. Chem. 2009, 1, 265–266. PubMed

Dyker C. A., Bertrand G., Science 2008, 321, 1050–1051. PubMed

Flock J., Suljanovic A., Torvisco A., Schoefberger W., Gerke B., Pöttgen R., Fischer R. C., Flock M., Chem. Eur. J. 2013, 19, 15504–15517. PubMed

Chu T., Belding L., Van Der Est A., Dudding T., Korobkov I., Nikonov G. I., Angew. Chem. Int. Ed. 2014, 53, 2711–2715; PubMed

Angew. Chem. 2014, 126, 2749–2753.

Su B., Ganguly R., Li Y., Kinjo R., Angew. Chem. Int. Ed. 2014, 53, 13106–13109; PubMed

Angew. Chem. 2014, 126, 13322–13325.

Nguyen M. T., Gusev D., Dmitrienko A., Gabidullin B. M., Spasyuk D., Pilkington M., Nikonov G. I., J. Am. Chem. Soc. 2020, 142, 5852–5861. PubMed

Dyker C. A., Lavallo V., Donnadieu B., Bertrand G., Angew. Chem. Int. Ed. 2008, 47, 3206–3209; PubMed

Angew. Chem. 2008, 120, 3250–3253.

Fürstner A., Alcarazo M., Goddard R., Lehmann C. W., Angew. Chem. Int. Ed. 2008, 47, 3210–3214; PubMed

Angew. Chem. 2008, 120, 3254–3258.

Xiong Y., Yao S., Inoue S., Epping J. D., Driess M., Angew. Chem. Int. Ed. 2013, 52, 7147–7150; PubMed

Angew. Chem. 2013, 125, 7287–7291.

Xiong Y., Yao S., Tan G., Inoue S., Driess M., J. Am. Chem. Soc. 2013, 135, 5004–5007. PubMed

Mondal K. C., Roesky H. W., Schwarzer M. C., Frenking G., Niepötter B., Wolf H., Herbst-Irmer R., Stalke D., Angew. Chem. Int. Ed. 2013, 52, 2963–2967; PubMed

Angew. Chem. 2013, 125, 3036–3040.

Li Y., Mondal K. C., Roesky H. W., Zhu H., Stollberg P., Herbst-Irmer R., Stalke D., Andrada D. M., J. Am. Chem. Soc. 2013, 135, 12422–12428. PubMed

Wang Y., Karni M., Yao S., Kaushansky A., Apeloig Y., Driess M., J. Am. Chem. Soc. 2019, 141, 12916–12927. PubMed

Wang Y., Karni M., Yao S., Apeloig Y., Driess M., J. Am. Chem. Soc. 2019, 141, 1655–1664. PubMed

Yao S., Kostenko A., Xiong Y., Ruzicka A., Driess M., J. Am. Chem. Soc. 2020, 142, 12608–12612. PubMed

Ishida S., Iwamoto T., Kabuto C., Kira M., Nature 2003, 421, 725–727. PubMed

Keuter J., Hepp A., Mück-Lichtenfeld C., Lips F., Angew. Chem. Int. Ed. 2019, 58, 4395–4399; PubMed

Angew. Chem. 2019, 131, 4440–4444.

Iwamoto T., Masuda H., Kabuto C., Kira M., Organometallics 2005, 24, 197–199.

Sugahara T., Sasamori T., Tokitoh N., Angew. Chem. Int. Ed. 2017, 56, 9920–9923; PubMed

Angew. Chem. 2017, 129, 10052–10055.

Zhou Y.-P., Raoufmoghaddam S., Szilvási T., Driess M., Angew. Chem. Int. Ed. 2016, 55, 12868–12872; PubMed

Angew. Chem. 2016, 128, 13060–13064.

Yao S., Szilvási T., Xiong Y., Lorent C., Ruzicka A., Driess M., Angew. Chem. Int. Ed. 2020, 59, 22043–22047; PubMed PMC

Angew. Chem. 2020, 132, 22227–22231.

Xiong Y., Yao S., Szilvási T., Ballestero-Martínez E., Grützmacher H., Driess M., Angew. Chem. Int. Ed. 2017, 56, 4333–4336; PubMed

Angew. Chem. 2017, 129, 4397–4400.

Nagendran S., Sen S. S., Roesky H. W., Koley D., Grubmüller H., Pal A., Herbst-Irmer R., Organometallics 2008, 27, 5459–5463.

Deposition Numbers 2070702 (3), 2070706 (4), 2070703 (5), 2070704 (6) and 2070705 (7) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...