Morphological Analysis, Protein Profiling and Expression Analysis of Auxin Homeostasis Genes of Roots of Two Contrasting Cultivars of Rice Provide Inputs on Mechanisms Involved in Rice Adaptation towards Salinity Stress

. 2021 Jul 28 ; 10 (8) : . [epub] 20210728

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34451587

Grantová podpora
xx Department of Science and Technology (DST), Government of India and Department of Biotechnology (DBT), Government of India
RICE, 2017-2022 CGIAR Research Program (CRP) on rice-agrifood systems

Plants remodel their root architecture in response to a salinity stress stimulus. This process is regulated by an array of factors including phytohormones, particularly auxin. In the present study, in order to better understand the mechanisms involved in salinity stress adaptation in rice, we compared two contrasting rice cultivars-Luna Suvarna, a salt tolerant, and IR64, a salt sensitive cultivar. Phenotypic investigations suggested that Luna Suvarna in comparison with IR64 presented stress adaptive root traits which correlated with a higher accumulation of auxin in its roots. The expression level investigation of auxin signaling pathway genes revealed an increase in several auxin homeostasis genes transcript levels in Luna Suvarna compared with IR64 under salinity stress. Furthermore, protein profiling showed 18 proteins that were differentially regulated between the roots of two cultivars, and some of them were salinity stress responsive proteins found exclusively in the proteome of Luna Suvarna roots, revealing the critical role of these proteins in imparting salinity stress tolerance. This included proteins related to the salt overly sensitive pathway, root growth, the reactive oxygen species scavenging system, and abscisic acid activation. Taken together, our results highlight that Luna Suvarna involves a combination of morphological and molecular traits of the root system that could prime the plant to better tolerate salinity stress.

Zobrazit více v PubMed

Jackson M. Hormones from roots as signals for the shoots of stressed plants. Trends Plant Sci. 1997;2:22–28. doi: 10.1016/S1360-1385(96)10050-9. DOI

Saini S., Kaur N., Pati P.K. Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice. Anal. Biochem. 2018;550:99–108. doi: 10.1016/j.ab.2018.04.019. PubMed DOI

Gerona M.E.B., Deocampo M.P., Egdane J.A., Ismail A.M., Dionisio-Sese M.L. Physiological Responses of Contrasting Rice Genotypes to Salt Stress at Reproductive Stage. Rice Sci. 2019;26:207–219. doi: 10.1016/j.rsci.2019.05.001. DOI

Qadir M., Quillérou E., Nangia V., Murtaza G., Singh M., Thomas R.J., Drechsel P., Noble A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum. 2014;38:282–295. doi: 10.1111/1477-8947.12054. DOI

Shrivastava P., Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi. J. Biol. Sci. 2015;22:123–131. doi: 10.1016/j.sjbs.2014.12.001. PubMed DOI PMC

Egamberdieva D., Wirth S., Bellingrath-Kimura S.D., Mishra J., Naveen K., Arora N.K. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Front. Microbiol. 2019;10:2791. doi: 10.3389/fmicb.2019.02791. PubMed DOI PMC

Solis C.A., Yong M.T., Vinarao R., Jena K., Holford P., Shabala L., Zhou M., Shabala S., Chen Z. Back to the Wild: On a Quest for Donors toward Salinity Tolerant Rice. Front. Plant Sci. 2020;11:323. doi: 10.3389/fpls.2020.00323. PubMed DOI PMC

AbdElgawad H., Zinta G., Hegab M.M., Pandey R., Asard H., Abuelsoud W. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front. Plant Sci. 2016;7:276. doi: 10.3389/fpls.2016.00276. PubMed DOI PMC

Zhao Q., Zhang H., Wang T., Chen S., Dai S. Proteomics-based investigation of salt-responsive mechanisms in plant roots. J. Proteomics. 2013;2:230–253. doi: 10.1016/j.jprot.2013.01.024. PubMed DOI

Ghosh D., Xu J. Abiotic stress responses in plant roots: A proteomics perspective. Front. Plant Sci. 2014;5:6. doi: 10.3389/fpls.2014.00006. PubMed DOI PMC

