Bis(silylene)-Stabilized Monovalent Nitrogen Complexes
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
DR 226 19/2
Deutsche Forschungsgemeinschaft
PubMed
32841449
PubMed Central
PMC7756627
DOI
10.1002/anie.202011598
Knihovny.cz E-zdroje
- Klíčová slova
- azides, carboranes, nitrogen complexes, redox non-innocent ligands, silylenes,
- Publikační typ
- časopisecké články MeSH
The first series of bis(silylene)-stabilized nitrogen(I) compounds is described. Starting from the 1,2-bis(N-heterocyclic silylenyl) 1,2-dicarba-closo-dedocaborane(12) scaffold 1, [1,2-(LSi)2 C2 B10 H10 ; L=PhC(Nt Bu)2 ], reaction with adamantyl azide (AdN3 ) affords the terminal N-μ2 -bridged zwitterionic carborane-1,2-bis(silylium) AdN3 adduct 2 with an open-cage dianionic nido-C2 B10 cluster core. Remarkably, upon one-electron reduction of 2 with C8 K and liberation of N2 and adamantane, the two silylene subunits are regenerated to furnish the isolable bis(silylene)-stabilized NI complex as an anion of 3 with the nido-C2 B10 cluster cage. On the other hand, one-electron oxidation of 2 with silver(I) yields the monocationic bis(silylene) NI complex 4 with the closo-C2 B10 cluster core. Moreover, the corresponding neutral NI radical complex 5 results from single-electron transfer from 3 to 4.
Zobrazit více v PubMed
Ramirez F., Desai N. B., Hansen B., McKelvie N., J. Am. Chem. Soc. 1961, 83, 3539–3540.
Tonner R., Öxler F., Neumüller B., Petz W., Frenking G., Angew. Chem. Int. Ed. 2006, 45, 8038–8042; PubMed
Angew. Chem. 2006, 118, 8206–8211.
Frenking G., Tonner R., Pure Appl. Chem. 2009, 81, 597–614.
Takagi N., Tonner R., Frenking G., Chem. Eur. J. 2012, 18, 1772–1780. PubMed
Tonner R., Frenking G., Angew. Chem. Int. Ed. 2007, 46, 8695–8698; PubMed
Angew. Chem. 2007, 119, 8850–8853. PubMed
Dyker C. A., Lavallo V., Donnadieu B., Bertrand G., Angew. Chem. Int. Ed. 2008, 47, 3206–3209; PubMed
Angew. Chem. 2008, 120, 3250–3253.
Pranckevicius C., Liu L., Bertrand G., Stephan D. W., Angew. Chem. Int. Ed. 2016, 55, 5536–5540; PubMed
Angew. Chem. 2016, 128, 5626–5630.
Dyker C. A., Bertrand G., Nat. Chem. 2009, 1, 265–266. PubMed
Alcarazo M., Lehmann C. W., Anoop A., Thiel W., Fu A., Nat. Chem. 2009, 1, 295–301. PubMed
Frenking G., Hermann M., Andrada D. M., Holzmann N., Chem. Soc. Rev. 2016, 45, 1129–1144. PubMed
Yao S., Xiong Y., Driess M., Acc. Chem. Res. 2017, 50, 2026–2037. PubMed
Majhi P. K., Sasamori T., Chem. Eur. J. 2018, 24, 9441–9455. PubMed
Patel D. S., Bharatam P. V., J. Phys. Chem. A 2011, 115, 7645–7655. PubMed
Bernhardi I., Drews T., Seppelt K., Angew. Chem. Int. Ed. 1999, 38, 2232–2233; PubMed
Angew. Chem. 1999, 111, 2370–2372; PubMed
Kunetskiy R. A., Císařová I., Šaman D., Lyapkalo I. M., Chem. Eur. J. 2009, 15, 9477–9485; PubMed
Bruns H., Patil M., Carreras J., Vázquez A., Thiel W., Goddard R., Alcarazo M., Angew. Chem. Int. Ed. 2010, 49, 3680–3683; PubMed
Angew. Chem. 2010, 122, 3762–3766. PubMed
Kathuria D., Arfeen M., Bankar A. A., Bharatam P. V., J. Chem. Sci. 2016, 128, 1607–1614.
