The Nuts and Bolts of PIN Auxin Efflux Carriers

. 2019 ; 10 () : 985. [epub] 20190731

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31417597

The plant-specific proteins named PIN-FORMED (PIN) efflux carriers facilitate the direction of auxin flow and thus play a vital role in the establishment of local auxin maxima within plant tissues that subsequently guide plant ontogenesis. They are membrane integral proteins with two hydrophobic regions consisting of alpha-helices linked with a hydrophilic loop, which is usually longer for the plasma membrane-localized PINs. The hydrophilic loop harbors molecular cues important for the subcellular localization and thus auxin efflux function of those transporters. The three-dimensional structure of PIN has not been solved yet. However, there are scattered but substantial data concerning the functional characterization of amino acid strings that constitute these carriers. These sequences include motifs vital for vesicular trafficking, residues regulating membrane diffusion, cellular polar localization, and activity of PINs. Here, we summarize those bits of information striving to provide a reference to structural motifs that have been investigated experimentally hoping to stimulate the efforts toward unraveling of PIN structure-function connections.

Zobrazit více v PubMed

Abas L., Benjamins R., Malenica N., Paciorek T., Wiśniewska J., Moulinier–Anzola J. C., et al. . (2006). Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 8, 249–256. 10.1038/ncb1369, PMID: PubMed DOI

Abrahamsen H., O’Neill A. K., Kannan N., Kruse N., Taylor S. S., Jennings P. A., et al. . (2012). Peptidyl-prolyl isomerase pin1 controls down-regulation of conventional protein kinase C isozymes. J. Biol. Chem. 287, 13262–13278. 10.1074/jbc.M112.349753, PMID: PubMed DOI PMC

Adamowski M., Friml J. (2015). PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27, 20–32. 10.1105/tpc.114.134874, PMID: PubMed DOI PMC

Adamowski M., Narasimhan M., Kania U., Glanc M., De Jaeger G., Friml J. (2018). A functional study of AUXILIN-LIKE1 and 2, two putative clathrin uncoating factors in Arabidopsis. Plant Cell 30, 700–716. 10.1105/tpc.17.00785, PMID: PubMed DOI PMC

Ardito F., Giuliani M., Perrone D., Troiano G., Muzio L. L. (2017). The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (review). Int. J. Mol. Med. 40, 271–280. 10.3892/ijmm.2017.3036, PMID: PubMed DOI PMC

Bailly A., Yang H., Martinoia E., Geisler M., Murphy A. S. (2012). Plant lessons: exploring ABCB functionality through structural modeling. Front. Plant Traffic Transp. 2:108. 10.3389/fpls.2011.00108 PubMed DOI PMC

Bandyopadhyay A., Blakeslee J. J., Lee O. R., Mravec J., Sauer M., Titapiwatanakun B., et al. . (2007). Interactions of PIN and PGP auxin transport mechanisms. Biochem. Soc. Trans. 35, 137–141. 10.1042/BST0350137, PMID: PubMed DOI

Barbez E., Kleine-Vehn J. (2013). Divide Et Impera—cellular auxin compartmentalization. Curr. Opin. Plant Biol. 16, 78–84. 10.1016/j.pbi.2012.10.005, PMID: PubMed DOI

Barbez E., Kubeš M., Rolčík J., Béziat C., Pěnčík A., Wang B., et al. (2012). A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485, 119–122. 10.1038/nature11001 PubMed DOI

Barbosa I. C. R., Hammes U. Z., Schwechheimer C. (2018). Activation and polarity control of PIN-FORMED auxin transporters by phosphorylation. Trends Plant Sci. 23, 523–538. 10.1016/j.tplants.2018.03.009 PubMed DOI

Barbosa I. C. R., Zourelidou M., Willige B. C., Weller B., Schwechheimer C. (2014). D6 PROTEIN KINASE activates auxin transport-dependent growth and PIN-FORMED phosphorylation at the plasma membrane. Dev. Cell 29, 674–685. 10.1016/j.devcel.2014.05.006, PMID: PubMed DOI

Benjamins R., Ampudia C. S. G., Hooykaas P. J. J., Offringa R. (2003). PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol. 132, 1623–1630. 10.1104/pp.103.019943, PMID: PubMed DOI PMC

Benjamins R., Quint A., Weijers D., Hooykaas P., Offringa R. (2001). The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128, 4057–4067. PMID: PubMed

Bennett S. R. M., Alvarez J., Bossinger G., Smyth D. R. (1995). Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J. 8, 505–520. 10.1046/j.1365-313X.1995.8040505.x DOI

Bennett T., Brockington S. F., Rothfels C., Graham S. W., Stevenson D., Kutchan T., et al. . (2014). Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure. Mol. Biol. Evol. 31, 2042–2060. 10.1093/molbev/msu147, PMID: PubMed DOI PMC

