Bis(silylene)-Stabilized Monovalent Nitrogen Complexes

. 2020 Dec 01 ; 59 (49) : 22043-22047. [epub] 20200928

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32841449

Grantová podpora
DR 226 19/2 Deutsche Forschungsgemeinschaft

The first series of bis(silylene)-stabilized nitrogen(I) compounds is described. Starting from the 1,2-bis(N-heterocyclic silylenyl) 1,2-dicarba-closo-dedocaborane(12) scaffold 1, [1,2-(LSi)2 C2 B10 H10 ; L=PhC(Nt Bu)2 ], reaction with adamantyl azide (AdN3 ) affords the terminal N-μ2 -bridged zwitterionic carborane-1,2-bis(silylium) AdN3 adduct 2 with an open-cage dianionic nido-C2 B10 cluster core. Remarkably, upon one-electron reduction of 2 with C8 K and liberation of N2 and adamantane, the two silylene subunits are regenerated to furnish the isolable bis(silylene)-stabilized NI complex as an anion of 3 with the nido-C2 B10 cluster cage. On the other hand, one-electron oxidation of 2 with silver(I) yields the monocationic bis(silylene) NI complex 4 with the closo-C2 B10 cluster core. Moreover, the corresponding neutral NI radical complex 5 results from single-electron transfer from 3 to 4.

Zobrazit více v PubMed

Ramirez F., Desai N. B., Hansen B., McKelvie N., J. Am. Chem. Soc. 1961, 83, 3539–3540.

Tonner R., Öxler F., Neumüller B., Petz W., Frenking G., Angew. Chem. Int. Ed. 2006, 45, 8038–8042; PubMed

Angew. Chem. 2006, 118, 8206–8211.

Frenking G., Tonner R., Pure Appl. Chem. 2009, 81, 597–614.

Takagi N., Tonner R., Frenking G., Chem. Eur. J. 2012, 18, 1772–1780. PubMed

Tonner R., Frenking G., Angew. Chem. Int. Ed. 2007, 46, 8695–8698; PubMed

Angew. Chem. 2007, 119, 8850–8853. PubMed

Dyker C. A., Lavallo V., Donnadieu B., Bertrand G., Angew. Chem. Int. Ed. 2008, 47, 3206–3209; PubMed

Angew. Chem. 2008, 120, 3250–3253.

Pranckevicius C., Liu L., Bertrand G., Stephan D. W., Angew. Chem. Int. Ed. 2016, 55, 5536–5540; PubMed

Angew. Chem. 2016, 128, 5626–5630.

Dyker C. A., Bertrand G., Nat. Chem. 2009, 1, 265–266. PubMed

Alcarazo M., Lehmann C. W., Anoop A., Thiel W., Fu A., Nat. Chem. 2009, 1, 295–301. PubMed

Frenking G., Hermann M., Andrada D. M., Holzmann N., Chem. Soc. Rev. 2016, 45, 1129–1144. PubMed

Yao S., Xiong Y., Driess M., Acc. Chem. Res. 2017, 50, 2026–2037. PubMed

Majhi P. K., Sasamori T., Chem. Eur. J. 2018, 24, 9441–9455. PubMed

Patel D. S., Bharatam P. V., J. Phys. Chem. A 2011, 115, 7645–7655. PubMed

Bernhardi I., Drews T., Seppelt K., Angew. Chem. Int. Ed. 1999, 38, 2232–2233; PubMed

Angew. Chem. 1999, 111, 2370–2372; PubMed

Kunetskiy R. A., Císařová I., Šaman D., Lyapkalo I. M., Chem. Eur. J. 2009, 15, 9477–9485; PubMed

Bruns H., Patil M., Carreras J., Vázquez A., Thiel W., Goddard R., Alcarazo M., Angew. Chem. Int. Ed. 2010, 49, 3680–3683; PubMed

Angew. Chem. 2010, 122, 3762–3766. PubMed

Kathuria D., Arfeen M., Bankar A. A., Bharatam P. V., J. Chem. Sci. 2016, 128, 1607–1614.

Patel N., Sood R., Bharatam P. V., Chem. Rev. 2018, 118, 8770–8785. PubMed

Ma T., Fu X., Kee C. W., Zong L., Pan Y., Huang K. W., Tan C. H., J. Am. Chem. Soc. 2011, 133, 2828–2831. PubMed

Zong L., Ban X., Kee C. W., Tan C. H., Angew. Chem. Int. Ed. 2014, 53, 11849–11853; PubMed

Angew. Chem. 2014, 126, 12043–12047.

