Quantification of short echo time MRS signals with improved version of QUantitation based on quantum ESTimation algorithm
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_013/0001775
European Regional Development Fund under MŠMT ČR
LM2018129
MŠMT ČR (grants for Czech-BioImaging facility ISI-MR)
LM2023050
MŠMT ČR (grants for Czech-BioImaging facility ISI-MR)
PubMed
37539457
DOI
10.1002/nbm.5008
Knihovny.cz E-zdroje
- Klíčová slova
- Cramér-Rao lower bounds, QUEST-MM, jMRUI, macromolecule basis set, magnetic resonance spectroscopy, metabolite basis set, quantification,
- Publikační typ
- časopisecké články MeSH
Magnetic resonance spectroscopy offers information about metabolite changes in the organism, which can be used in diagnosis. While short echo time proton spectra exhibit more distinguishable metabolites compared with proton spectra acquired with long echo times, their quantification (and providing estimates of metabolite concentrations) is more challenging. They are hampered by a background signal, which originates mainly from macromolecules (MM) and mobile lipids. An improved version of the quantification algorithm QUantitation based on quantum ESTimation (QUEST), with MM prior knowledge (QUEST-MM), dedicated to proton signals and invoking appropriate prior knowledge on MM, is proposed and tested. From a single acquisition, it enables better metabolite quantification, automatic estimation of the background, and additional automatic quantification of MM components, thus improving its applicability in the clinic. The proposed algorithm may facilitate studies that involve patients with pathological MM in the brain. QUEST-MM and three QUEST-based strategies for quantifying short echo time signals are compared in terms of bias-variance trade-off and Cramér-Rao lower bound estimates. The performances of the methods are evaluated through extensive Monte Carlo studies. In particular, the histograms of the metabolite and MM amplitude distributions demonstrate the performances of the estimators. They showed that QUEST-MM works better than QUEST (Subtract approach) and is a good alternative to QUEST when measured MM signal is unavailable or unsuitable. Quantification with QUEST-MM is shown for 1 H in vivo rat brain signals obtained with the SPECIAL pulse sequence at 9.4 T, and human brain signals obtained, respectively, with STEAM at 4 T and PRESS at 3 T. QUEST-MM is implemented in jMRUI and will be available for public use from version 7.1.
CREATIS CNRS UMR 5220 INSERM U1294 Université Claude Bernard Lyon 1 Villeurbanne France
D1Si Saint André de Corcy France
Institute of Scientific Instruments of the CAS Brno Czech Republic
Zobrazit více v PubMed
Wilson M, Andronesi O, Barker PB, et al. Methodological consensus on clinical proton MRS of the brain: review and recommendations. Magn Reson Med. 2019;82(2):527-550. doi:10.1002/mrm.27742
Kreis R, Boer V, Choi I, et al. Terminology and concepts for the characterization of in vivo MR spectroscopy methods and MR spectra: background and experts' consensus recommendations. NMR Biomed. 2021;34(5):e4347. doi:10.1002/nbm.4347
Lin A, Tran T, Bluml S, Merugumala S, Liao HJ, Ross BD. Guidelines for acquiring and reporting clinical neurospectroscopy. Semin Neurol. 2012;32(4):432-453. doi:10.1055/s-0032-1331814
Sinclair AJ, Viant MR, Ball AK, et al. NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases - a diagnostic tool? NMR Biomed. 2010;23(2):123-132. doi:10.1002/nbm.1428
Kurhanewicz J, Vigneron DB, Brindle K, et al. Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia. 2011;13(2):81-97. doi:10.1593/neo.101102