Bennett M. J., Marchant A., Green H. G., May S. T., Ward S. P., Millner P. A., et al. . (1996). Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273, 948–950. 10.1126/science.273.5277.948, PMID: PubMed DOI

Benschop J. J., Mohammed S., O’Flaherty M., Heck A. J. R., Slijper M., Menke F. L. H. (2007). Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. Proteomics 6, 1198–1214. 10.1074/mcp.M600429-MCP200, PMID: PubMed DOI

Blakeslee J. J., Bandyopadhyay A., Lee O. R., Mravec J., Titapiwatanakun B., Sauer M., et al. . (2007). Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19, 131–147. 10.1105/tpc.106.040782, PMID: PubMed DOI PMC

Boehm M., Bonifacino J. S., Pollard T. D. (2001). Adaptins. Mol. Biol. Cell 12, 2907–2920. 10.1091/mbc.12.10.2907 PubMed DOI PMC

Bögre L., Ökrész L., Henriques R., Anthony R. G. (2003). Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci. 8, 424–431. 10.1016/S1360-1385(03)00188-2, PMID: PubMed DOI

Bouley R., Sun T.-X., Chenard M., McLaughlin M., McKee M., Lin H. Y., et al. . (2003). Functional role of the NPxxY motif in internalization of the type 2 vasopressin receptor in LLC-PK1 cells. Am. J. Physiol. Cell Physiol. 285, C750–C762. 10.1152/ajpcell.00477.2002, PMID: PubMed DOI

Brichkina A., Nguyen N. T., Baskar R., Wee S., Gunaratne J., Robinson R. C., et al. . (2016). Proline isomerisation as a novel regulatory mechanism for p38MAPK activation and functions. Cell Death Differ. 23, 1592–1601. 10.1038/cdd.2016.45, PMID: PubMed DOI PMC

Canagarajah B. J., Ren X., Bonifacino J. S., Hurley J. H. (2013). The clathrin adaptor complexes as a paradigm for membrane-associated allostery. Protein Sci. 22, 517–529. 10.1002/pro.2235, PMID: PubMed DOI PMC

Chen R., Hilson P., Sedbrook J., Rosen E., Caspar T., Masson P. H. (1998). The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc. Natl. Acad. Sci. USA 95, 15112–15117. 10.1073/pnas.95.25.15112 PubMed DOI PMC

Cheng H., Deng W., Wang Y., Ren J., Liu Z., Xue Y. (2014). dbPPT: a comprehensive database of protein phosphorylation in plants. Database 2014:bau121. 10.1093/database/bau121, PMID: PubMed DOI PMC

Christensen S. K., Dagenais N., Chory J., Weigel D. (2000). Regulation of auxin response by the protein kinase PINOID. Cell 100, 469–478. 10.1016/S0092-8674(00)80682-0, PMID: PubMed DOI

Dhonukshe P. (2011). PIN polarity regulation by AGC-3 kinases and ARF-GEF. Plant Signal. Behav. 6, 1333–1337. 10.4161/psb.6.9.16611 PubMed DOI PMC

Dhonukshe P., Aniento F., Hwang I., Robinson D. G., Mravec J., Stierhof Y.-D., et al. . (2007). Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr. Biol. CB 17, 520–527. 10.1016/j.cub.2007.01.052, PMID: PubMed DOI

Dhonukshe P., Huang F., Galvan-Ampudia C. S., Mähönen A. P., Kleine-Vehn J., Xu J., et al. . (2010). Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development 137, 3245–3255. 10.1242/dev.052456, PMID: PubMed DOI

Ding Z., Galván-Ampudia C. S., Demarsy E., Łangowski Ł., Kleine-Vehn J., Fan Y., et al. . (2011). Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat. Cell Biol. 13, 447–452. 10.1038/ncb2208, PMID: PubMed DOI

Ding Z., Wang B., Moreno I., Dupláková N., Simon S., Carraro N., et al. (2012). ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat. Commun. 3:941. 10.1038/ncomms1941 PubMed DOI

Ditengou F. A., Gomes D., Nziengui H., Kochersperger P., Lasok H., Medeiros V., et al. . (2018). Characterization of auxin transporter PIN6 plasma membrane targeting reveals a function for PIN6 in plant bolting. New Phytol. 217, 1610–1624. 10.1111/nph.14923, PMID: PubMed DOI

Ditengou F. A., Teale W. D., Kochersperger P., Flittner K. A., Kneuper I., van der Graaff E., et al. (2008). Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 105, 18818–18823. 10.1073/pnas.0807814105 PubMed DOI PMC

Dory M., Hatzimasoura E., Kállai B. M., Nagy S. K., Jäger K., Darula Z., et al. (2017). Coevolving MAPK and PID phosphosites indicate an ancient environmental control of PIN auxin transporters in land plants. FEBS Lett. 592, 89–102. 10.1002/1873-3468.12929 PubMed DOI PMC

