Morphological Analysis, Protein Profiling and Expression Analysis of Auxin Homeostasis Genes of Roots of Two Contrasting Cultivars of Rice Provide Inputs on Mechanisms Involved in Rice Adaptation towards Salinity Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
xx
Department of Science and Technology (DST), Government of India and Department of Biotechnology (DBT), Government of India
RICE, 2017-2022
CGIAR Research Program (CRP) on rice-agrifood systems
PubMed
34451587
PubMed Central
PMC8399380
DOI
10.3390/plants10081544
PII: plants10081544
Knihovny.cz E-zdroje
- Klíčová slova
- PIN, YUCCA, abiotic stress, auxin, mass spectrometry, proteomics, rice, root, salinity,
- Publikační typ
- časopisecké články MeSH
Plants remodel their root architecture in response to a salinity stress stimulus. This process is regulated by an array of factors including phytohormones, particularly auxin. In the present study, in order to better understand the mechanisms involved in salinity stress adaptation in rice, we compared two contrasting rice cultivars-Luna Suvarna, a salt tolerant, and IR64, a salt sensitive cultivar. Phenotypic investigations suggested that Luna Suvarna in comparison with IR64 presented stress adaptive root traits which correlated with a higher accumulation of auxin in its roots. The expression level investigation of auxin signaling pathway genes revealed an increase in several auxin homeostasis genes transcript levels in Luna Suvarna compared with IR64 under salinity stress. Furthermore, protein profiling showed 18 proteins that were differentially regulated between the roots of two cultivars, and some of them were salinity stress responsive proteins found exclusively in the proteome of Luna Suvarna roots, revealing the critical role of these proteins in imparting salinity stress tolerance. This included proteins related to the salt overly sensitive pathway, root growth, the reactive oxygen species scavenging system, and abscisic acid activation. Taken together, our results highlight that Luna Suvarna involves a combination of morphological and molecular traits of the root system that could prime the plant to better tolerate salinity stress.
Zobrazit více v PubMed
Jackson M. Hormones from roots as signals for the shoots of stressed plants. Trends Plant Sci. 1997;2:22–28. doi: 10.1016/S1360-1385(96)10050-9. DOI
Saini S., Kaur N., Pati P.K. Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice. Anal. Biochem. 2018;550:99–108. doi: 10.1016/j.ab.2018.04.019. PubMed DOI
Gerona M.E.B., Deocampo M.P., Egdane J.A., Ismail A.M., Dionisio-Sese M.L. Physiological Responses of Contrasting Rice Genotypes to Salt Stress at Reproductive Stage. Rice Sci. 2019;26:207–219. doi: 10.1016/j.rsci.2019.05.001. DOI
Qadir M., Quillérou E., Nangia V., Murtaza G., Singh M., Thomas R.J., Drechsel P., Noble A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum. 2014;38:282–295. doi: 10.1111/1477-8947.12054. DOI
Shrivastava P., Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi. J. Biol. Sci. 2015;22:123–131. doi: 10.1016/j.sjbs.2014.12.001. PubMed DOI PMC
Egamberdieva D., Wirth S., Bellingrath-Kimura S.D., Mishra J., Naveen K., Arora N.K. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Front. Microbiol. 2019;10:2791. doi: 10.3389/fmicb.2019.02791. PubMed DOI PMC
Solis C.A., Yong M.T., Vinarao R., Jena K., Holford P., Shabala L., Zhou M., Shabala S., Chen Z. Back to the Wild: On a Quest for Donors toward Salinity Tolerant Rice. Front. Plant Sci. 2020;11:323. doi: 10.3389/fpls.2020.00323. PubMed DOI PMC
AbdElgawad H., Zinta G., Hegab M.M., Pandey R., Asard H., Abuelsoud W. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front. Plant Sci. 2016;7:276. doi: 10.3389/fpls.2016.00276. PubMed DOI PMC
Zhao Q., Zhang H., Wang T., Chen S., Dai S. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J. Proteomics. 2013;2:230–253. doi: 10.1016/j.jprot.2013.01.024. PubMed DOI
Ghosh D., Xu J. Abiotic stress responses in plant roots: A proteomics perspective. Front. Plant Sci. 2014;5:6. doi: 10.3389/fpls.2014.00006. PubMed DOI PMC
Ryu H., Cho Y. Plant hormones in salt stress tolerance. J. Plant Biol. 2015;58:147–155. doi: 10.1007/s12374-015-0103-z. DOI
Korver R.A., Koevoets I.T., Testerink C. Out of Shape during Stress: A Key Role for Auxin. Trends Plant Sci. 2018;23:783–793. doi: 10.1016/j.tplants.2018.05.011. PubMed DOI PMC
Quint M., Gray W.M. Auxin signaling. Curr. Opin. Plant Biol. 2006;9:448–453. doi: 10.1016/j.pbi.2006.07.006. PubMed DOI PMC
Davies P.J. Plant hormones: Their nature, occurrence, and functions. In: Davies P.J., editor. Plant Hormones. Springer; Dordrecht, The Netherlands: 2010. pp. 1–15.
