DFT Surface Infers Ten-Vertex Cationic Carboranes from the Corresponding Neutral closo Ten-Vertex Family: The Computed Background Confirming Their Experimental Availability
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-03945S
Czech Science Foundation
PubMed
37110879
PubMed Central
PMC10141709
DOI
10.3390/molecules28083645
PII: molecules28083645
Knihovny.cz E-zdroje
- Klíčová slova
- DFT, N-heterocyclic carbenes, carboranes, cations, reaction pathways,
- Publikační typ
- časopisecké články MeSH
Modern computational protocols based on the density functional theory (DFT) infer that polyhedral closo ten-vertex carboranes are key starting stationary states in obtaining ten-vertex cationic carboranes. The rearrangement of the bicapped square polyhedra into decaborane-like shapes with open hexagons in boat conformations is caused by attacks of N-heterocyclic carbenes (NHCs) on the closo motifs. Single-point computations on the stationary points found during computational examinations of the reaction pathways have clearly shown that taking the "experimental" NHCs into account requires the use of dispersion correction. Further examination has revealed that for the purposes of the description of reaction pathways in their entirety, i.e., together with all transition states and intermediates, a simplified model of NHCs is sufficient. Many of such transition states resemble in their shapes those that dictate Z-rearrangement among various isomers of closo ten-vertex carboranes. Computational results are in very good agreement with the experimental findings obtained earlier.
Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
Faculty of Chemical Technology University of Pardubice CZ 532 10 Pardubice Czech Republic
Zobrazit více v PubMed
Hnyk D., Wann D.A. Molecular Structures of Free Boron Clusters. In: Hnyk D., McKee M., editors. Boron: The Fifth Element. Volume 20. Springer; Dordrecht, The Netherlands: 2016. pp. 17–48. (Challenges and Advances in Computational Chemistry and Physics).
Grimes R.N. Carboranes. 3rd ed. Academic Press; Cambridge, MA, USA: 2016.
Melichar P., Hnyk D., Fanfrlík J. A Systematic Examination of Classical and Multi-center Bonding in Heteroborane Clusters. Phys. Chem. Chem. Phys. 2018;20:4666–4675. doi: 10.1039/C7CP07422K. PubMed DOI
Keller W., Hofmann M., Sárosi M.B., Fanfrlík J., Hnyk D. Reactivity of Perhalogenated Octahedral Phospha- and Arsaboranes toward THF: A Joint Experimental/Computational Study. Inorg. Chem. 2022;61:16565–16572. doi: 10.1021/acs.inorgchem.2c00971. PubMed DOI
McKee M.L. Deconvoluting the Reaction Path from B10H14 Plus BH4− to B12H122−. Can Theory Make a Contribution? In: Hnyk D., McKee M., editors. Boron: The Fifth Element. Volume 20. Springer; Dordrecht, The Netherlands: 2016. pp. 121–138. (Challenges and Advances in Computational Chemistry and Physics).
McKay D., Macgregor S.A., Welch A.J. Isomerisation of nido-[C2B10H12]2− Dianions: Unprecedented Rearrangements and New Structural Motifs in Carborane Cluster Chemistry. Chem. Sci. 2015;6:3117–3128. doi: 10.1039/C5SC00726G. PubMed DOI PMC
Shameena O., Pathak B., Jemmis E.D. Theoretical Study of the Reaction of B20H16 with MeCN: Closo/Closo to Closo/Nido Conversion. Inorg. Chem. 2008;47:4375–4382. doi: 10.1021/ic702509j. PubMed DOI
Štíbr B., Holub J., Bakardjiev M., Lane P.D., McKee M.L., Wann D.A., Hnyk D. Unusual Cage Rearrangements in 10-Vertex nido-5,6-Dicarbaborane Derivatives: An Interplay between Theory and Experiment. Inorg. Chem. 2017;56:852–860. doi: 10.1021/acs.inorgchem.6b02320. PubMed DOI
Schleyer P.V.R., Najafian K. Stability and Three-Dimensional Aromaticity of closo-Monocarbaborane Anions, CBn-1Hn-, and closo-Dicarboranes, C2Bn−2Hn. Inorg. Chem. 1998;37:3454–3457. doi: 10.1021/ic980110v. PubMed DOI
Hnyk D., Holub J. Handles for the Dicarbadodecaborane Basket Based on [arachno-5,10-C2B8H13]–: Oxygen. Dalton Trans. 2006;22:2620–2622. doi: 10.1039/B601702A. PubMed DOI
Janoušek Z., Dostál R., Macháček J., Hnyk D., Štíbr B. The First Member of the Eleven-Vertex Azadicarbaborane Series, 1,6,9-NC2B8H13 and its N-alkyl Derivatives. Dalton Trans. 2006;39:4664–4671. doi: 10.1039/B608857K. PubMed DOI
Holub J., Fanfrlík J., McKee M.L., Hnyk D. Reactions of Experimentally Known Closo-C2B8H10 with Bases. A Computational Study. Crystals. 2020;10:896. doi: 10.3390/cryst10100896. DOI
Holub J., Bakardjiev M., McKee M.L. Ten-Vertex Closo-Carboranes React with “Wet” Fluoride: A Direct Closo-to-Arachno Transformation as a Result of a Hydride Transfer. Inorg. Chim. Acta. 2022;538:12100. doi: 10.1016/j.ica.2022.121000. DOI
Vrána J., Holub J., Samsonov M.A., Růžičková Z., Cvačka J., McKee M.L., Fanfrlík J., Hnyk D., Růžička A. Access to Cationic Polyhedral Carboranes via Dynamic Cage Surgery with N-heterocyclic Carbenes. Nat. Commun. 2021;12:4971. doi: 10.1038/s41467-021-25277-0. PubMed DOI PMC
Tok O.L., Bakardjiev M., Štíbr B., Hnyk D., Holub J., Padělková Z., Růžička A. Click Dehydrogenation of Carbon-Substituted nido-5,6-C2B8H12 Carboranes: A General Route to closo-1,2-C2B8H10 Derivatives. Inorg. Chem. 2016;55:8839–8843. doi: 10.1021/acs.inorgchem.6b01386. PubMed DOI
Bakardjiev M., Holub J., Růžičková Z., Růžička A., Fanfrlík J., Štíbr B., McKee M.L., Hnyk D. Transformation of Various Multicenter Bondings within Bicapped-Square Antiprismatic Motifs: Z-Rearrangement. Dalton Trans. 2021;50:12019–12334. doi: 10.1039/D0DT04225K. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H. A Consistent and Accurate Ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H–Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Gimarc B.M., Ott J.J. Isomerization of Carboranes C2B6H8, C2B8H10 and C2B9H11 by the Diamond-Square-Diamond Rearrangement. J. Am. Chem. Soc. 1987;109:1388–1392. doi: 10.1021/ja00239a018. DOI
Hnyk D., Všetečka V., Drož L., Exner O. Charge Distribution within 1,2-Dicarba-closo-dodecaborane: Dipole Moments of its Phenyl Derivatives. Collect. Czech. Chem. Commun. 2001;66:1375–1379. doi: 10.1135/cccc20011375. DOI
Maué D., Streber P.H., Bernhard D., Rösel S., Schreiner P.R., Gerhards M. Dispersion-Bound Isolated Dimers in the Gas Phase: Observation of the Shortest Intermolecular C-H…H-C Distance via Stimulated Raman Spectroscopy. Angew. Chem. Int. Ed. 2021;60:11305–11309. doi: 10.1002/anie.202016020. PubMed DOI PMC
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16, Revision C.01. Gaussian, Inc.; Wallingford, CT, USA: 2016.