Mapping the membrane orientation of auxin homeostasis regulators PIN5 and PIN8 in Arabidopsis thaliana root cells reveals their divergent topology

. 2024 Jun 02 ; 20 (1) : 84. [epub] 20240602

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38825682
Odkazy

PubMed 38825682
PubMed Central PMC11145782
DOI 10.1186/s13007-024-01182-7
PII: 10.1186/s13007-024-01182-7
Knihovny.cz E-zdroje

PIN proteins establish the auxin concentration gradient, which coordinates plant growth. PIN1-4 and 7 localized at the plasma membrane (PM) and facilitate polar auxin transport while the endoplasmic reticulum (ER) localized PIN5 and PIN8 maintain the intracellular auxin homeostasis. Although an antagonistic activity of PIN5 and PIN8 proteins in regulating the intracellular auxin homeostasis and other developmental events have been reported, the membrane topology of these proteins, which might be a basis for their antagonistic function, is poorly understood. In this study we optimized digitonin based PM-permeabilizing protocols coupled with immunocytochemistry labeling to map the membrane topology of PIN5 and PIN8 in Arabidopsis thaliana root cells. Our results indicate that, except for the similarities in the orientation of the N-terminus, PIN5 and PIN8 have an opposite orientation of the central hydrophilic loop and the C-terminus, as well as an unequal number of transmembrane domains (TMDs). PIN8 has ten TMDs with groups of five alpha-helices separated by the central hydrophilic loop (HL) residing in the ER lumen, and its N- and C-terminals are positioned in the cytoplasm. However, the topology of PIN5 comprises nine TMDs. Its N-terminal end and the central HL face the cytoplasm while its C-terminus resides in the ER lumen. Overall, this study shows that PIN5 and PIN8 proteins have a divergent membrane topology while introducing a toolkit of methods for studying membrane topology of integral proteins including those localized at the ER membrane.

Zobrazit více v PubMed

van Berkel K, de Boer RJ, Scheres B, Tusscher K. Polar auxin trsansport: Models and mechanisms. Development. 2012;140:2253–2268, 10.1242/dev.079111. PubMed

Viaene T, Delwiche CF, Rensing SA, Friml J. Origin and evolution of PIN auxin transporters in the green lineage. Trends Plant Sci. 2013;18(1):5–10. doi: 10.1016/j.tplants.2012.08.009. PubMed DOI

Mravec J, et al. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature. 2009;459:1136–40. doi: 10.1038/nature08066. PubMed DOI

Bosco CD et al. The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. The Plant J. 2012;71:860–870. 10.1111/j.1365-313X.2012.05037.x. PubMed

Ding Z, et al. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun. 2012;3: 941. 10.1038/ncomms1941. PubMed

Bender RL et al. PIN6 is required for nectary auxin response and short stamen development. The Plant J. 2013;74:893–904. 10.1111/tpj.12184. PubMed

Sawchuk MG, Edgar A, Scarpella E. Patterning of Leaf Vein Networks by Convergent Auxin Transport pathways. PLoS Genet. 2013;9(2):e1003294. 10.1371/journal.pgen.1003294. PubMed PMC

Nodzyński T, Vanneste S, Zwiewka M, Pernisová M, Hejátko J, Friml J. Enquiry into the topology of plasma membrane-localized PIN Auxin Transport Components. Mol Plant. 2016;9(11):1504–19. doi: 10.1016/j.molp.2016.08.010. PubMed DOI PMC

Zwiewka M, Bilanovičová V, Seifu YW, Nodzyński T. The nuts and bolts of PIN auxin efflux carriers. Front Plant Sci. 2019;10. 10.3389/fpls.2019.00985. PubMed PMC

Sisi NA, Růžička K. Er-localized pin carriers: regulators of intracellular auxin homeostasis. Plants. 2020;9(11):1–10. doi: 10.3390/plants9111527. PubMed DOI PMC

Ganguly A, Lee SH, Cho M, Lee OR, Yoo H, Cho HT. Differential auxin-transporting activities of PIN-FORMED proteins in arabidopsis root hair cells. Plant Physiol. 2010;153(3):1046–61. doi: 10.1104/pp.110.156505. PubMed DOI PMC

Simon S, et al. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytol. 2016;211(1):65–74. doi: 10.1111/nph.14019. PubMed DOI

Zourelidou M et al. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. Elife, 2014;3:1–25. 10.7554/eLife.02860. PubMed PMC

Xi W, Gong X, Yang Q, Yu H, Liou YC. Pin1At regulates PIN1 polar localization and root gravitropism. Nat Commun. 2016;7(10430). 10.1038/ncomms10430. PubMed PMC

Middleton, AM. et al. Data-Driven modeling of intracellular Auxin fluxes indicates a dominant role of the ER in controlling nuclear Auxin Uptake. 2018;22(11):3044–3057. 10.1016/j.celrep.2018.02.074. PubMed

Lee H, Ganguly A, Lee RD, Park M, Cho HT. Intracellularly localized PIN-FORMED8 promotes lateral Root Emergence in Arabidopsis. Front Plant Sci. 2020;10:1–11. doi: 10.3389/fpls.2019.01808. PubMed DOI PMC