Shi H., Chen L., Ye T., Liu X., Ding K., Chan Z. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol. Biochem. 2014;82:209–217. doi: 10.1016/j.plaphy.2014.06.008. PubMed DOI
Jadamba C., Kang K., Paek N., Lee S.I., Yoo S. Overexpression of Rice Expansin7 (Osexpa7) Confers Enhanced Tolerance to Salt Stress in Rice. Int. J. Mol. Sci. 2020;21:454. doi: 10.3390/ijms21020454. PubMed DOI PMC
Fukaki H., Okushima Y., Tasaka M. Auxin-mediated lateral root formation in higher plants. Int. Rev. Cytol. 2007;256:111–137. PubMed
Di Mambro R., De Ruvo M., Pacifici E., Salvi E., Sozzani R., Benfey P.N., Busch W., Novak O., Ljung K., Di Paola L., et al. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proc. Natl. Acad. Sci. USA. 2017;114:641–649. doi: 10.1073/pnas.1705833114. PubMed DOI PMC
Rosquete M.R., Barbez E., Kleine-Vehn J. Cellular auxin homeostasis: Gatekeeping is housekeeping. Mol. Plant. 2012;5:772–786. doi: 10.1093/mp/ssr109. PubMed DOI
Saini S., Sharma I., Pati P.K. Integrating the Knowledge of Auxin Homeostasis with Stress Tolerance in Plants. In: Pandey G.K., editor. Mechanism of Plant Hormone Signaling under Stress. John Wiley and Sons, Inc.; Hoboken, NJ, USA: 2017. pp. 53–70.
Ribba T., Garrido-Vargas F., O’Brien J.A. Auxin-mediated responses under salt stress: From developmental regulation to biotechnological applications. J. Exp. Bot. 2020;71:3843–3853. doi: 10.1093/jxb/eraa241. PubMed DOI
Vaseva I.I., Mishev K., Depaepe T., Vassileva V., Van Der Straeten D. The Diverse Salt-Stress Response of Arabidopsis ctr1-1 and ein2-1 Ethylene Signaling Mutants is Linked to Altered Root Auxin Homeostasis. Plants. 2021;10:452. doi: 10.3390/plants10030452. PubMed DOI PMC
Zhang H., Han B., Wang T., Chen S., Li H., Zhang Y., Dai S. Mechanisms of plant salt response: Insights from proteomics. J. Proteome Res. 2012;11:49–67. doi: 10.1021/pr200861w. PubMed DOI
Sengupta S., Majumder A.L. Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: A physiological and proteomic approach. Planta. 2009;29:911–929. doi: 10.1007/s00425-008-0878-y. PubMed DOI
Comas L.H., Becker S.R., Cruz V.M.V., Byrne P.F., Dierig D.A. Root traits contributing to plant productivity under drought. Front. Plant Sci. 2013;4:442. doi: 10.3389/fpls.2013.00442. PubMed DOI PMC
Kim Y., Chung Y.S., Lee E., Tripathi P., Heo S., Kim K.H. Root response to drought stress in rice (Oryza sativa L.) Int. J. Mol. Sci. 2020;21:1513. doi: 10.3390/ijms21041513. PubMed DOI PMC
Arif M.R., Islam M.T., Robin A.H.K. Salinity stress alters root morphology and root hair traits in Brassica napus. Plants. 2019;8:192. doi: 10.3390/plants8070192. PubMed DOI PMC
Polania J., Poschenrieder C., Rao I., Beebe S. Root traits and their potential links to plant ideotypes to improve drought resistance in common bean. Theor. Exp. Plant Physiol. 2017;29:143–154. doi: 10.1007/s40626-017-0090-1. PubMed DOI PMC
Ku Y., Sintaha M., Cheung M., Lam H. Plant Hormone Signaling Crosstalks between Biotic and Abiotic Stress Responses. Int. J. Mol. Sci. 2018;19:3206. doi: 10.3390/ijms19103206. PubMed DOI PMC