Feraru E., Feraru M. I., Barbez E., Waidmann S., Sun L., Gaidora A., et al. . (2019). PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 116, 3893–3898. 10.1073/pnas.1814015116, PMID: PubMed DOI PMC

Feraru E., Feraru M. I., Kleine-Vehn J., Martinière A., Mouille G., Vanneste S., et al. . (2011). PIN polarity maintenance by the cell wall in Arabidopsis. Curr. Biol. 21, 338–343. 10.1016/j.cub.2011.01.036, PMID: PubMed DOI

Feraru E., Paciorek T., Feraru M. I., Zwiewka M., De Groodt R., De Rycke R., et al. . (2010). The AP-3 Β adaptin mediates the biogenesis and function of lytic vacuoles in Arabidopsis. Plant Cell Online 22, 2812–2824. 10.1105/tpc.110.075424, PMID: PubMed DOI PMC

Feraru E., Vosolsobě S., Feraru M. I., Petrášek J., Kleine-Vehn J. (2012). Evolution and structural diversification of PILS putative auxin carriers in plants. Plant Traffic Transp. 3:227. 10.3389/fpls.2012.00227 PubMed DOI PMC

Fowler P. W., Orwick-Rydmark M., Radestock S., Solcan N., Dijkman P. M., Lyons J. A., et al. (2015). Gating topology of the proton-coupled oligopeptide symporters. Structure 23, 290–301. 10.1016/j.str.2014.12.012 PubMed DOI PMC

Friml J., Benková E., Blilou I., Wisniewska J., Hamann T., Ljung K., et al. (2002a). AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108, 661–673. 10.1016/s0092-8674(02)00656-6 PubMed DOI

Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., et al. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153. 10.1038/nature02085 PubMed DOI

Friml J., Wiśniewska J., Benková E., Mendgen K., Palme K. (2002b). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415, 806–809. 10.1038/415806a PubMed DOI

Friml J., Yang X., Michniewicz M., Weijers D., Quint A., Tietz O., et al. . (2004). A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306, 862–865. 10.1126/science.1100618, PMID: PubMed DOI

Galván-Ampudia C. S., Offringa R. (2007). Plant evolution: AGC kinases tell the auxin tale. Trends Plant Sci. 12, 541–547. 10.1016/j.tplants.2007.10.004, PMID: PubMed DOI

Gälweiler L., Guan C., Müller A., Wisman E., Mendgen K., Yephremov A., et al. . (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230. 10.1126/science.282.5397.2226, PMID: PubMed DOI

Ganguly A., Lee S.-H., Cho H.-T. (2012). Functional identification of the phosphorylation sites of Arabidopsis PIN-FORMED3 for its subcellular localization and biological role. Plant J. 71, 810–823. 10.1111/j.1365-313X.2012.05030.x, PMID: PubMed DOI

Ganguly A., Park M., Kesawat M. S., Cho H.-T. (2014). Functional analysis of the hydrophilic loop in intracellular trafficking of Arabidopsis PIN-FORMED Proteins. Plant Cell 26, 1570–1585. 10.1105/tpc.113.118422, PMID: PubMed DOI PMC

Garbers C., DeLong A., Deruére J., Bernasconi P., Söll D. (1996). A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J. 15, 2115–2124. PubMed PMC

Geisler M., Aryal B., di Donato M., Hao P. (2017). A critical view on ABC transporters and their interacting partners in auxin transport. Plant Cell Physiol. 58, 1601–1614. 10.1093/pcp/pcx104, PMID: PubMed DOI

Geisler M., Bailly A., Ivanchenko M. (2016). Master and servant: regulation of auxin transporters by FKBPs and cyclophilins. Plant Sci. 245, 1–10. 10.1016/j.plantsci.2015.12.004, PMID: PubMed DOI

Geisler M., Wang B., Zhu J. (2014). Auxin transport during root gravitropism: transporters and techniques. Plant Biol. 16, 50–57. 10.1111/plb.12030, PMID: PubMed DOI

Geldner N., Anders N., Wolters H., Keicher J., Kornberger W., Muller P., et al. . (2003). The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219–230. 10.1016/S0092-8674(03)00003-5, PMID: PubMed DOI

Goldsmith M. H. M. (1977). The polar transport of auxin. Annu. Rev. Plant Physiol. 28, 439–478. 10.1146/annurev.pp.28.060177.002255 DOI

Grones P., Abas M., Hajný J., Jones A., Waidmann S., Kleine-Vehn J., et al. (2018). PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism. Sci. Rep. 8:10279. 10.1038/s41598-018-28188-1 PubMed DOI PMC