Scheidegger O, Wingeier K, Stefan D, et al. Optimized quantitative magnetic resonance spectroscopy for clinical routine. Magn Reson Med. 2013;70(1):25-32. doi:10.1002/mrm.24455
Glunde K, Artemov D, Penet MF, Jacobs MA, Bhujwalla ZM. Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem Rev. 2010;110(5):3043-3059. doi:10.1021/cr9004007
Barker PB, Lin DDM. In vivo proton MR spectroscopy of the human brain. Prog Nucl Magn Reson Spectrosc. 2006;49(2):99-128. doi:10.1016/j.pnmrs.2006.06.002
Rosen Y, Lenkinski RE. Recent advances in magnetic resonance neurospectroscopy. Neurotherapeutics. 2007;4(3):330-345. doi:10.1016/j.nurt.2007.04.009
Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol. 2009;64(1):12-21. doi:10.1016/j.crad.2008.07.002
Penet MF, Viola A, Confort-Gouny S, et al. Imaging experimental cerebral malaria in vivo: significant role of ischemic brain edema. J Neurosci. 2005;25(32):7352-7358. doi:10.1523/JNEUROSCI.1002-05.2005
Chan AA, Lau A, Pirzkall A, et al. Proton magnetic resonance spectroscopy imaging in the evaluation of patients undergoing gamma knife surgery for Grade IV glioma. J Neurosurg. 2004;101(3):467-475. doi:10.3171/jns.2004.101.3.0467
Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Hüppi PS. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med. 2002;48(6):949-958. doi:10.1002/mrm.10304
Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging. 2002;16(4):451-463. doi:10.1002/jmri.10172
Lyoo IK, Renshaw PF. Magnetic resonance spectroscopy: current and future applications in psychiatric research. Biol Psychiatry. 2002;51(3):195-207. doi:10.1016/S0006-3223(01)01313-0
Leclerc X, Huisman TAGM, Sorensen AG. The potential of proton magnetic resonance spectroscopy (1H-MRS) in the diagnosis and management of patients with brain tumors. Curr Opin Oncol. 2002;14(3):292-298. doi:10.1097/00001622-200205000-00007
Graham GD, Hwang JH, Rothman DL, Prichard JW. Spectroscopic assessment of alterations in macromolecule and small-molecule metabolites in human brain after stroke. Stroke. 2001;32(12):2797-2802. doi:10.1161/hs1201.099414
Griffiths JR, Glickson JD. Monitoring pharmacokinetics of anticancer drugs: non-invasive investigation using magnetic resonance spectroscopy. Adv Drug Deliv Rev. 2000;41(1):75-89. doi:10.1016/S0169-409X(99)00057-5
Clarke CE, Lowry M. Systematic review of proton magnetic resonance spectroscopy of the striatum in parkinsonian syndromes. Eur J Neurol. 2001;8(6):573-577. doi:10.1046/j.1468-1331.2001.00308.x
Braun KPJ, Vandertop WP, Gooskens RHJM, Tulleken KAF, Nicolay K. NMR spectroscopic evaluation of cerebral metabolism in hydrocephalus: a review. Neurol Res. 2000;22(1):51-64. doi:10.1080/01616412.2000.11741038
Antel SB, Li LM, Cendes F, et al. Predicting surgical outcome in temporal lobe epilepsy patients using MRI and MRSI. Neurology. 2002;58(10):1505-1512. doi:10.1212/WNL.58.10.1505
Vion-Dury J, Salvan AM, Cozzone PJ. Proton magnetic resonance spectrometry for the non-invasive exploration of human brain metabolism: current and future clinical applications. Rev Neurol. 1999;155(11):903-926. Accessed June 28, 2022. https://pubmed.ncbi.nlm.nih.gov/10603636/
Bottomley PA, Weiss RG. Non-invasive magnetic-resonance detection of creatine depletion in non-viable infarcted myocardium. Lancet. 1998;351(9104):714-718. doi:10.1016/S0140-6736(97)06402-7
Hong ST, Pohmann R. Quantification issues of in vivo 1H NMR spectroscopy of the rat brain investigated at 16.4T. NMR Biomed. 2013;26(1):74-82. doi:10.1002/nbm.2821
