Genetic Association in the Maintenance of the Mitochondrial Microenvironment and Sperm Capacity
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34527175
PubMed Central
PMC8437596
DOI
10.1155/2021/5561395
Knihovny.cz E-zdroje
- MeSH
- DNA-glykosylasy genetika metabolismus MeSH
- frekvence genu MeSH
- lidé MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- mitochondriální DNA genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- motilita spermií fyziologie MeSH
- mužská infertilita genetika patologie MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku farmakologie MeSH
- polymorfismus genetický MeSH
- spermie metabolismus fyziologie MeSH
- superoxiddismutasa genetika metabolismus MeSH
- uncoupling protein 2 genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA-glykosylasy MeSH
- mitochondriální DNA MeSH
- oxoguanine glycosylase 1, human MeSH Prohlížeč
- peroxid vodíku MeSH
- superoxiddismutasa MeSH
- UCP2 protein, human MeSH Prohlížeč
- uncoupling protein 2 MeSH
Sperm motility is one of the major determinants of male fertility. Since sperm need a great deal of energy to support their fast movement by active metabolism, they are thus extremely vulnerable to oxidative damage by the reactive oxygen species (ROS) and other free radicals generated as byproducts in the electron transport chain. The present study is aimed at understanding the impact of a mitochondrial oxidizing/reducing microenvironment in the etiopathology of male infertility. We detected the mitochondrial DNA (mtDNA) 4,977 bp deletion in human sperm. We examined the gene mutation of ATP synthase 6 (ATPase6 m.T8993G) in ATP generation, the gene polymorphisms of uncoupling protein 2 (UCP2, G-866A) in the uncoupling of oxidative phosphorylation, the role of genes such as manganese superoxide dismutase (MnSOD, C47T) and catalase (CAT, C-262T) in the scavenging system in neutralizing reactive oxygen species, and the role of human 8-oxoguanine DNA glycosylase (hOGG1, C1245G) in 8-hydroxy-2'-deoxyguanosine (8-OHdG) repair. We found that the sperm with higher motility were found to have a higher mitochondrial membrane potential and mitochondrial bioenergetics. The genotype frequencies of UCP2 G-866A, MnSOD C47T, and CAT C-262T were found to be significantly different among the fertile subjects, the infertile subjects with more than 50% motility, and the infertile subjects with less than 50% motility. A higher prevalence of the mtDNA 4,977 bp deletion was found in the subjects with impaired sperm motility and fertility. Furthermore, we found that there were significant differences between the occurrences of the mtDNA 4,977 bp deletion and MnSOD (C47T) and hOGG1 (C1245G). In conclusion, the maintenance of the mitochondrial redox microenvironment and genome integrity is an important issue in sperm motility and fertility.
Center for Reproductive Medicine and Sciences Taipei Medical University Hospital Taipei Taiwan
Department of Gynecology and Obstetrics Taipei City Hospital Ren Ai Branch Taipei Taiwan
Department of Urology College of Medicine Taipei Medical University Taipei Taiwan
Department of Urology School of Medicine Fu Jen Catholic University New Taipei Taiwan
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Division of Urology Department of Surgery Shin Kong Wu Ho Su Memorial Hospital Taipei Taiwan
Zobrazit více v PubMed
Hafez B., Goff L., Hafez S. Recent advances in andrology research: physiopathology and clinical application to fertility and infertility. Archives of Andrology. 1997;39(3):173–195. doi: 10.3109/01485019708987916. PubMed DOI
Ferramosca A., Focarelli R., Piomboni P., Coppola L., Zara V. Oxygen uptake by mitochondria in demembranated human spermatozoa: a reliable tool for the evaluation of sperm respiratory efficiency. International Journal of Andrology. 2008;31(3):337–345. doi: 10.1111/j.1365-2605.2007.00775.x. PubMed DOI
Hamada A., Esteves S. C., Nizza M., Agarwal A. Unexplained male infertility: diagnosis and management. International Braz J Urol. 2012;38(5):576–594. doi: 10.1590/S1677-55382012000500002. PubMed DOI