Guilfoyle T., Hagen G., Ulmasov T., Murfett J. (1998). How does auxin turn on genes? Plant Physiol. 118, 341–347. 10.1104/pp.118.2.341 PubMed DOI PMC

Haga K., Hayashi K., Sakai T. (2014). PINOID AGC kinases are necessary for phytochrome-mediated enhancement of hypocotyl phototropism in Arabidopsis. Plant Physiol. 166, 1535–1545. 10.1104/pp.114.244434, PMID: PubMed DOI PMC

Haga K., Sakai T. (2012). PIN auxin efflux carriers are necessary for pulse-induced but not continuous light-induced phototropism in Arabidopsis1[W][OA]. Plant Physiol. 160, 763–776. 10.1104/pp.112.202432, PMID: PubMed DOI PMC

Heisler M. G., Ohno C., Das P., Sieber P., Reddy G. V., Long J. A., et al. . (2005). Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 1899–1911. 10.1016/j.cub.2005.09.052, PMID: PubMed DOI

Himschoot E., Pleskot R., Van Damme D., Vanneste S. (2017). The ins and outs of Ca2+ in plant endomembrane trafficking. Curr. Opin. Plant Biol. 40, 131–137. 10.1016/j.pbi.2017.09.003, PMID: PubMed DOI

Hohm T., Preuten T., Fankhauser C. (2013). Phototropism: translating light into directional growth. Am. J. Bot. 100, 47–59. 10.3732/ajb.1200299, PMID: PubMed DOI

Huang H., Arighi C. N., Ross K. E., Ren J., Li G., Chen S.-C., et al. . (2018). iPTMnet: an integrated resource for protein post-translational modification network discovery. Nucleic Acids Res. 46, D542–D550. 10.1093/nar/gkx1104, PMID: PubMed DOI PMC

Huang F., Kemel Zago M., Abas L., van Marion A., Galván-Ampudia C. S., Offringa R. (2010). Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. Plant Cell 22, 1129–1142. 10.1105/tpc.109.072678 PubMed DOI PMC

Hulo N., Bairoch A., Bulliard V., Cerutti L., De Castro E., Langendijk-Genevaux P. S., et al. . (2006). The PROSITE database. Nucleic Acids Res. 34, D227–D230. 10.1093/nar/gkj063, PMID: PubMed DOI PMC

Humphrey S. J., James D. E., Mann M. (2015). Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol. Metab. 26, 676–687. 10.1016/j.tem.2015.09.013, PMID: PubMed DOI

Isono E., Kalinowska K. (2017). ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants. Curr. Opin. Plant Biol. 40, 49–55. 10.1016/j.pbi.2017.07.003, PMID: PubMed DOI

Jardetzky O. (1996). Protein dynamics and conformational transitions in allosteric proteins. Prog. Biophys. Mol. Biol. 65, 171–219. 10.1016/S0079-6107(96)00010-7, PMID: PubMed DOI

Jia W., Li B., Li S., Liang Y., Wu X., Ma M., et al. . (2016). Mitogen-activated protein kinase cascade MKK7-MPK6 plays important roles in plant development and regulates shoot branching by phosphorylating PIN1 in Arabidopsis. PLoS Biol. 14:e1002550. 10.1371/journal.pbio.1002550, PMID: PubMed DOI PMC

Kasahara H. (2016). Current aspects of auxin biosynthesis in plants. Biosci. Biotechnol. Biochem. 80, 34–42. 10.1080/09168451.2015.1086259 PubMed DOI

Kerr I. D., Bennett M. J. (2007). New insight into the biochemical mechanisms regulating auxin transport in plants. Biochem. J. 401, 613–622. 10.1042/BJ20061411, PMID: PubMed DOI PMC

Kim J.-Y., Henrichs S., Bailly A., Vincenzetti V., Sovero V., Mancuso S., et al. (2010). Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J. Biol. Chem. 285, 23309–23317. 10.1074/jbc.M110.105981 PubMed DOI PMC

Kitakura S., Vanneste S., Robert S., Löfke C., Teichmann T., Tanaka H., et al. . (2011). Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell Online 23, 1920–1931. 10.1105/tpc.111.083030, PMID: PubMed DOI PMC

Kleine-Vehn J., Friml J. (2008). Polar targeting and endocytic recycling in auxin-dependent plant development. Annu. Rev. Cell Dev. Biol. 24, 447–473. 10.1146/annurev.cellbio.24.110707.175254, PMID: PubMed DOI

Kleine-Vehn J., Huang F., Naramoto S., Zhang J., Michniewicz M., Offringa R., et al. (2009). PIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-independent trafficking in Arabidopsis. Plant Cell Online 21, 3839–3849. 10.1105/tpc.109.071639 PubMed DOI PMC

Kleine-Vehn J., Leitner J., Zwiewka M., Sauer M., Abas L., Luschnig C., et al. (2008). Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl. Acad. Sci. USA 105, 17812–17817. 10.1073/pnas.0808073105 PubMed DOI PMC