Patel N., Sood R., Bharatam P. V., Chem. Rev. 2018, 118, 8770–8785. PubMed
Ma T., Fu X., Kee C. W., Zong L., Pan Y., Huang K. W., Tan C. H., J. Am. Chem. Soc. 2011, 133, 2828–2831. PubMed
Zong L., Ban X., Kee C. W., Tan C. H., Angew. Chem. Int. Ed. 2014, 53, 11849–11853; PubMed
Angew. Chem. 2014, 126, 12043–12047.
Teng B., Chen W., Dong S., Kee C. W., Gandamana D. A., Zong L., Tan C. H., J. Am. Chem. Soc. 2016, 138, 9935–9940. PubMed
Yang Y., Moinodeen F., Chin W., Ma T., Jiang Z., Tan C. H., Org. Lett. 2012, 14, 4762–4765. PubMed
Blom B., Gallego D., Driess M., Inorg. Chem. Front. 2014, 1, 134–148.
Raoufmoghaddam S., Zhou Y. P., Wang Y., Driess M., J. Organomet. Chem. 2017, 829, 2–10.
Zhou Y.-P., Driess M., Angew. Chem. Int. Ed. 2019, 58, 3715–3728; PubMed
Angew. Chem. 2019, 131, 3753–3766.
Xiong Y., Yao S., Inoue S., Epping J. D., Driess M., Angew. Chem. Int. Ed. 2013, 52, 7147–7150; PubMed
Angew. Chem. 2013, 125, 7287–7291.
Xiong Y., Yao S., Tan G., Inoue S., Driess M., J. Am. Chem. Soc. 2013, 135, 5004–5007. PubMed
Wang Y., Karni M., Yao S., Kaushansky A., Apeloig Y., Driess M., J. Am. Chem. Soc. 2019, 141, 12916–12927; PubMed
Yao S., Kostenko A., Xiong Y., Ruzicka A., Driess M., J. Am. Chem. Soc. 2020, 142, 12608–12612. PubMed
Wang Y., Karni M., Yao S., Apeloig Y., Driess M., J. Am. Chem. Soc. 2019, 141, 1655–1664. PubMed
Zhou Y.-P., Raoufmoghaddam S., Szilvási T., Driess M., Angew. Chem. Int. Ed. 2016, 55, 12868–12872; PubMed
Angew. Chem. 2016, 128, 13060–13064.
Xiong Y., Yao S., Szilva T., Ruzicka A., Driess M., Chem. Commun. 2020, 56, 747–750. PubMed
Wang H., Wu L., Lin Z., Xie Z., J. Am. Chem. Soc. 2017, 139, 13680–13683. PubMed
Wang H., Zhang J., Lee H. K., Xie Z., J. Am. Chem. Soc. 2018, 140, 3888–3891. PubMed
Wang H., Wu L., Lin Z., Xie Z., Angew. Chem. Int. Ed. 2018, 57, 8708–8713; PubMed
Angew. Chem. 2018, 130, 8844–8849.
Benedek Z., Szilvási T., RSC Adv. 2015, 5, 5077–5086.
Hill N. J., Moser D. F., Guzei I. A., West R., Organometallics 2005, 24, 3346–3349.
Xiong Y., Yao S., Driess M., Chem. Eur. J. 2009, 15, 8542–8547. PubMed
Azhakar R., Roesky H. W., Holstein J. J., Pröpper K., Dittrich B., Organometallics 2013, 32, 358–361.
Samuel P. P., Azhakar R., Ghadwal R. S., Sen S. S., Roesky H. W., Granitzka M., Matussek J., Herbst-irmer R., Stalke D., Inorg. Chem. 2012, 51, 11049–11054. PubMed
Iwamoto T., Ohnishi N., Gui Z., Ishida S., Isobe H., Maeda S., Ohno K., Kira M., New J. Chem. 2010, 34, 1637–1645.
Boom D. H. A., Jupp A. R., Nieger M., Ehlers A. W., Slootweg J. C., Chem. Eur. J. 2019, 25, 13299–13308. PubMed PMC
Fox M. A., Nervi C., Crivello A., Low P. J., Chem. Commun. 2007, 2372–2374. PubMed
Fu X., Chan H. S., Xie Z., J. Am. Chem. Soc. 2007, 129, 8964–8965. PubMed
Zhang J., Fu X., Lin Z., Xie Z., Inorg. Chem. 2015, 54, 1965–1973. PubMed
Patel N. C. D., Oliva-Enrich J. M., Fox M. A., Eur. J. Inorg. Chem. 2017, 4568–4574.
Access to cationic polyhedral carboranes via dynamic cage surgery with N-heterocyclic carbenes