Ryu H., Cho Y. Plant hormones in salt stress tolerance. J. Plant Biol. 2015;58:147–155. doi: 10.1007/s12374-015-0103-z. DOI

Korver R.A., Koevoets I.T., Testerink C. Out of Shape during Stress: A Key Role for Auxin. Trends Plant Sci. 2018;23:783–793. doi: 10.1016/j.tplants.2018.05.011. PubMed DOI PMC

Quint M., Gray W.M. Auxin signaling. Curr. Opin. Plant Biol. 2006;9:448–453. doi: 10.1016/j.pbi.2006.07.006. PubMed DOI PMC

Davies P.J. Plant hormones: Their nature, occurrence, and functions. In: Davies P.J., editor. Plant Hormones. Springer; Dordrecht, The Netherlands: 2010. pp. 1–15.

Shi H., Chen L., Ye T., Liu X., Ding K., Chan Z. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol. Biochem. 2014;82:209–217. doi: 10.1016/j.plaphy.2014.06.008. PubMed DOI

Jadamba C., Kang K., Paek N., Lee S.I., Yoo S. Overexpression of Rice Expansin7 (Osexpa7) Confers Enhanced Tolerance to Salt Stress in Rice. Int. J. Mol. Sci. 2020;21:454. doi: 10.3390/ijms21020454. PubMed DOI PMC

Fukaki H., Okushima Y., Tasaka M. Auxin-mediated lateral root formation in higher plants. Int. Rev. Cytol. 2007;256:111–137. PubMed

Di Mambro R., De Ruvo M., Pacifici E., Salvi E., Sozzani R., Benfey P.N., Busch W., Novak O., Ljung K., Di Paola L., et al. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proc. Natl. Acad. Sci. USA. 2017;114:641–649. doi: 10.1073/pnas.1705833114. PubMed DOI PMC

Rosquete M.R., Barbez E., Kleine-Vehn J. Cellular auxin homeostasis: Gatekeeping is housekeeping. Mol. Plant. 2012;5:772–786. doi: 10.1093/mp/ssr109. PubMed DOI

Saini S., Sharma I., Pati P.K. Integrating the Knowledge of Auxin Homeostasis with Stress Tolerance in Plants. In: Pandey G.K., editor. Mechanism of Plant Hormone Signaling under Stress. John Wiley and Sons, Inc.; Hoboken, NJ, USA: 2017. pp. 53–70.

Ribba T., Garrido-Vargas F., O’Brien J.A. Auxin-mediated responses under salt stress: From developmental regulation to biotechnological applications. J. Exp. Bot. 2020;71:3843–3853. doi: 10.1093/jxb/eraa241. PubMed DOI

Vaseva I.I., Mishev K., Depaepe T., Vassileva V., Van Der Straeten D. The Diverse Salt-Stress Response of Arabidopsis ctr1-1 and ein2-1 Ethylene Signaling Mutants is Linked to Altered Root Auxin Homeostasis. Plants. 2021;10:452. doi: 10.3390/plants10030452. PubMed DOI PMC

Zhang H., Han B., Wang T., Chen S., Li H., Zhang Y., Dai S. Mechanisms of plant salt response: Insights from proteomics. J. Proteome Res. 2012;11:49–67. doi: 10.1021/pr200861w. PubMed DOI

Sengupta S., Majumder A.L. Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: A physiological and proteomic approach. Planta. 2009;29:911–929. doi: 10.1007/s00425-008-0878-y. PubMed DOI

Comas L.H., Becker S.R., Cruz V.M.V., Byrne P.F., Dierig D.A. Root traits contributing to plant productivity under drought. Front. Plant Sci. 2013;4:442. doi: 10.3389/fpls.2013.00442. PubMed DOI PMC

Kim Y., Chung Y.S., Lee E., Tripathi P., Heo S., Kim K.H. Root response to drought stress in rice (Oryza sativa L.) Int. J. Mol. Sci. 2020;21:1513. doi: 10.3390/ijms21041513. PubMed DOI PMC

Arif M.R., Islam M.T., Robin A.H.K. Salinity stress alters root morphology and root hair traits in Brassica napus. Plants. 2019;8:192. doi: 10.3390/plants8070192. PubMed DOI PMC