Kleine-Vehn J., Wabnik K., Martinière A., Łangowski Ł., Willig K., Naramoto S., et al. . (2011). Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol. Syst. Biol. 7:540. 10.1038/msb.2011.72, PMID: PubMed DOI PMC

Kohnen M. V., Schmid-Siegert E., Trevisan M., Petrolati L. A., Sénéchal F., Müller-Moulé P., et al. . (2016). Neighbor detection induces organ-specific transcriptomes, revealing patterns underlying hypocotyl-specific growth. Plant Cell 28, 2889–2904. 10.1105/tpc.16.00463, PMID: PubMed DOI PMC

Křeček P., Skůpa P., Libus J., Naramoto S., Tejos R., Friml J., et al. . (2009). The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 10:249. 10.1186/gb-2009-10-12-249, PMID: PubMed DOI PMC

Krouk G., Lacombe B., Bielach A., Perrine-Walker F., Malinska K., Mounier E., et al. . (2010). Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell 18, 927–937. 10.1016/j.devcel.2010.05.008, PMID: PubMed DOI

Lam S. K., Cai Y., Tse Y. C., Wang J., Law A. H. Y., Pimpl P., et al. . (2009). BFA-induced compartments from the Golgi apparatus and trans-Golgi network/early endosome are distinct in plant cells. Plant J. 60, 865–881. 10.1111/j.1365-313X.2009.04007.x, PMID: PubMed DOI

Łangowski Ł., Wabnik K., Li H., Vanneste S., Naramoto S., Tanaka H., et al. (2016). Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells. Cell Discov. 2:16018. 10.1038/celldisc.2016.18 PubMed DOI PMC

Lavenus J., Guyomarc’h S., Laplaze L. (2016). PIN transcriptional regulation shapes root system architecture. Trends Plant Sci. 21, 175–177. 10.1016/j.tplants.2016.01.011, PMID: PubMed DOI

Lavy M., Estelle M. (2016). Mechanisms of auxin signaling. Development 143, 3226–3229. 10.1242/dev.131870, PMID: PubMed DOI PMC

Lefèvre F., Boutry M. (2018). Towards Identification of the Substrates of ATP-Binding Cassette Transporters. Plant Physiol. 178, 18–39. 10.1104/pp.18.00325, PMID: PubMed DOI PMC

Leitner J., Petrášek J., Tomanov K., Retzer K., Pařezová M., Korbei B., et al. (2012a). Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proc. Natl. Acad. Sci. USA 109, 8322–8327. 10.1073/pnas.1200824109 PubMed DOI PMC

Leitner J., Retzer K., Korbei B., Luschnig C. (2012b). Dynamics in PIN2 auxin carrier ubiquitylation in gravity-responding Arabidopsis roots. Plant Signal. Behav. 7, 1271–1273. 10.4161/psb.21715 PubMed DOI PMC

Ljung K., Bhalerao R. P., Sandberg G. (2001). Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 28, 465–474. 10.1046/j.1365-313X.2001.01173.x, PMID: PubMed DOI

Ljung K., Hull A. K., Celenza J., Yamada M., Estelle M., Normanly J., et al. . (2005). Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17, 1090–1104. 10.1105/tpc.104.029272, PMID: PubMed DOI PMC

Luschnig C., Gaxiola R. A., Grisafi P., Fink G. R. (1998). EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12, 2175–2187. 10.1101/gad.12.14.2175, PMID: PubMed DOI PMC

Luschnig C., Vert G. (2014). The dynamics of plant plasma membrane proteins: PINs and beyond. Development 141, 2924–2938. 10.1242/dev.103424, PMID: PubMed DOI

Lv B., Yan Z., Tian H., Zhang X., Ding Z. (2019). Local auxin biosynthesis mediates plant growth and development. Trends Plant Sci. 24, 6–9. 10.1016/j.tplants.2018.10.014, PMID: PubMed DOI

Marhava P., Bassukas A. E. L., Zourelidou M., Kolb M., Moret B., Fastner A., et al. . (2018). A molecular rheostat adjusts auxin flux to promote root protophloem differentiation. Nature 558, 297–300. 10.1038/s41586-018-0186-z, PMID: PubMed DOI

Michniewicz M., Zago M. K., Abas L., Weijers D., Schweighofer A., Meskiene I., et al. . (2007). Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130, 1044–1056. 10.1016/j.cell.2007.07.033, PMID: PubMed DOI

Mravec J., Kubeš M., Bielach A., Gaykova V., Petrášek J., Skůpa P., et al. . (2008). Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135, 3345–3354. 10.1242/dev.021071, PMID: PubMed DOI