Erenpreiss J., Bungum M., Spano M., Elzanaty S., Orbidans J., Giwercman A. Intra-individual variation in sperm chromatin structure assay parameters in men from infertile couples: clinical implications. Human Reproduction. 2006;21(8):2061–2064. doi: 10.1093/humrep/del134. PubMed DOI
Kao S. H., Chao H. T., Chen H. W., Hwang T. I., Liao T. L., Wei Y. H. Increase of oxidative stress in human sperm with lower motility. Fertility and Sterility. 2008;89(5):1183–1190. doi: 10.1016/j.fertnstert.2007.05.029. PubMed DOI
Mahfouz R., Sharma R., Thiyagarajan A., et al. Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species. Fertility and Sterility. 2010;94(6):2141–2146. doi: 10.1016/j.fertnstert.2009.12.030. PubMed DOI
Cocuzza M., Sikka S. C., Athayde K. S., Agarwal A. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. International Braz J Urol. 2007;33(5):603–621. doi: 10.1590/S1677-55382007000500002. PubMed DOI
Agarwal A., Makker K., Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. American Journal of Reproductive Immunology. 2008;59(1):2–11. doi: 10.1111/j.1600-0897.2007.00559.x. PubMed DOI
Mahfouz R. Z., du Plessis S. S., Aziz N., Sharma R., Sabanegh E., Agarwal A. Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertility and Sterility. 2010;93(3):814–821. doi: 10.1016/j.fertnstert.2008.10.068. PubMed DOI
Aitken R. J., De Iuliis G. N. On the possible origins of DNA damage in human spermatozoa. Molecular Human Reproduction. 2010;16(1):3–13. doi: 10.1093/molehr/gap059. PubMed DOI
Berby B., Bichara C., Rives-Feraille A., et al. Oxidative stress is associated with telomere interaction impairment and chromatin condensation defects in spermatozoa of infertile males. Antioxidants (Basel) 2021;10(4) doi: 10.3390/antiox10040593. PubMed DOI PMC
St John J. C., Jokhi R. P., Barratt C. L. The impact of mitochondrial genetics on male infertility. International Journal of Andrology. 2005;28(2):65–73. doi: 10.1111/j.1365-2605.2005.00515.x. PubMed DOI
Dobrakowski M., Kasperczyk S., Horak S., Chyra-Jach D., Birkner E., Kasperczyk A. Oxidative stress and motility impairment in the semen of fertile males. Andrologia. 2017;49(10) doi: 10.1111/and.12783. PubMed DOI
Aitken R. J., Baker M. A. The role of genetics and oxidative stress in the etiology of male infertility—a unifying hypothesis? Front Endocrinol (Lausanne) 2020;11 doi: 10.3389/fendo.2020.581838. PubMed DOI PMC
Xavier M. J., Nixon B., Roman S. D., Scott R. J., Drevet J. R., Aitken R. J. Paternal impacts on development: identification of genomic regions vulnerable to oxidative DNA damage in human spermatozoa. Human Reproduction. 2019;34(10):1876–1890. doi: 10.1093/humrep/dez153. PubMed DOI
Wright C., Milne S., Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reproductive Biomedicine Online. 2014;28(6):684–703. doi: 10.1016/j.rbmo.2014.02.004. PubMed DOI
Aitken R. J., Jones K. T., Robertson S. A. Reactive oxygen species and sperm function—in sickness and in health. Journal of Andrology. 2012;33(6):1096–1106. doi: 10.2164/jandrol.112.016535. PubMed DOI
Zhu Z., Kawai T., Umehara T., Hoque S. A. M., Zeng W., Shimada M. Negative effects of ROS generated during linear sperm motility on gene expression and ATP generation in boar sperm mitochondria. Free Radical Biology & Medicine. 2019;141:159–171. doi: 10.1016/j.freeradbiomed.2019.06.018. PubMed DOI
Schofield J. H., Schafer Z. T. Mitochondrial reactive oxygen species and mitophagy: a complex and nuanced relationship. Antioxidants & Redox Signaling. 2021;34(7):517–530. doi: 10.1089/ars.2020.8058. PubMed DOI
Koppers A. J., De Iuliis G. N., Finnie J. M., McLaughlin E. A., Aitken R. J. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. The Journal of Clinical Endocrinology and Metabolism. 2008;93(8):3199–3207. doi: 10.1210/jc.2007-2616. PubMed DOI
Finkel T. Signal transduction by reactive oxygen species. The Journal of Cell Biology. 2011;194(1):7–15. doi: 10.1083/jcb.201102095. PubMed DOI PMC
Williams A. C., Ford W. C. The role of glucose in supporting motility and capacitation in human spermatozoa. Journal of Andrology. 2001;22(4):680–695. PubMed
Nascimento J. M., Shi L. Z., Tam J., et al. Comparison of glycolysis and oxidative phosphorylation as energy sources for mammalian sperm motility, using the combination of fluorescence imaging, laser tweezers, and real-time automated tracking and trapping. Journal of Cellular Physiology. 2008;217(3):745–751. doi: 10.1002/jcp.21549. PubMed DOI PMC