Polania J., Poschenrieder C., Rao I., Beebe S. Root traits and their potential links to plant ideotypes to improve drought resistance in common bean. Theor. Exp. Plant Physiol. 2017;29:143–154. doi: 10.1007/s40626-017-0090-1. PubMed DOI PMC

Ku Y., Sintaha M., Cheung M., Lam H. Plant Hormone Signaling Crosstalks between Biotic and Abiotic Stress Responses. Int. J. Mol. Sci. 2018;19:3206. doi: 10.3390/ijms19103206. PubMed DOI PMC

Fu Y., Yang Y., Chen S., Ning N., Hu H. Arabidopsis IAR4 modulates primary root growth under salt stress through ROS-mediated modulation of auxin distribution. Front. Plant Sci. 2019;10:522. doi: 10.3389/fpls.2019.00522. PubMed DOI PMC

Du H., Liu H., Xiong L. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front. Plant Sci. 2013;4:397. doi: 10.3389/fpls.2013.00397. PubMed DOI PMC

Zörb C., Geilfus C.M., Mühling K.H., Ludwig-Müller J. The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J. Plant Physiol. 2013;170:220–224. doi: 10.1016/j.jplph.2012.09.012. PubMed DOI

Koevoets I.T., Venema J.H., Elzenga J.T.M., Testerink C. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. Front. Plant Sci. 2016;7:1335. doi: 10.3389/fpls.2016.01335. PubMed DOI PMC

Saini S., Sharma I., Kaur N., Pati P.K. Auxin: A master regulator in plant root development. Plant. Cell Rep. 2013;32:741–757. doi: 10.1007/s00299-013-1430-5. PubMed DOI

Chen Q., Dai X., De-Paoli H., Cheng Y., Takebayashi Y., Kasahara H., Kamiya Y., Zhao Y. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant. Cell Physiol. 2014;55:1072–1079. doi: 10.1093/pcp/pcu039. PubMed DOI PMC

Kao C. Mechanisms of Salt Tolerance in Rice Plants: Cell Wall-Related Genes and Expansins. J. Taiwan Agric. Res. 2017;66:87–93.

Cheng Y., Dai X., Zhao Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006;20:1790–1799. doi: 10.1101/gad.1415106. PubMed DOI PMC

Alarcón M., Salguero J., Lloret P.G. Auxin modulated initiation of lateral roots is linked to pericycle cell length in maize. Front. Plant Sci. 2019;10:11. doi: 10.3389/fpls.2019.00011. PubMed DOI PMC

Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. doi: 10.1242/dev.086363. PubMed DOI

Fukui K., Hayashi K.I. Manipulation and sensing of auxin metabolism, transport and signaling. Plant Cell Physiol. 2018;59:1500–1510. doi: 10.1093/pcp/pcy076. PubMed DOI

Hentrich M., Böttcher C., Düchting P., Cheng Y., Zhao Y., Berkowitz O., Masle J., Medina J., Pollmann S. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J. 2013;74:626–637. doi: 10.1111/tpj.12152. PubMed DOI PMC

Zwiewka M., Bilanovičová V., Seifu Y.W., Nodzyński T. The Nuts and Bolts of PIN Auxin Efflux Carriers. Front. Plant Sci. 2019;10:985. doi: 10.3389/fpls.2019.00985. PubMed DOI PMC

Bielach A., Hrtyan M., Tognetti V.B. Plants under stress: Involvement of auxin and cytokinin. Int. J. Mol. Sci. 2017;18:1427. doi: 10.3390/ijms18071427. PubMed DOI PMC

Potters G., Pasternak T.P., Guisez Y., Jansen M.A. Different stresses, similar morphogenic responses: Integrating a plethora of pathways. Plant Cell Environ. 2009;32:158–169. doi: 10.1111/j.1365-3040.2008.01908.x. PubMed DOI

Singh P., Mohanta T.K., Sinha A.K. Unraveling the Intricate Nexus of Molecular Mechanisms Governing Rice Root Development: OsMPK3/6 and Auxin-Cytokinin Interplay. PLoS ONE. 2015;10:e0123620. doi: 10.1371/journal.pone.0123620. PubMed DOI PMC