Mravec J., Skůpa P., Bailly A., Hoyerová K., Krecek P., Bielach A., et al. . (2009). Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459, 1136–1140. 10.1038/nature08066, PMID: PubMed DOI

Müller A., Guan C., Gälweiler L., Tänzler P., Huijser P., Marchant A., et al. . (1998). AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 17, 6903–6911. 10.1093/emboj/17.23.6903, PMID: PubMed DOI PMC

Naramoto S. (2017). Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport. Curr. Opin. Plant Biol. 40, 8–14. 10.1016/j.pbi.2017.06.012, PMID: PubMed DOI

Nimigean C. M. (2006). A radioactive uptake assay to measure ion transport across ion channel–containing liposomes. Nat. Protoc. 1, 1207–1212. 10.1038/nprot.2006.166, PMID: PubMed DOI

Nodzyński T., Feraru M. I., Hirsch S., De Rycke R., Niculaes C., Boerjan W., et al. (2013). Retromer subunits VPS35A and VPS29 mediate prevacuolar compartment (PVC) function in Arabidopsis. Mol. Plant 6, 1849–1862. 10.1093/mp/sst044 PubMed DOI

Nodzyński T., Vanneste S., Friml J. (2012). “Endocytic trafficking of PIN proteins and auxin transport” in Endocytosis in plants. ed. Šamaj J. (Berlin Heidelberg: Springer; ), 165–183. Available at: http://link.springer.com/chapter/10.1007/978-3-642-32463-5_8 (Accessed November 4, 2013). DOI

Nodzyński T., Vanneste S., Zwiewka M., Pernisová M., Hejátko J., Friml J. (2016). Enquiry into the topology of plasma membrane-localized PIN auxin transport components. Mol. Plant 9, 1504–1519. 10.1016/j.molp.2016.08.010, PMID: PubMed DOI PMC

Ohno H., Stewart J., Fournier M. C., Bosshart H., Rhee I., Miyatake S., et al. . (1995). Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269, 1872–1875. 10.1126/science.7569928, PMID: PubMed DOI

Okada K., Ueda J., Komaki M. K., Bell C. J., Shimura Y. (1991). Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell Online 3, 677–684. 10.1105/tpc.3.7.677 PubMed DOI PMC

Pahari S., Cormark R. D., Blackshaw M. T., Liu C., Erickson J. L., Schultz E. A. (2014). Arabidopsis UNHINGED encodes a VPS51 homolog and reveals a role for the GARP complex in leaf shape and vein patterning. Development 141, 1894–1905. 10.1242/dev.099333, PMID: PubMed DOI

Palme K., Gälweiler L. (1999). PIN-pointing the molecular basis of auxin transport. Curr. Opin. Plant Biol. 2, 375–381. 10.1016/S1369-5266(99)00008-4, PMID: PubMed DOI

Park M., Song K., Reichardt I., Kim H., Mayer U., Stierhof Y.-D., et al. (2013). Arabidopsis μ-adaptin subunit AP1M of adaptor protein complex 1 mediates late secretory and vacuolar traffic and is required for growth. Proc. Natl. Acad. Sci. USA 110, 10318–10323. 10.1073/pnas.1300460110 PubMed DOI PMC

Petrášek J., Mravec J., Bouchard R., Blakeslee J. J., Abas M., Seifertová D., et al. . (2006). PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312, 914–918. 10.1126/science.1123542, PMID: PubMed DOI

Ping Lu K., Hanes S. D., Hunter T. (1996). A human peptidyl–prolyl isomerase essential for regulation of mitosis. Nature 380, 544–547. 10.1038/380544a0, PMID: PubMed DOI

Rahman A., Takahashi M., Shibasaki K., Wu S., Inaba T., Tsurumi S., et al. . (2010). Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. Plant Cell 22, 1762–1776. 10.1105/tpc.110.075317, PMID: PubMed DOI PMC

Rakusová H., Abbas M., Han H., Song S., Robert H. S., Friml J. (2016). Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Curr. Biol. 26, 3026–3032. 10.1016/j.cub.2016.08.067, PMID: PubMed DOI

Rakusová H., Gallego-Bartolomé J., Vanstraelen M., Robert H. S., Alabadí D., Blázquez M. A., et al. . (2011). Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J. 67, 817–826. 10.1111/j.1365-313X.2011.04636.x, PMID: PubMed DOI

Ranocha P., Dima O., Nagy R., Felten J., Corratgé-Faillie C., Novák O., et al. . (2013). Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat. Commun. 4:2625. 10.1038/ncomms3625, PMID: PubMed DOI PMC

Retzer K., Lacek J., Skokan R., del Genio C. I., Vosolsobě S., Laňková M., et al. . (2017). Evolutionary conserved cysteines function as cis-acting regulators of Arabidopsis PIN-FORMED 2 distribution. Int. J. Mol. Sci. 18:2274. 10.3390/ijms18112274, PMID: PubMed DOI PMC