Teng B., Chen W., Dong S., Kee C. W., Gandamana D. A., Zong L., Tan C. H., J. Am. Chem. Soc. 2016, 138, 9935–9940. PubMed

Yang Y., Moinodeen F., Chin W., Ma T., Jiang Z., Tan C. H., Org. Lett. 2012, 14, 4762–4765. PubMed

Blom B., Gallego D., Driess M., Inorg. Chem. Front. 2014, 1, 134–148.

Raoufmoghaddam S., Zhou Y. P., Wang Y., Driess M., J. Organomet. Chem. 2017, 829, 2–10.

Zhou Y.-P., Driess M., Angew. Chem. Int. Ed. 2019, 58, 3715–3728; PubMed

Angew. Chem. 2019, 131, 3753–3766.

Xiong Y., Yao S., Inoue S., Epping J. D., Driess M., Angew. Chem. Int. Ed. 2013, 52, 7147–7150; PubMed

Angew. Chem. 2013, 125, 7287–7291.

Xiong Y., Yao S., Tan G., Inoue S., Driess M., J. Am. Chem. Soc. 2013, 135, 5004–5007. PubMed

Wang Y., Karni M., Yao S., Kaushansky A., Apeloig Y., Driess M., J. Am. Chem. Soc. 2019, 141, 12916–12927; PubMed

Yao S., Kostenko A., Xiong Y., Ruzicka A., Driess M., J. Am. Chem. Soc. 2020, 142, 12608–12612. PubMed

Wang Y., Karni M., Yao S., Apeloig Y., Driess M., J. Am. Chem. Soc. 2019, 141, 1655–1664. PubMed

Zhou Y.-P., Raoufmoghaddam S., Szilvási T., Driess M., Angew. Chem. Int. Ed. 2016, 55, 12868–12872; PubMed

Angew. Chem. 2016, 128, 13060–13064.

Xiong Y., Yao S., Szilva T., Ruzicka A., Driess M., Chem. Commun. 2020, 56, 747–750. PubMed

Wang H., Wu L., Lin Z., Xie Z., J. Am. Chem. Soc. 2017, 139, 13680–13683. PubMed

Wang H., Zhang J., Lee H. K., Xie Z., J. Am. Chem. Soc. 2018, 140, 3888–3891. PubMed

Wang H., Wu L., Lin Z., Xie Z., Angew. Chem. Int. Ed. 2018, 57, 8708–8713; PubMed

Angew. Chem. 2018, 130, 8844–8849.

Benedek Z., Szilvási T., RSC Adv. 2015, 5, 5077–5086.

Hill N. J., Moser D. F., Guzei I. A., West R., Organometallics 2005, 24, 3346–3349.

Xiong Y., Yao S., Driess M., Chem. Eur. J. 2009, 15, 8542–8547. PubMed

Azhakar R., Roesky H. W., Holstein J. J., Pröpper K., Dittrich B., Organometallics 2013, 32, 358–361.

Samuel P. P., Azhakar R., Ghadwal R. S., Sen S. S., Roesky H. W., Granitzka M., Matussek J., Herbst-irmer R., Stalke D., Inorg. Chem. 2012, 51, 11049–11054. PubMed

Iwamoto T., Ohnishi N., Gui Z., Ishida S., Isobe H., Maeda S., Ohno K., Kira M., New J. Chem. 2010, 34, 1637–1645.

Boom D. H. A., Jupp A. R., Nieger M., Ehlers A. W., Slootweg J. C., Chem. Eur. J. 2019, 25, 13299–13308. PubMed PMC

Fox M. A., Nervi C., Crivello A., Low P. J., Chem. Commun. 2007, 2372–2374. PubMed

Fu X., Chan H. S., Xie Z., J. Am. Chem. Soc. 2007, 129, 8964–8965. PubMed

Zhang J., Fu X., Lin Z., Xie Z., Inorg. Chem. 2015, 54, 1965–1973. PubMed

Patel N. C. D., Oliva-Enrich J. M., Fox M. A., Eur. J. Inorg. Chem. 2017, 4568–4574.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...