Fu Y., Yang Y., Chen S., Ning N., Hu H. Arabidopsis IAR4 modulates primary root growth under salt stress through ROS-mediated modulation of auxin distribution. Front. Plant Sci. 2019;10:522. doi: 10.3389/fpls.2019.00522. PubMed DOI PMC
Du H., Liu H., Xiong L. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front. Plant Sci. 2013;4:397. doi: 10.3389/fpls.2013.00397. PubMed DOI PMC
Zörb C., Geilfus C.M., Mühling K.H., Ludwig-Müller J. The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J. Plant Physiol. 2013;170:220–224. doi: 10.1016/j.jplph.2012.09.012. PubMed DOI
Koevoets I.T., Venema J.H., Elzenga J.T.M., Testerink C. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. Front. Plant Sci. 2016;7:1335. doi: 10.3389/fpls.2016.01335. PubMed DOI PMC
Saini S., Sharma I., Kaur N., Pati P.K. Auxin: A master regulator in plant root development. Plant. Cell Rep. 2013;32:741–757. doi: 10.1007/s00299-013-1430-5. PubMed DOI
Chen Q., Dai X., De-Paoli H., Cheng Y., Takebayashi Y., Kasahara H., Kamiya Y., Zhao Y. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant. Cell Physiol. 2014;55:1072–1079. doi: 10.1093/pcp/pcu039. PubMed DOI PMC
Kao C. Mechanisms of Salt Tolerance in Rice Plants: Cell Wall-Related Genes and Expansins. J. Taiwan Agric. Res. 2017;66:87–93.
Cheng Y., Dai X., Zhao Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006;20:1790–1799. doi: 10.1101/gad.1415106. PubMed DOI PMC
Alarcón M., Salguero J., Lloret P.G. Auxin modulated initiation of lateral roots is linked to pericycle cell length in maize. Front. Plant Sci. 2019;10:11. doi: 10.3389/fpls.2019.00011. PubMed DOI PMC
Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. doi: 10.1242/dev.086363. PubMed DOI
Fukui K., Hayashi K.I. Manipulation and sensing of auxin metabolism, transport and signaling. Plant Cell Physiol. 2018;59:1500–1510. doi: 10.1093/pcp/pcy076. PubMed DOI
Hentrich M., Böttcher C., Düchting P., Cheng Y., Zhao Y., Berkowitz O., Masle J., Medina J., Pollmann S. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J. 2013;74:626–637. doi: 10.1111/tpj.12152. PubMed DOI PMC
Zwiewka M., Bilanovičová V., Seifu Y.W., Nodzyński T. The Nuts and Bolts of PIN Auxin Efflux Carriers. Front. Plant Sci. 2019;10:985. doi: 10.3389/fpls.2019.00985. PubMed DOI PMC
Bielach A., Hrtyan M., Tognetti V.B. Plants under stress: Involvement of auxin and cytokinin. Int. J. Mol. Sci. 2017;18:1427. doi: 10.3390/ijms18071427. PubMed DOI PMC
Potters G., Pasternak T.P., Guisez Y., Jansen M.A. Different stresses, similar morphogenic responses: Integrating a plethora of pathways. Plant Cell Environ. 2009;32:158–169. doi: 10.1111/j.1365-3040.2008.01908.x. PubMed DOI
Singh P., Mohanta T.K., Sinha A.K. Unraveling the Intricate Nexus of Molecular Mechanisms Governing Rice Root Development: OsMPK3/6 and Auxin-Cytokinin Interplay. PLoS ONE. 2015;10:e0123620. doi: 10.1371/journal.pone.0123620. PubMed DOI PMC
Balzan S., Johal G.S., Carraro N. The role of auxin transporters in monocots development. Front. Plant Sci. 2014;5:393. doi: 10.3389/fpls.2014.00393. PubMed DOI PMC
Kong W., Zhong H., Deng X., Gautam M., Gong Z., Zhang Y., Zhao G., Liu C., Li Y. Evolutionary Analysis of GH3 Genes in Six Oryza Species/Subspecies and Their Expression Under Salinity Stress in Oryza sativa ssp. Japonica. Plants. 2019;8:30. doi: 10.3390/plants8020030. PubMed DOI PMC