Reyes F. C., Buono R., Otegui M. S. (2011). Plant endosomal trafficking pathways. Curr. Opin. Plant Biol. 14, 666–673. 10.1016/j.pbi.2011.07.009, PMID: PubMed DOI

Rigó G., Ayaydin F., Tietz O., Zsigmond L., Kovács H., Páy A., et al. . (2013). Inactivation of plasma membrane–localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 25, 1592–1608. 10.1105/tpc.113.110452, PMID: PubMed DOI PMC

Robert H. S., Crhak Khaitova L., Mroue S., Benková E. (2015). The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. J. Exp. Bot. 66, 5029–5042. 10.1093/jxb/erv256, PMID: PubMed DOI

Robert H. S., Park C., Gutièrrez C. L., Wójcikowska B., Pěnčík A., Novák O., et al. . (2018). Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nat. Plants 4, 548–553. 10.1038/s41477-018-0204-z, PMID: PubMed DOI PMC

Robinson M. S. (2015). Forty years of clathrin-coated vesicles. Traffic 16, 1210–1238. 10.1111/tra.12335, PMID: PubMed DOI

Rojas-Pierce M., Titapiwatanakun B., Sohn E. J., Fang F., Larive C. K., Blakeslee J., et al. . (2007). Arabidopsis P-glycoprotein19 participates in the inhibition of gravitropism by gravacin. Chem. Biol. 14, 1366–1376. 10.1016/j.chembiol.2007.10.014, PMID: PubMed DOI

Rubery P. H., Sheldrake A. R. (1974). Carrier-mediated auxin transport. Planta 118, 101–121. 10.1007/BF00388387, PMID: PubMed DOI

Ruiz Rosquete M., Barbez E., Kleine-Vehn J. (2011). Cellular auxin homeostasis: gatekeeping is housekeeping. Mol. Plant 5, 772–786. 10.1093/mp/ssr109 PubMed DOI

Sacco F., Perfetto L., Castagnoli L., Cesareni G. (2012). The human phosphatase interactome: an intricate family portrait. FEBS Lett. 586, 2732–2739. 10.1016/j.febslet.2012.05.008, PMID: PubMed DOI PMC

Salehin M., Bagchi R., Estelle M. (2015). SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27, 9–19. 10.1105/tpc.114.133744, PMID: PubMed DOI PMC

Sancho-Andrés G., Soriano-Ortega E., Gao C., Bernabé-Orts J. M., Narasimhan M., Müller A. O., et al. . (2016). Sorting motifs involved in the trafficking and localization of the PIN1 auxin efflux carrier1. Plant Physiol. 171, 1965–1982. 10.1104/pp.16.00373, PMID: PubMed DOI PMC

Santner A. A., Watson J. C. (2006). The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis. Plant J. 45, 752–764. 10.1111/j.1365-313X.2005.02641.x PubMed DOI

Schenck D., Christian M., Jones A., Lüthen H. (2010). Rapid auxin-induced cell expansion and gene expression: a four-decade-old question revisited1[C][W]. Plant Physiol. 152, 1183–1185. 10.1104/pp.109.149591, PMID: PubMed DOI PMC

Simon S., Skůpa P., Viaene T., Zwiewka M., Tejos R., Klíma P., et al. (2016). PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytol. 211, 65–74. 10.1111/nph.14019 PubMed DOI

Singh M. K., Jürgens G. (2018). Specificity of plant membrane trafficking – ARFs, regulators and coat proteins. Semin. Cell Dev. Biol. 80, 85–93. 10.1016/j.semcdb.2017.10.005, PMID: PubMed DOI

Singh G., Retzer K., Vosolsobě S., Napier R. (2018). Advances in understanding the mechanism of action of the auxin permease AUX1. Int. J. Mol. Sci. 19:3391. 10.3390/ijms19113391, PMID: PubMed DOI PMC

Spoel S. H. (2018). Orchestrating the proteome with post-translational modifications. J. Exp. Bot. 69, 4499–4503. 10.1093/jxb/ery295, PMID: PubMed DOI PMC

Swarup R., Kargul J., Marchant A., Zadik D., Rahman A., Mills R., et al. . (2004). Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell Online 16, 3069–3083. 10.1105/tpc.104.024737, PMID: PubMed DOI PMC

Tian M., Xie Q. (2013). Non-26S proteasome proteolytic role of ubiquitin in plant endocytosis and endosomal traffickingF. J. Integr. Plant Biol. 55, 54–63. 10.1111/jipb.12007, PMID: PubMed DOI

Traub L. M. (2009). Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 10, 583–596. 10.1038/nrm2751, PMID: PubMed DOI

Vanneste S., Friml J. (2009). Auxin: a trigger for change in plant development. Cell 136, 1005–1016. 10.1016/j.cell.2009.03.001 PubMed DOI

