Changing the Reactivity of Zero- and Mono-Valent Germanium with a Redox Non-Innocent Bis(silylenyl)carborane Ligand
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
EXC 2008 - 390540038
Deutsche Forschungsgemeinschaft
DR-226/21-1
Deutsche Forschungsgemeinschaft
PubMed
33909944
PubMed Central
PMC8252802
DOI
10.1002/anie.202103769
Knihovny.cz E-resources
- Keywords
- carboranes, germanium, germylone, redox non-innocent ligands, tetrylones,
- Publication type
- Journal Article MeSH
Using the chelating C,C'-bis(silylenyl)-ortho-dicarborane ligand, 1,2-(RSi)2 -1,2-C2 B10 H10 [R=PhC(NtBu)2 ], leads to the monoatomic zero-valent Ge complex ("germylone") 3. The redox non-innocent character of the carborane scaffold has a drastic influence on the reactivity of 3 towards reductants and oxidants. Reduction of 3 with one molar equivalent of potassium naphthalenide (KC10 H8 ) causes facile oxidation of Ge0 to GeI along with a two-electron reduction of the C2 B10 cluster core and subsequent GeI -GeI coupling to form the dianionic bis(silylene)-supported Ge2 complex 4. In contrast, oxidation of 3 with one molar equivalent of [Cp2 Fe][B{C6 H3 (CF3 )2 }4 ] as a one-electron oxidant furnishes the dicationic bis(silylene)-supported Ge2 complex 5. The Ge0 atom in 3 acts as donor towards GeCl2 to form the trinuclear mixed-valent Ge0 →GeII ←Ge0 complex 6, from which dechlorination with KC10 H8 affords the neutral Ge2 complex 7 as a diradical species.
See more in PubMed
Majhi P. K., Sasamori T., Chem. Eur. J. 2018, 24, 9441–9455. PubMed
Frenking G., Hermann M., Andrada D. M., Holzmann N., Chem. Soc. Rev. 2016, 45, 1129–1144. PubMed
Zhao L., Hermann M., Holzmann N., Frenking G., Coord. Chem. Rev. 2017, 344, 163–204.
Yao S., Xiong Y., Driess M., Acc. Chem. Res. 2017, 50, 2026–2037. PubMed
Tonner R., Öxler F., Neumüller B., Petz W., Frenking G., Angew. Chem. Int. Ed. 2006, 45, 8038–8042; PubMed
Angew. Chem. 2006, 118, 8206–8211.
Tonner R., Frenking G., Angew. Chem. Int. Ed. 2007, 46, 8695–8698; PubMed
Angew. Chem. 2007, 119, 8850–8853. PubMed
Alcarazo M., Lehmann C. W., Anoop A., Thiel W., Fu A., Nat. Chem. 2009, 1, 295–301. PubMed
Dyker C. A., Bertrand G., Nat. Chem. 2009, 1, 265–266. PubMed
Dyker C. A., Bertrand G., Science 2008, 321, 1050–1051. PubMed
Flock J., Suljanovic A., Torvisco A., Schoefberger W., Gerke B., Pöttgen R., Fischer R. C., Flock M., Chem. Eur. J. 2013, 19, 15504–15517. PubMed
Chu T., Belding L., Van Der Est A., Dudding T., Korobkov I., Nikonov G. I., Angew. Chem. Int. Ed. 2014, 53, 2711–2715; PubMed
Angew. Chem. 2014, 126, 2749–2753.
Su B., Ganguly R., Li Y., Kinjo R., Angew. Chem. Int. Ed. 2014, 53, 13106–13109; PubMed
Angew. Chem. 2014, 126, 13322–13325.
Nguyen M. T., Gusev D., Dmitrienko A., Gabidullin B. M., Spasyuk D., Pilkington M., Nikonov G. I., J. Am. Chem. Soc. 2020, 142, 5852–5861. PubMed
Dyker C. A., Lavallo V., Donnadieu B., Bertrand G., Angew. Chem. Int. Ed. 2008, 47, 3206–3209; PubMed
Angew. Chem. 2008, 120, 3250–3253.
Fürstner A., Alcarazo M., Goddard R., Lehmann C. W., Angew. Chem. Int. Ed. 2008, 47, 3210–3214; PubMed
Angew. Chem. 2008, 120, 3254–3258.
Xiong Y., Yao S., Inoue S., Epping J. D., Driess M., Angew. Chem. Int. Ed. 2013, 52, 7147–7150; PubMed
Angew. Chem. 2013, 125, 7287–7291.
Xiong Y., Yao S., Tan G., Inoue S., Driess M., J. Am. Chem. Soc. 2013, 135, 5004–5007. PubMed
Mondal K. C., Roesky H. W., Schwarzer M. C., Frenking G., Niepötter B., Wolf H., Herbst-Irmer R., Stalke D., Angew. Chem. Int. Ed. 2013, 52, 2963–2967; PubMed
Angew. Chem. 2013, 125, 3036–3040.
Li Y., Mondal K. C., Roesky H. W., Zhu H., Stollberg P., Herbst-Irmer R., Stalke D., Andrada D. M., J. Am. Chem. Soc. 2013, 135, 12422–12428. PubMed
Wang Y., Karni M., Yao S., Kaushansky A., Apeloig Y., Driess M., J. Am. Chem. Soc. 2019, 141, 12916–12927. PubMed
Wang Y., Karni M., Yao S., Apeloig Y., Driess M., J. Am. Chem. Soc. 2019, 141, 1655–1664. PubMed
Yao S., Kostenko A., Xiong Y., Ruzicka A., Driess M., J. Am. Chem. Soc. 2020, 142, 12608–12612. PubMed
Ishida S., Iwamoto T., Kabuto C., Kira M., Nature 2003, 421, 725–727. PubMed
Keuter J., Hepp A., Mück-Lichtenfeld C., Lips F., Angew. Chem. Int. Ed. 2019, 58, 4395–4399; PubMed
Angew. Chem. 2019, 131, 4440–4444.
Iwamoto T., Masuda H., Kabuto C., Kira M., Organometallics 2005, 24, 197–199.
Sugahara T., Sasamori T., Tokitoh N., Angew. Chem. Int. Ed. 2017, 56, 9920–9923; PubMed
Angew. Chem. 2017, 129, 10052–10055.
Zhou Y.-P., Raoufmoghaddam S., Szilvási T., Driess M., Angew. Chem. Int. Ed. 2016, 55, 12868–12872; PubMed
Angew. Chem. 2016, 128, 13060–13064.
Yao S., Szilvási T., Xiong Y., Lorent C., Ruzicka A., Driess M., Angew. Chem. Int. Ed. 2020, 59, 22043–22047; PubMed PMC
Angew. Chem. 2020, 132, 22227–22231.
Xiong Y., Yao S., Szilvási T., Ballestero-Martínez E., Grützmacher H., Driess M., Angew. Chem. Int. Ed. 2017, 56, 4333–4336; PubMed
Angew. Chem. 2017, 129, 4397–4400.
Nagendran S., Sen S. S., Roesky H. W., Koley D., Grubmüller H., Pal A., Herbst-Irmer R., Organometallics 2008, 27, 5459–5463.
Deposition Numbers 2070702 (3), 2070706 (4), 2070703 (5), 2070704 (6) and 2070705 (7) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures. DOI
Access to cationic polyhedral carboranes via dynamic cage surgery with N-heterocyclic carbenes