Xia K., Wang R., Ou X., Fang Z., Tian C., Duan J., Wang Y., Zhang M. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and lesstolerance to salt and drought in rice. PLoS ONE. 2012;7:e30039. PubMed PMC
Xu D., Miao J., Yumoto E., Yokota T., Asahina M., Watahiki M. YUCCA9 Mediated Auxin Biosynthesis and Polar Auxin Transport Synergistically Regulate Regeneration of Root Systems Following Root Cutting. Plant Cell Physiol. 2017;58:1710–1723. doi: 10.1093/pcp/pcx107. PubMed DOI PMC
Guseman J.M., Hellmuth A., Lanctot A., Feldman T.P., Moss B.L., Klavins E., Calderón Villalobos L.I., Nemhauser J.L. Auxin-induced degradation dynamics set the pace for lateral root development. Development. 2015;142:905–909. PubMed PMC
Leyser O. Auxin Signaling. Plant Physiol. 2018;176:465–479. doi: 10.1104/pp.17.00765. PubMed DOI PMC
Tripathi V., Parasuraman B., Laxmi A., Chattopadhyay D. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J. 2009;58:778–790. doi: 10.1111/j.1365-313X.2009.03812.x. PubMed DOI
Chen L., Wang Q.Q., Zhou L., Ren F., Li D.D., Li X.B. Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol. Biol. Rep. 2013;40:4759–4767. doi: 10.1007/s11033-013-2572-9. PubMed DOI
Hu W., Xia Z., Yan Y., Ding Z., Tie W., Wang L., Zou M., Wei Y., Lu C., Hou X., et al. Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Front. Plant Sci. 2015;6:914. doi: 10.3389/fpls.2015.00914. PubMed DOI PMC
Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012;7:1456–1466. doi: 10.4161/psb.21949. PubMed DOI PMC
Gharsallah C., Fakhfakh H., Grubb D., Gorsane F. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants. 2016;8:plw055. doi: 10.1093/aobpla/plw055. PubMed DOI PMC
Zhang C.H., Ma T., Luo W.C., Xu J.M., Liu J.Q., Wan D.S. Identification of 4CL Genes in Desert Poplars and Their Changes in Expression in Response to Salt Stress. Genes. 2015;6:901–917. doi: 10.3390/genes6030901. PubMed DOI PMC
Shafi A., Chauhan R., Gill T., Swarnkar M.K., Sreenivasulu Y., Kumar S., Kumar N., Shankar R., Ahuja P.S., Singh A.K. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol. Biol. 2015;87:615–631. doi: 10.1007/s11103-015-0301-6. PubMed DOI
Le Gall H., Philippe F., Domon J.M., Gillet F., Pelloux J., Rayon C. Cell Wall Metabolism in Response to Abiotic Stress. Plants. 2015;4:112–166. doi: 10.3390/plants4010112. PubMed DOI PMC
Nveawiah-Yoho P., Zhou J., Palmer M., Sauve R., Zhou S. Identification of Proteins for Salt Tolerance Using a Comparative Proteomics Analysis of Tomato Accessions with Contrasting Salt Tolerance. J. Am. Soc. Hortic. Sci. 2013;138:382–394. doi: 10.21273/JASHS.138.5.382. DOI
Maršálová L., Vítámvás P., Hynek R., Prášil I.T., Kosová K. Proteomic Response of Hordeum vulgare cv. Tadmor and Hordeum marinum to Salinity Stress: Similarities and Differences between a Glycophyte and a Halophyte. Front. Plant Sci. 2016;7:1154. doi: 10.3389/fpls.2016.01154. PubMed DOI PMC
Lorbiecke R., Steffens M., Tomm J.M., Scholten S., Wiegen P., Kranz E., Wienand U., Sauter M. Phytosulphokine gene regulation during maize (Zea mays L.) reproduction. J. Exp. Bot. 2005;56:1805–1819. doi: 10.1093/jxb/eri169. PubMed DOI