Ramió-Lluch L., Yeste M., Fernández-Novell J. M., et al. Oligomycin A-induced inhibition of mitochondrial ATP-synthase activity suppresses boar sperm motility and in vitro capacitation achievement without modifying overall sperm energy levels. Reproduction, Fertility, and Development. 2014;26(6):883–897. doi: 10.1071/RD13145. PubMed DOI
Rogers B. J., Ueno M., Yanagimachi R. Inhibition of hamster sperm acrosome reaction and fertilization by oligomycin, antimycin A, and rotenone. The Journal of Experimental Zoology. 1977;199(1):129–135. doi: 10.1002/jez.1401990114. PubMed DOI
Grootegoed J. A., Jansen R., Van der Molen H. J. The role of glucose, pyruvate and lactate in ATP production by rat spermatocytes and spermatids. Biochimica et Biophysica Acta. 1984;767(2):248–256. doi: 10.1016/0005-2728(84)90194-4. PubMed DOI
Nakamura M., Okinaga S., Arai K. Metabolism of pachytene primary spermatocytes from rat testes: pyruvate maintenance of adenosine triphosphate level. Biology of Reproduction. 1984;30(5):1187–1197. doi: 10.1095/biolreprod30.5.1187. PubMed DOI
Amaral A., Lourenco B., Marques M., Ramalho-Santos J. Mitochondria functionality and sperm quality. Reproduction. 2013;146(5):R163–R174. doi: 10.1530/REP-13-0178. PubMed DOI
Ferramosca A., Provenzano S. P., Coppola L., Zara V. Mitochondrial respiratory efficiency is positively correlated with human sperm motility. Urology. 2012;79(4):809–814. doi: 10.1016/j.urology.2011.12.042. PubMed DOI
Amaral A., Ramalho-Santos J. Assessment of mitochondrial potential: implications for the correct monitoring of human sperm function. International Journal of Andrology. 2010;33(1):e180–e186. doi: 10.1111/j.1365-2605.2009.00987.x. PubMed DOI
Magdanz V., Boryshpolets S., Ridzewski C., Eckel B., Reinhardt K. The motility-based swim-up technique separates bull sperm based on differences in metabolic rates and tail length. PLoS One. 2019;14(10):p. e0223576. doi: 10.1371/journal.pone.0223576. PubMed DOI PMC
Tourmente M., Villar-Moya P., Rial E., Roldan E. R. Differences in ATP generation via glycolysis and oxidative phosphorylation and relationships with sperm motility in mouse species. The Journal of Biological Chemistry. 2015;290(33):20613–20626. doi: 10.1074/jbc.M115.664813. PubMed DOI PMC
Vogler S., Goedde R., Miterski B., et al. Association of a common polymorphism in the promoter of UCP2 with susceptibility to multiple sclerosis. Journal of Molecular Medicine. 2005;83(10):806–811. doi: 10.1007/s00109-005-0661-5. PubMed DOI
Waldeck-Weiermair M., Malli R., Naghdi S., Trenker M., Kahn M. J., Graier W. F. The contribution of UCP2 and UCP3 to mitochondrial Ca2+ uptake is differentially determined by the source of supplied Ca2+ Cell Calcium. 2010;47(5):433–440. doi: 10.1016/j.ceca.2010.03.004. PubMed DOI
Emre Y., Nubel T. Uncoupling protein UCP2: when mitochondrial activity meets immunity. FEBS Letters. 2010;584(8):1437–1442. doi: 10.1016/j.febslet.2010.03.014. PubMed DOI
Lee S., Tak E., Lee J., et al. Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell Research. 2011;21(5):817–834. doi: 10.1038/cr.2011.55. PubMed DOI PMC
Yan L., Liu J., Wu S., Zhang S., Ji G., Gu A. Seminal superoxide dismutase activity and its relationship with semen quality and SOD gene polymorphism. Journal of Assisted Reproduction and Genetics. 2014;31(5):549–554. doi: 10.1007/s10815-014-0215-2. PubMed DOI PMC
Ji G., Gu A., Wang Y., et al. Genetic variants in antioxidant genes are associated with sperm DNA damage and risk of male infertility in a Chinese population. Free Radical Biology & Medicine. 2012;52(4):775–780. doi: 10.1016/j.freeradbiomed.2011.11.032. PubMed DOI
Levine A. J., Elkhouly E., Diep A. T., Lee E. R., Frankl H., Haile R. W. The MnSOD A16V mitochondrial targeting sequence polymorphism is not associated with increased risk of distal colorectal adenomas: data from a sigmoidoscopy-based case control study. Cancer Epidemiology, Biomarkers & Prevention. 2002;11, 10 Part 1:1140–1141. PubMed