Coune PG, Craveiro M, Gaugler MN, et al. An in vivo ultrahigh field 14.1T 1H-MRS study on 6-OHDA and α-synuclein-based rat models of Parkinson's disease: GABA as an early disease marker. NMR Biomed. 2013;26(1):43-50. doi:10.1002/nbm.2817
Mlynárik V, Cudalbu C, Xin L, Gruetter R. 1H NMR spectroscopy of rat brain in vivo at 14.1 Tesla: improvements in quantification of the neurochemical profile. J Magn Reson. 2008;194(2):163-168. doi:10.1016/j.jmr.2008.06.019
Graveron-Demilly D. Quantification in magnetic resonance spectroscopy based on semi-parametric approaches. Magn Reson Mater Phys Biol Med. 2014;27(2):113-130. doi:10.1007/s10334-013-0393-4
Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D. Cramer-Rao bound expressions for parametric estimation of overlapping peaks: influence of prior knowledge. J Magn Reson. 2000;143(2):311-320. doi:10.1006/jmre.1999.2002
Ratiney H, Sdika M, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D. Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed. 2005;18(1):1-13. doi:10.1002/nbm.895
Cudalbu C, Behar KL, Bhattacharyya PK, et al. Contribution of macromolecules to brain 1H MR spectra: experts' consensus recommendations. NMR Biomed. 2021;34(5):e4393. doi:10.1002/nbm.4393
Považan M, Hangel G, Strasser B, et al. Mapping of brain macromolecules and their use for spectral processing of 1 H-MRSI data with an ultra-short acquisition delay at 7 T. Neuroimage. 2015;121:126-135. doi:10.1016/j.neuroimage.2015.07.042
Simicic D, Rackayova V, Xin L, et al. In vivo macromolecule signals in rat brain (1) H-MR spectra at 9.4T: parametrization, spline baseline estimation, and T(2) relaxation times. Magn Reson Med. 2021;86(5):2384-2401. doi:10.1002/mrm.28910
Považan M, Strasser B, Hangel G, et al. Simultaneous mapping of metabolites and individual macromolecular components via ultra-short acquisition delay (1) H MRSI in the brain at 7T. Magn Reson Med. 2018;79(3):1231-1240. doi:10.1002/mrm.26778
Şimşek K, Döring A, Pampel A, Möller HE, Kreis R. Macromolecular background signal and non-Gaussian metabolite diffusion determined in human brain using ultra-high diffusion weighting. Magn Reson Med. 2022;88(5):1962-1977. doi:10.1002/mrm.29367
Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672-679. doi:10.1002/mrm.1910300604
Poullet JB, Sima DM, Simonetti AW, et al. An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES. NMR Biomed. 2007;20(5):493-504. doi:10.1002/nbm.1112
Reynolds G, Wilson M, Peet A, Arvanitis TN. An algorithm for the automated quantitation of metabolites in in vitro NMR signals. Magn Reson Med. 2006;56(6):1211-1219. doi:10.1002/mrm.21081
Borbath T, Murali-Manohar S, Dorst J, Wright AM, Henning A. ProFit-1D-A 1D fitting software and open-source validation data sets. Magn Reson Med. 2021;86(6):2910-2929. doi:10.1002/mrm.28941
Vanhamme L, van den Boogaart A, van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129(1):35-43. doi:10.1006/jmre.1997.1244
Craveiro M, Clément-Schatlo V, Marino D, Gruetter R, Cudalbu C. In vivo brain macromolecule signals in healthy and glioblastoma mouse models: 1H magnetic resonance spectroscopy, post-processing and metabolite quantification at 14.1 T. J Neurochem. 2014;129(5):806-815. doi:10.1111/jnc.12673
van Ormondt D, de Beer R, Sima DM, Graveron-Demilly D. New approach to semi-parametric estimation for in vivo magnetic resonance spectroscopy. In: ProRISC. ICT.OPEN; 2011:4550.
Ratiney H, Mitri F, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D. Time-domain quantitation based on a metabolite basis set in magnetic resonance spectroscopy. In: Veldhoven TN, ed. ProRISC. IEEE Benelux; 2002:432-437.
