DFT Surface Infers Ten-Vertex Cationic Carboranes from the Corresponding Neutral closo Ten-Vertex Family: The Computed Background Confirming Their Experimental Availability

. 2023 Apr 21 ; 28 (8) : . [epub] 20230421

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37110879

Grantová podpora
22-03945S Czech Science Foundation

Modern computational protocols based on the density functional theory (DFT) infer that polyhedral closo ten-vertex carboranes are key starting stationary states in obtaining ten-vertex cationic carboranes. The rearrangement of the bicapped square polyhedra into decaborane-like shapes with open hexagons in boat conformations is caused by attacks of N-heterocyclic carbenes (NHCs) on the closo motifs. Single-point computations on the stationary points found during computational examinations of the reaction pathways have clearly shown that taking the "experimental" NHCs into account requires the use of dispersion correction. Further examination has revealed that for the purposes of the description of reaction pathways in their entirety, i.e., together with all transition states and intermediates, a simplified model of NHCs is sufficient. Many of such transition states resemble in their shapes those that dictate Z-rearrangement among various isomers of closo ten-vertex carboranes. Computational results are in very good agreement with the experimental findings obtained earlier.

Zobrazit více v PubMed

Hnyk D., Wann D.A. Molecular Structures of Free Boron Clusters. In: Hnyk D., McKee M., editors. Boron: The Fifth Element. Volume 20. Springer; Dordrecht, The Netherlands: 2016. pp. 17–48. (Challenges and Advances in Computational Chemistry and Physics).

Grimes R.N. Carboranes. 3rd ed. Academic Press; Cambridge, MA, USA: 2016.

Melichar P., Hnyk D., Fanfrlík J. A Systematic Examination of Classical and Multi-center Bonding in Heteroborane Clusters. Phys. Chem. Chem. Phys. 2018;20:4666–4675. doi: 10.1039/C7CP07422K. PubMed DOI

Keller W., Hofmann M., Sárosi M.B., Fanfrlík J., Hnyk D. Reactivity of Perhalogenated Octahedral Phospha- and Arsaboranes toward THF: A Joint Experimental/Computational Study. Inorg. Chem. 2022;61:16565–16572. doi: 10.1021/acs.inorgchem.2c00971. PubMed DOI

McKee M.L. Deconvoluting the Reaction Path from B10H14 Plus BH4− to B12H122−. Can Theory Make a Contribution? In: Hnyk D., McKee M., editors. Boron: The Fifth Element. Volume 20. Springer; Dordrecht, The Netherlands: 2016. pp. 121–138. (Challenges and Advances in Computational Chemistry and Physics).

McKay D., Macgregor S.A., Welch A.J. Isomerisation of nido-[C2B10H12]2− Dianions: Unprecedented Rearrangements and New Structural Motifs in Carborane Cluster Chemistry. Chem. Sci. 2015;6:3117–3128. doi: 10.1039/C5SC00726G. PubMed DOI PMC

Shameena O., Pathak B., Jemmis E.D. Theoretical Study of the Reaction of B20H16 with MeCN: Closo/Closo to Closo/Nido Conversion. Inorg. Chem. 2008;47:4375–4382. doi: 10.1021/ic702509j. PubMed DOI

Štíbr B., Holub J., Bakardjiev M., Lane P.D., McKee M.L., Wann D.A., Hnyk D. Unusual Cage Rearrangements in 10-Vertex nido-5,6-Dicarbaborane Derivatives: An Interplay between Theory and Experiment. Inorg. Chem. 2017;56:852–860. doi: 10.1021/acs.inorgchem.6b02320. PubMed DOI

Schleyer P.V.R., Najafian K. Stability and Three-Dimensional Aromaticity of closo-Monocarbaborane Anions, CBn-1Hn-, and closo-Dicarboranes, C2Bn−2Hn. Inorg. Chem. 1998;37:3454–3457. doi: 10.1021/ic980110v. PubMed DOI

Hnyk D., Holub J. Handles for the Dicarbadodecaborane Basket Based on [arachno-5,10-C2B8H13]–: Oxygen. Dalton Trans. 2006;22:2620–2622. doi: 10.1039/B601702A. PubMed DOI

Janoušek Z., Dostál R., Macháček J., Hnyk D., Štíbr B. The First Member of the Eleven-Vertex Azadicarbaborane Series, 1,6,9-NC2B8H13 and its N-alkyl Derivatives. Dalton Trans. 2006;39:4664–4671. doi: 10.1039/B608857K. PubMed DOI

Holub J., Fanfrlík J., McKee M.L., Hnyk D. Reactions of Experimentally Known Closo-C2B8H10 with Bases. A Computational Study. Crystals. 2020;10:896. doi: 10.3390/cryst10100896. DOI

Holub J., Bakardjiev M., McKee M.L. Ten-Vertex Closo-Carboranes React with “Wet” Fluoride: A Direct Closo-to-Arachno Transformation as a Result of a Hydride Transfer. Inorg. Chim. Acta. 2022;538:12100. doi: 10.1016/j.ica.2022.121000. DOI

Vrána J., Holub J., Samsonov M.A., Růžičková Z., Cvačka J., McKee M.L., Fanfrlík J., Hnyk D., Růžička A. Access to Cationic Polyhedral Carboranes via Dynamic Cage Surgery with N-heterocyclic Carbenes. Nat. Commun. 2021;12:4971. doi: 10.1038/s41467-021-25277-0. PubMed DOI PMC

Tok O.L., Bakardjiev M., Štíbr B., Hnyk D., Holub J., Padělková Z., Růžička A. Click Dehydrogenation of Carbon-Substituted nido-5,6-C2B8H12 Carboranes: A General Route to closo-1,2-C2B8H10 Derivatives. Inorg. Chem. 2016;55:8839–8843. doi: 10.1021/acs.inorgchem.6b01386. PubMed DOI

Bakardjiev M., Holub J., Růžičková Z., Růžička A., Fanfrlík J., Štíbr B., McKee M.L., Hnyk D. Transformation of Various Multicenter Bondings within Bicapped-Square Antiprismatic Motifs: Z-Rearrangement. Dalton Trans. 2021;50:12019–12334. doi: 10.1039/D0DT04225K. PubMed DOI

Grimme S., Antony J., Ehrlich S., Krieg H. A Consistent and Accurate Ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H–Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Gimarc B.M., Ott J.J. Isomerization of Carboranes C2B6H8, C2B8H10 and C2B9H11 by the Diamond-Square-Diamond Rearrangement. J. Am. Chem. Soc. 1987;109:1388–1392. doi: 10.1021/ja00239a018. DOI

Hnyk D., Všetečka V., Drož L., Exner O. Charge Distribution within 1,2-Dicarba-closo-dodecaborane: Dipole Moments of its Phenyl Derivatives. Collect. Czech. Chem. Commun. 2001;66:1375–1379. doi: 10.1135/cccc20011375. DOI

Maué D., Streber P.H., Bernhard D., Rösel S., Schreiner P.R., Gerhards M. Dispersion-Bound Isolated Dimers in the Gas Phase: Observation of the Shortest Intermolecular C-H…H-C Distance via Stimulated Raman Spectroscopy. Angew. Chem. Int. Ed. 2021;60:11305–11309. doi: 10.1002/anie.202016020. PubMed DOI PMC

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16, Revision C.01. Gaussian, Inc.; Wallingford, CT, USA: 2016.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...