Tavilani H., Goodarzi M. T., Vaisi-raygani A., Salimi S., Hassanzadeh T. Activity of antioxidant enzymes in seminal plasma and their relationship with lipid peroxidation of spermatozoa. International Braz J Urol. 2008;34(4):485–491. doi: 10.1590/S1677-55382008000400011. PubMed DOI
Forsberg L., Lyrenas L., de Faire U., Morgenstern R. A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radical Biology & Medicine. 2001;30(5):500–505. doi: 10.1016/S0891-5849(00)00487-1. PubMed DOI
Sabouhi S., Salehi Z., Bahadori M. H., Mahdavi M. Human catalase gene polymorphism (CAT C-262T) and risk of male infertility. Andrologia. 2015;47(1) doi: 10.1111/and.12228. PubMed DOI
Rashki Ghaleno L., Alizadeh A., Drevet J. R., Shahverdi A., Valojerdi M. R. Oxidation of sperm DNA and male infertility. Antioxidants (Basel) 2021;10(1) doi: 10.3390/antiox10010097. PubMed DOI PMC
Valavanidis A., Vlachogianni T., Fiotakis C. 8-Hydroxy-2’-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews. 2009;27(2):120–139. doi: 10.1080/10590500902885684. PubMed DOI
Gonzalez-Rojo S., Fernandez-Diez C., Lombo M., Herraez M. P. Distribution of DNA damage in the human sperm nucleus: implications of the architecture of the sperm head. Asian Journal of Andrology. 2020;22(4):401–408. doi: 10.4103/aja.aja_26_19. PubMed DOI PMC
Aitken R. J., Bakos H. W. Should we be measuring DNA damage in human spermatozoa? New light on an old question. Human Reproduction. 2021;36(5):1175–1185. doi: 10.1093/humrep/deab004. PubMed DOI
Agarwal A., Baskaran S., Panner Selvam M. K., et al. Scientific landscape of oxidative stress in male reproductive research: a scientometric study. Free Radical Biology & Medicine. 2020;156:36–44. doi: 10.1016/j.freeradbiomed.2020.05.008. PubMed DOI
Kim S. W., Kim B., Mok J., Kim E. S., Park J. Dysregulation of the acrosome formation network by 8-oxoguanine (8-oxoG) in infertile sperm: a case report with advanced techniques. International Journal of Molecular Sciences. 2021;22(11) doi: 10.3390/ijms22115857. PubMed DOI PMC
Kohno T., Shinmura K., Tosaka M., et al. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene. 1998;16(25):3219–3225. doi: 10.1038/sj.onc.1201872. PubMed DOI
Lee Y. K., Youn H. G., Wang H. J., Yoon G. Decreased mitochondrial OGG1 expression is linked to mitochondrial defects and delayed hepatoma cell growth. Molecules and Cells. 2013;35(6):489–497. doi: 10.1007/s10059-013-2343-4. PubMed DOI PMC
Lestienne P., Reynier P., Chretien M. F., Penisson-Besnier I., Malthiery Y., Rohmer V. Oligoasthenospermia associated with multiple mitochondrial DNA rearrangements. Molecular Human Reproduction. 1997;3(9):811–814. doi: 10.1093/molehr/3.9.811. PubMed DOI
Kao S. H., Chao H. T., Wei Y. H. Multiple deletions of mitochondrial DNA are associated with the decline of motility and fertility of human spermatozoa. Molecular Human Reproduction. 1998;4(7):657–666. doi: 10.1093/molehr/4.7.657. PubMed DOI
O'Connell M., McClure N., Lewis S. E. Mitochondrial DNA deletions and nuclear DNA fragmentation in testicular and epididymal human sperm. Human Reproduction. 2002;17(6):1565–1570. doi: 10.1093/humrep/17.6.1565. PubMed DOI
Carra E., Sangiorgi D., Gattuccio F., Rinaldi A. M. Male infertility and mitochondrial DNA. Biochemical and Biophysical Research Communications. 2004;322(1):333–339. doi: 10.1016/j.bbrc.2004.07.112. PubMed DOI
Baklouti-Gargouri S., Ghorbel M., Ben Mahmoud A., et al. Mitochondrial DNA mutations and polymorphisms in asthenospermic infertile men. Molecular Biology Reports. 2013;40(8):4705–4712. doi: 10.1007/s11033-013-2566-7. PubMed DOI
Selvi Rani D., Vanniarajan A., Gupta N. J., Chakravarty B., Singh L., Thangaraj K. A novel missense mutation C11994T in the mitochondrial ND4 gene as a cause of low sperm motility in the Indian subcontinent. Fertility and Sterility. 2006;86(6):1783–1785. doi: 10.1016/j.fertnstert.2006.04.044. PubMed DOI
Holyoake A. J., Sin I. L., Benny P. S., Sin F. Y. Association of a novel human mtDNA ATPase6 mutation with immature sperm cells. Andrologia. 1999;31(6):339–345. doi: 10.1046/j.1439-0272.1999.00150.x. PubMed DOI
Shamsi M. B., Kumar R., Bhatt A., et al. Mitochondrial DNA mutations in etiopathogenesis of male infertility. Indian Journal of Urology. 2008;24(2):150–154. doi: 10.4103/0970-1591.40606. PubMed DOI PMC