Soher BJ, Young K, Maudsley AA. Representation of strong baseline contributions in1H MR spectra. Magn Reson Med. 2001;45(6):966-972. doi:10.1002/mrm.1129
Knight-Scott J. Application of multiple inversion recovery for suppression of macromolecule resonances in short echo time 1H NMR spectroscopy of human brain. J Magn Reson. 1999;140(1):228-234. doi:10.1006/jmre.1999.1799
Craven AR, Bhattacharyya PK, Clarke WT, et al. Comparison of seven modelling algorithms for γ-aminobutyric acid-edited proton magnetic resonance spectroscopy. NMR Biomed. 2022;35(7):e4702. doi:10.1002/nbm.4702
Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88. doi:10.1016/j.media.2017.07.005
Kyathanahally SP, Döring A, Kreis R. Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy. Magn Reson Med. 2018;80(3):851-863. doi:10.1002/mrm.27096
Hatami N, Sdika M, Ratiney H. Magnetic Resonance Spectroscopy Quantification using Deep Learning. Published online June 19, 2018. 21st International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2018). https://doi.org/10.48550/arXiv.1806.07237
Lee HH, Kim H. Deep learning-based target metabolite isolation and big data-driven measurement uncertainty estimation in proton magnetic resonance spectroscopy of the brain. Magn Reson Med. 2020;84(4):1689-1706. doi:10.1002/mrm.28234
Lee HH, Kim H. Intact metabolite spectrum mining by deep learning in proton magnetic resonance spectroscopy of the brain. Magn Reson Med. 2019;82(1):33-48. doi:10.1002/mrm.27727
Stefan D, di Cesare F, Andrasescu A, et al. Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol. 2009;20(10):104035. doi:10.1088/0957-0233/20/10/104035
Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D. Cramér-Rao bounds: an evaluation tool for quantitation. NMR Biomed. 2001;14(4):278-283. doi:10.1002/nbm.701
Cavassila S, van Ormondt D, Graveron-Demilly D. Cramér-Rao bound analysis of spectroscopic signal processing methods. In: Yan H, ed. Signal Processing for Magnetic Resonance Imaging and Spectroscopy. Chapter 22. Marcel Dekker; 2001.
Graveron Demilly D, Diop A, Briguet A, Fenet B. Product-operator algebra for strongly coupled spin systems. J Magn Reson A. 1993;101(3):233-239. doi:10.1006/jmra.1993.1038
Starčuk Z, Starčuková J. Quantum-mechanical simulations for in vivo MR spectroscopy: principles and possibilities demonstrated with the program NMRScopeB. Anal Biochem. 2017;529:79-97. doi:10.1016/j.ab.2016.10.007
Starčuk Z, Starčuková J, Štrbák O, Graveron-Demilly D. Simulation of coupled-spin systems in the steady-state free-precession acquisition mode for fast magnetic resonance (MR) spectroscopic imaging. Meas Sci Technol. 2009;20(10):104033. doi:10.1088/0957-0233/20/10/104033
Smith SA, Levante TO, Meier BH, Ernst RR. Computer simulations in magnetic resonance. An object-oriented programming approach. J Magn Reson A. 1994;106(1):75-105. doi:10.1006/jmra.1994.1008
Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13(3):129-153. doi:10.1002/1099-1492(200005)13:3%3C129::aid-nbm619%3E3.0.co;2-v
Rabeson H. Quantification Semi-Paramétrique de Signaux de Spectrométrie de Résonance Magnétique, Acquis Ex Vivo et in Vivo. Université Claude Bernard; 2008.
Maudsley AA. Spectral lineshape determination by self-deconvolution. J Magn Reson B. 1995;106(1):47-57. doi:10.1006/jmrb.1995.1007
Sima DM, Garcia MIO, Poullet J, et al. Lineshape estimation for magnetic resonance spectroscopy (MRS) signals: self-deconvolution revisited. Meas Sci Technol. 2009;20(10):104031. doi:10.1088/0957-0233/20/10/104031
Popa E. Algorithms for Handling Arbitrary Lineshape Distortions in Magnetic Resonance Spectroscopy and Spectroscopic Imaging. Université Claude Bernard; 2010.