Verna C, Sawchuk MG, Linh NM, Scarpella E. Control of vein network topology by auxin transport. BMC Biol. 2015;13(94):1–16. 10.1186/s12915-015-0208-3. PubMed PMC

Ganguly A, Park M, Kesawat MS, Cho HT. Functional analysis of the hydrophilic loop in intracellular trafficking of Arabidopsis PIN-FORMED proteins. Plant Cell. 2014;26(4):1570–85. doi: 10.1105/tpc.113.118422. PubMed DOI PMC

Swarup R, et al. Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell. 2004;16(11):3069–83. doi: 10.1105/tpc.104.024737. PubMed DOI PMC

Xu J, Hofhuis H, Heidstra R, Sauer M, Friml J, Scheres B. A molecular framework for plant regeneration. Science. 2006;311(5759):385–8. doi: 10.1126/science.1121790. PubMed DOI

Wisniewska J, et al. Polar PIN localization directs auxin flow in plants. Science. 2006;312(5775):883. doi: 10.1126/science.1121356. PubMed DOI

Sedbrook JC, Carroll KL, Hung KF, Masson PH, Somerville CR. The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth. Plant Cell. 2002;14(7):1635–48. doi: 10.1105/tpc.002360. PubMed DOI PMC

Nelson BK, Cai X, Nebenführ A. A multicolored set of in vivo organelle markers for co‐localization studies in Arabidopsis and other plants Summary The Plant Journal 2007; 51(6) 1126–1136. 10.1111/j.1365-313X.2007.03212.x PubMed

Lee MM and Schiefelbein J. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell. 1999; 99(5): 473–483. 10.1016/S0092-8674(00)81536-6. PubMed

Karimi M, Bleys A, Vanderhaeghen R, Hilson P. Building blocks for plant gene assembly. Plant Physiol. 2007;145(4):1183–91. doi: 10.1104/pp.107.110411. PubMed DOI PMC

Gidda SK, Shockey JM, Rothstein SJ, Dyer JM, Mullen RT. Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells. Plant Physiol Biochem. 2009;47(10):867–79. doi: 10.1016/j.plaphy.2009.05.008. PubMed DOI

Pasternak T, et al. Protocol: an improved and universal procedure for whole-mount immunolocalization in plants. Plant Methods. 2015;11(1):1–10. doi: 10.1186/s13007-015-0094-2. PubMed DOI PMC

Lorenz H, Hailey DW, Lippincott-Schwartz J. Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nat Methods. 2006;3(3):205–10. doi: 10.1038/nmeth857. PubMed DOI

Gething M-J. Role and regulation of the ER chaperone BiP. CELL Dev Biol. 1999;10:465–72. doi: 10.1006/scdb.1999.0318. PubMed DOI

Baluska F, Hlavacka A, Samaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D. F-Actin-dependent endocytosis of Cell Wall Pectins in Meristematic Root cells. Insights from Brefeldin A-Induced compartments. Plant Physiol. 2002;130:422–31. doi: 10.1104/pp.007526. PubMed DOI PMC

dos Santos NV, Saponi CF, Ryan TM, Primo FL, Greaves TL, Pereira JFB. Reversible and irreversible fluorescence activity of the enhanced green fluorescent protein in pH: insights for the development of pH-biosensors. Int J Biol Macromol. 2020;164:3474–84. doi: 10.1016/j.ijbiomac.2020.08.224. PubMed DOI

Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC

Ung KL, et al. Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature. 2022;609:605–610. 10.1038/s41586-022-04883-y. PubMed PMC

The UniProt Consortium. UniProt: A hub for protein information. Nucleic Acids Res. 2015;43:D204–D212. 10.1093/nar/gku989. PubMed PMC

Varadi M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–44. doi: 10.1093/nar/gkab1061. PubMed DOI PMC

Bennett T et al. Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure. Mol. Biol. Evol., 2014; 31(8):2042–60. 10.1093/molbev/msu147. PubMed PMC

Spiess M, Junne T, and Janoschke M. Membrane Protein Integration and Topogenesis at the ER. Protein J. 2019; 38(3): 306–316. 10.1007/s10930-019-09827-6. PubMed

Von Heijne G. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature. 1989;341:456–8. doi: 10.1038/341456a0. PubMed DOI

Goder V, Junne T, and Spiess M. Sec61p contributes to signal sequence orientation according tothe positive-inside rule. Mol Biol Cell. 2004;15(3):1470–1478. 10.1091/mbc.e03-08-0599 PubMed PMC

Junne T, Schwede T, Goder V, Spiess M. Mutations in the Sec61p Channel Affecting Signal Sequence Recognition and membrane protein topology. J Biol Chem. 2007;282(45):33201–9. doi: 10.1074/jbc.M707219200. PubMed DOI

Schindler O, Berka K, Cantara A, Křenek A, Tichý D, Raček T, et al. αCharges: partial atomic charges for AlphaFold structures in high quality. Nucleic Acids Research. 2023;51:W11–W16. 10.1093/nar/gkad349. PubMed PMC

Fluman N, Tobiasson V, Von Heijne G. Stable membrane orientations of small dual-topology membrane proteins. PNAS 2017;114(30):7987–7992. 10.1073/pnas.1706905114. PubMed PMC

Fendrych M, et al. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat Plants. 2018;4:453–9. 10.1038/s41477-018-0190-1. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...