Sauter M. Phytosulfokine peptide signaling. J. Exp. Bot. 2015;66:5161–5169. doi: 10.1093/jxb/erv071. PubMed DOI
Kutschmar A., Rzewuski G., Stührwohldt N., Beemster G.T., Inzé D., Sauter M. PSK-α promotes root growth in Arabidopsis. New Phytol. 2009;181:820–831. doi: 10.1111/j.1469-8137.2008.02710.x. PubMed DOI
Macovei A., Vaid N., Tula S., Tuteja N. A new DEAD-box helicase ATP-binding protein (OsABP) from rice is responsive to abiotic stress. Plant Signal. Behav. 2012;7:1138–1143. doi: 10.4161/psb.21343. PubMed DOI PMC
Tuteja N., Banu M.S., Huda K.M., Gill S.S., Jain P., Pham X.H., Tuteja R. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery. PLoS ONE. 2014;30:e98287. doi: 10.1371/journal.pone.0098287. PubMed DOI PMC
Dietz K.J., Sauter A., Wichert K., Messdaghi D., Hartung W. Extracellular beta-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J. Exp. Bot. 2000;51:937–944. doi: 10.1093/jexbot/51.346.937. PubMed DOI
Li W., Zhao F., Fang W., Xie D., Hou J., Yang X., Zhao Y., Tang Z., Nie L., Lv S. Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Front. Plant Sci. 2015;6:732. doi: 10.3389/fpls.2015.00732. PubMed DOI PMC
Dang H.Q., Tran N.Q., Gill S.S., Tuteja R., Tuteja N. A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Mol. Biol. 2011;76:19–34. doi: 10.1007/s11103-011-9758-0. PubMed DOI
Xu Z.S., Xiong T.F., Ni Z.Y., Chen. X.P., Chen M., Li L.C., Gao D.Y., Yu X.D., Liu P., Ma Y.Z. Isolation and identification of two genes encoding leucine-rich repeat (LRR) proteins differentially responsive to pathogen attack and salt stress in tobacco. Plant Sci. 2009;176:38–45. doi: 10.1016/j.plantsci.2008.09.004. DOI
Li X.J., Li M., Zhou Y., Hu S., Hu R., Chen Y., Li X.B. Overexpression of cotton RAV1 gene in Arabidopsis confers transgenic plants high salinity and drought sensitivity. PLoS ONE. 2015;10:e0118056. doi: 10.1371/journal.pone.0118056. PubMed DOI PMC
Miura K., Hasegawa P.M. Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol. 2010;20:223–232. doi: 10.1016/j.tcb.2010.01.007. PubMed DOI
Srivastava A.K., Zhang C., Yates G., Bailey M., Brown A., Sadanandom A. SUMO is a Critical Regulator of Salt Stress Responses in Rice. Plant Physiol. 2016;170:2378–2391. doi: 10.1104/pp.15.01530. PubMed DOI PMC
Lemaire K., Moura R.F., Granvik M., Igoillo-Esteve M., Hohmeier H.E., Hendrickx N., Newgard C.B., Waelkens E., Cnop M., Schuit F. Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis. PLoS ONE. 2011;6:e18517. doi: 10.1371/journal.pone.0018517. PubMed DOI PMC
Nagar P.K., Sood S. Changes in endogenous auxins during winter dormancy in tea (Camellia sinensis L.) O. Kuntze. Acta Physiol. Plant. 2006;28:165–169. doi: 10.1007/s11738-006-0043-9. DOI
Faurobert M., Pelpoir E., Chaïb J. Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. Methods Mol. Biol. 2007;355:9–14. PubMed
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Kaur D., Dogra V., Thapa P., Bhattacharya A., Sood A., Sreenivasulu Y. In vitro flowering associated protein changes in Dendrocalamus hamiltonii. Proteomics. 2015;15:1291–1306. doi: 10.1002/pmic.201400049. PubMed DOI