Popa E, Karras DA, Mertzios BG, et al. Handling arbitrary unknown lineshape in in vivo MRS without searching in function space. In: 2010 IEEE International Conference on Imaging Systems and Techniques. IEEE; 2010:361-364. doi:10.1109/IST.2010.5548463
van der Veen JWC, de Beer R, Luyten PR, van Ormondt D. Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge. Magn Reson Med. 1988;6(1):92-98. doi:10.1002/mrm.1910060111
Ratiney H, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D. Time-domain quantitation of 1 H short echo-time signals: background accommodation. MAGMA Magn Reson Mater Phys Biol Med. 2004;16(6):284-296. doi:10.1007/s10334-004-0037-9
Rabeson H, Ratiney H, van Ormondt D, Graveron-Demilly D. Semi-parametric estimation in magnetic resonance spectroscopy: automation of the disentanglement procedure. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2007:662-665. doi:10.1109/IEMBS.2007.4352377
Pijnappel WWF, van den Boogaart A, de Beer R, van Ormondt D. SVD-based quantification of magnetic resonance signals. J Magn Reson. 1992;97(1):122-134. doi:10.1016/0022-2364(92)90241-X
Laudadio T, Mastronardi N, Vanhamme L, Van Hecke P, Van Huffel S. Improved Lanczos algorithms for blackbox MRS data quantitation. J Magn Reson. 2002;157(2):292-297. doi:10.1006/jmre.2002.2593
Desmoulin F, Bon D, Martino R, Malet-Martino M. Étude critique de l'utilisation de la RMN HR-MAS pour l'analyse des tissus biologiques. C R Chim. 2008;11(4-5):423-433. doi:10.1016/j.crci.2007.09.004
Rabeson H, Fauvelle F, Testylier G, et al. Quantitation with QUEST of brain HRMAS-NMR signals: application to metabolic disorders in experimental epileptic seizures. Magn Reson Med. 2008;59(6):1266-1273. doi:10.1002/mrm.21610
van den Bos A. A Cramer-Rao lower bound for complex parameters. IEEE Trans Signal Process. 1994;42(10):2859. doi:10.1109/78.324755
van den Bos A. Parameter Estimation for Scientists and Engineers. John Wiley & Sons, Inc.; 2007. doi:10.1002/9780470173862
Mlynárik V, Kohler I, Gambarota G, Vaslin A, Clarke PGH, Gruetter R. Quantitative proton spectroscopic imaging of the neurochemical profile in rat brain with microliter resolution at ultra-short echo times. Magn Reson Med. 2008;59(1):52-58. doi:10.1002/mrm.21447
Vondra V, van den Boogaart A, Graveron-Demilly D, van Ormondt D. Automatic estimation of the time origin and overall phase of an FID signal. J Magn Reson A. 1996;119(2):271-274. doi:10.1006/jmra.1996.0086
Murali-Manohar S, Borbath T, Wright AM, Soher B, Mekle R, Henning A. T 2 relaxation times of macromolecules and metabolites in the human brain at 9.4 T. Magn Reson Med. 2020;84(2):542-558. doi:10.1002/mrm.28174
Tkáč I, Öz G, Adriany G, Uğurbil K, Gruetter R. In vivo 1 H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn Reson Med. 2009;62(4):868-879. doi:10.1002/mrm.22086
Považan M, Mikkelsen M, Berrington A, et al. Comparison of multivendor single-voxel MR spectroscopy data acquired in healthy brain at 26 sites. Radiology. 2020;295(1):171-180. doi:10.1148/radiol.2020191037
Cudalbu C, Mlynárik V, Gruetter R. Handling macromolecule signals in the quantification of the neurochemical profile. J Alzheimers Dis. 2012;31(s3):S101-S115. doi:10.3233/jad-2012-120100
Lopez-Kolkovsky AL, Mériaux S, Boumezbeur F. Metabolite and macromolecule T 1 and T 2 relaxation times in the rat brain in vivo at 17.2T. Magn Reson Med. 2016;75(2):503-514. doi:10.1002/mrm.25602
Howe FA, Opstad KS. 1H MR spectroscopy of brain tumours and masses. NMR Biomed. 2003;16(3):123-131. doi:10.1002/nbm.822
Marjańska M, Deelchand DK, Kreis R, et al. Results and interpretation of a fitting challenge for MR spectroscopy set up by the MRS study group of ISMRM. Magn Reson Med. 2022;87(1):11-32. doi:10.1002/mrm.28942