Balzan S., Johal G.S., Carraro N. The role of auxin transporters in monocots development. Front. Plant Sci. 2014;5:393. doi: 10.3389/fpls.2014.00393. PubMed DOI PMC

Kong W., Zhong H., Deng X., Gautam M., Gong Z., Zhang Y., Zhao G., Liu C., Li Y. Evolutionary Analysis of GH3 Genes in Six Oryza Species/Subspecies and Their Expression Under Salinity Stress in Oryza sativa ssp. Japonica. Plants. 2019;8:30. doi: 10.3390/plants8020030. PubMed DOI PMC

Xia K., Wang R., Ou X., Fang Z., Tian C., Duan J., Wang Y., Zhang M. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and lesstolerance to salt and drought in rice. PLoS ONE. 2012;7:e30039. PubMed PMC

Xu D., Miao J., Yumoto E., Yokota T., Asahina M., Watahiki M. YUCCA9 Mediated Auxin Biosynthesis and Polar Auxin Transport Synergistically Regulate Regeneration of Root Systems Following Root Cutting. Plant Cell Physiol. 2017;58:1710–1723. doi: 10.1093/pcp/pcx107. PubMed DOI PMC

Guseman J.M., Hellmuth A., Lanctot A., Feldman T.P., Moss B.L., Klavins E., Calderón Villalobos L.I., Nemhauser J.L. Auxin-induced degradation dynamics set the pace for lateral root development. Development. 2015;142:905–909. PubMed PMC

Leyser O. Auxin Signaling. Plant Physiol. 2018;176:465–479. doi: 10.1104/pp.17.00765. PubMed DOI PMC

Tripathi V., Parasuraman B., Laxmi A., Chattopadhyay D. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J. 2009;58:778–790. doi: 10.1111/j.1365-313X.2009.03812.x. PubMed DOI

Chen L., Wang Q.Q., Zhou L., Ren F., Li D.D., Li X.B. Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol. Biol. Rep. 2013;40:4759–4767. doi: 10.1007/s11033-013-2572-9. PubMed DOI

Hu W., Xia Z., Yan Y., Ding Z., Tie W., Wang L., Zou M., Wei Y., Lu C., Hou X., et al. Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Front. Plant Sci. 2015;6:914. doi: 10.3389/fpls.2015.00914. PubMed DOI PMC

Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012;7:1456–1466. doi: 10.4161/psb.21949. PubMed DOI PMC

Gharsallah C., Fakhfakh H., Grubb D., Gorsane F. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants. 2016;8:plw055. doi: 10.1093/aobpla/plw055. PubMed DOI PMC

Zhang C.H., Ma T., Luo W.C., Xu J.M., Liu J.Q., Wan D.S. Identification of 4CL Genes in Desert Poplars and Their Changes in Expression in Response to Salt Stress. Genes. 2015;6:901–917. doi: 10.3390/genes6030901. PubMed DOI PMC

Shafi A., Chauhan R., Gill T., Swarnkar M.K., Sreenivasulu Y., Kumar S., Kumar N., Shankar R., Ahuja P.S., Singh A.K. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol. Biol. 2015;87:615–631. doi: 10.1007/s11103-015-0301-6. PubMed DOI

Le Gall H., Philippe F., Domon J.M., Gillet F., Pelloux J., Rayon C. Cell Wall Metabolism in Response to Abiotic Stress. Plants. 2015;4:112–166. doi: 10.3390/plants4010112. PubMed DOI PMC

Nveawiah-Yoho P., Zhou J., Palmer M., Sauve R., Zhou S. Identification of Proteins for Salt Tolerance Using a Comparative Proteomics Analysis of Tomato Accessions with Contrasting Salt Tolerance. J. Am. Soc. Hortic. Sci. 2013;138:382–394. doi: 10.21273/JASHS.138.5.382. DOI

Maršálová L., Vítámvás P., Hynek R., Prášil I.T., Kosová K. Proteomic Response of Hordeum vulgare cv. Tadmor and Hordeum marinum to Salinity Stress: Similarities and Differences between a Glycophyte and a Halophyte. Front. Plant Sci. 2016;7:1154. doi: 10.3389/fpls.2016.01154. PubMed DOI PMC