Viaene T., Delwiche C. F., Rensing S. A., Friml J. (2013). Origin and evolution of PIN auxin transporters in the green lineage. Trends Plant Sci. 18, 5–10. 10.1016/j.tplants.2012.08.009, PMID: PubMed DOI

Wang P., Cheng T., Wu S., Zhao F., Wang G., Yang L., et al. . (2014). Phylogeny and molecular evolution analysis of PIN-FORMED 1 in angiosperm. PLoS One 9:e89289. 10.1371/journal.pone.0089289, PMID: PubMed DOI PMC

Wang Y., Liu C., Yang D., Yu H., Liou Y.-C. (2010). Pin1At encoding a Peptidyl-Prolyl cis/trans isomerase regulates flowering time in Arabidopsis. Mol. Cell 37, 112–122. 10.1016/j.molcel.2009.12.020 PubMed DOI

Weller B., Zourelidou M., Frank L., Barbosa I. C. R., Fastner A., Richter S., et al. . (2017). Dynamic PIN-FORMED auxin efflux carrier phosphorylation at the plasma membrane controls auxin efflux-dependent growth. Proc. Natl. Acad. Sci. USA 114, E887–E896. 10.1073/pnas.1614380114, PMID: PubMed DOI PMC

Willems P., Horne A., Goormachtig S., Smet I. D., Botzki A., Breusegem F. V., et al. (2018). The Plant PTM Viewer, a central resource exploring plant protein modifications. From site-seeing to protein function. BioRxiv [Preprint]. 10.1101/415802 PubMed DOI

Willige B. C., Ahlers S., Zourelidou M., Barbosa I. C. R., Demarsy E., Trevisan M., et al. . (2013). D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. Plant Cell 25, 1674–1688. 10.1105/tpc.113.111484, PMID: PubMed DOI PMC

Willige B. C., Chory J. (2015). A current perspective on the role of AGCVIII kinases in PIN-mediated apical hook development. Front. Plant Sci. 6:767. 10.3389/fpls.2015.00767 PubMed DOI PMC

Willige B. C., Ogiso-Tanaka E., Zourelidou M., Schwechheimer C. (2012). WAG2 represses apical hook opening downstream from gibberellin and PHYTOCHROME INTERACTING FACTOR 5. Development 139, 4020–4028. 10.1242/dev.081240, PMID: PubMed DOI

Wiśniewska J., Xu J., Seifertová D., Brewer P. B., Růžička K., Blilou I., et al. (2006). Polar PIN localization directs auxin flow in plants. Science 312, 883–883. 10.1126/science.1121356 PubMed DOI

Xi W., Gong X., Yang Q., Yu H., Liou Y.-C. (2016). Pin1At regulates PIN1 polar localization and root gravitropism. Nat. Commun. 7:10430. 10.1038/ncomms10430 PubMed DOI PMC

Yang H., Murphy A. S. (2009). Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J. 59, 179–191. 10.1111/j.1365-313X.2009.03856.x, PMID: PubMed DOI

Zažímalová E., Krecek P., Skůpa P., Hoyerová K., Petrásek J. (2007). Polar transport of the plant hormone auxin – the role of PIN-FORMED (PIN) proteins. Cell. Mol. Life Sci. 64, 1621–1637. 10.1007/s00018-007-6566-4, PMID: PubMed DOI PMC

Zhang J., Nodzyński T., Pěnčík A., Rolčík J., Friml J. (2010). PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc. Natl. Acad. Sci. USA 107, 918–922. 10.1073/pnas.0909460107 PubMed DOI PMC

Zhang J., Vanneste S., Brewer P. B., Michniewicz M., Grones P., Kleine-Vehn J., et al. (2011). Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity. Dev. Cell 20, 855–866. 10.1016/j.devcel.2011.05.013 PubMed DOI

Zhang K.-X., Xu H.-H., Yuan T.-T., Zhang L., Lu Y.-T. (2013). Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis. Plant J. 76, 308–321. 10.1111/tpj.12298, PMID: PubMed DOI

Zourelidou M., Absmanner B., Weller B., Barbosa I. C., Willige B. C., Fastner A., et al. (2014). Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. elife 3:e02860. 10.7554/eLife.02860 PubMed DOI PMC

Zourelidou M., Müller I., Willige B. C., Nill C., Jikumaru Y., Li H., et al. . (2009). The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana. Development 136, 627–636. 10.1242/dev.028365, PMID: PubMed DOI

Zwiewka M., Feraru E., Müller B., Hwang I., Feraru M. I., Kleine-Vehn J., et al. . (2011). The AP-3 adaptor complex is required for vacuolar function in Arabidopsis. Cell Res. 21, 1711–1722. 10.1038/cr.2011.99, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...