Lorbiecke R., Steffens M., Tomm J.M., Scholten S., Wiegen P., Kranz E., Wienand U., Sauter M. Phytosulphokine gene regulation during maize (Zea mays L.) reproduction. J. Exp. Bot. 2005;56:1805–1819. doi: 10.1093/jxb/eri169. PubMed DOI

Sauter M. Phytosulfokine peptide signaling. J. Exp. Bot. 2015;66:5161–5169. doi: 10.1093/jxb/erv071. PubMed DOI

Kutschmar A., Rzewuski G., Stührwohldt N., Beemster G.T., Inzé D., Sauter M. PSK-α promotes root growth in Arabidopsis. New Phytol. 2009;181:820–831. doi: 10.1111/j.1469-8137.2008.02710.x. PubMed DOI

Macovei A., Vaid N., Tula S., Tuteja N. A new DEAD-box helicase ATP-binding protein (OsABP) from rice is responsive to abiotic stress. Plant Signal. Behav. 2012;7:1138–1143. doi: 10.4161/psb.21343. PubMed DOI PMC

Tuteja N., Banu M.S., Huda K.M., Gill S.S., Jain P., Pham X.H., Tuteja R. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery. PLoS ONE. 2014;30:e98287. doi: 10.1371/journal.pone.0098287. PubMed DOI PMC

Dietz K.J., Sauter A., Wichert K., Messdaghi D., Hartung W. Extracellular beta-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J. Exp. Bot. 2000;51:937–944. doi: 10.1093/jexbot/51.346.937. PubMed DOI

Li W., Zhao F., Fang W., Xie D., Hou J., Yang X., Zhao Y., Tang Z., Nie L., Lv S. Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Front. Plant Sci. 2015;6:732. doi: 10.3389/fpls.2015.00732. PubMed DOI PMC

Dang H.Q., Tran N.Q., Gill S.S., Tuteja R., Tuteja N. A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Mol. Biol. 2011;76:19–34. doi: 10.1007/s11103-011-9758-0. PubMed DOI

Xu Z.S., Xiong T.F., Ni Z.Y., Chen. X.P., Chen M., Li L.C., Gao D.Y., Yu X.D., Liu P., Ma Y.Z. Isolation and identification of two genes encoding leucine-rich repeat (LRR) proteins differentially responsive to pathogen attack and salt stress in tobacco. Plant Sci. 2009;176:38–45. doi: 10.1016/j.plantsci.2008.09.004. DOI

Li X.J., Li M., Zhou Y., Hu S., Hu R., Chen Y., Li X.B. Overexpression of cotton RAV1 gene in Arabidopsis confers transgenic plants high salinity and drought sensitivity. PLoS ONE. 2015;10:e0118056. doi: 10.1371/journal.pone.0118056. PubMed DOI PMC

Miura K., Hasegawa P.M. Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol. 2010;20:223–232. doi: 10.1016/j.tcb.2010.01.007. PubMed DOI

Srivastava A.K., Zhang C., Yates G., Bailey M., Brown A., Sadanandom A. SUMO is a Critical Regulator of Salt Stress Responses in Rice. Plant Physiol. 2016;170:2378–2391. doi: 10.1104/pp.15.01530. PubMed DOI PMC

Lemaire K., Moura R.F., Granvik M., Igoillo-Esteve M., Hohmeier H.E., Hendrickx N., Newgard C.B., Waelkens E., Cnop M., Schuit F. Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis. PLoS ONE. 2011;6:e18517. doi: 10.1371/journal.pone.0018517. PubMed DOI PMC

Nagar P.K., Sood S. Changes in endogenous auxins during winter dormancy in tea (Camellia sinensis L.) O. Kuntze. Acta Physiol. Plant. 2006;28:165–169. doi: 10.1007/s11738-006-0043-9. DOI

Faurobert M., Pelpoir E., Chaïb J. Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. Methods Mol. Biol. 2007;355:9–14. PubMed

Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Kaur D., Dogra V., Thapa P., Bhattacharya A., Sood A., Sreenivasulu Y. In vitro flowering associated protein changes in Dendrocalamus hamiltonii. Proteomics. 2015;15:1291–1306. doi: 10.1002/pmic.201400049. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...