Non-canonical DNA in human and other ape telomere-to-telomere genomes
Language English Country Great Britain, England Media print
Document type Journal Article
Grant support
R35 GM151945
NIGMS NIH HHS - United States
R35GM151945
NIGMS NIH HHS - United States
21-00580S
Grantová Agentura České Republiky
PubMed
40226919
PubMed Central
PMC11995269
DOI
10.1093/nar/gkaf298
PII: 8113172
Knihovny.cz E-resources
- MeSH
- DNA * chemistry genetics MeSH
- G-Quadruplexes MeSH
- Genome, Human MeSH
- Genome * MeSH
- Hominidae * genetics MeSH
- Humans MeSH
- Nucleotide Motifs MeSH
- Pan troglodytes genetics MeSH
- Repetitive Sequences, Nucleic Acid MeSH
- Telomere * genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA * MeSH
Non-canonical (non-B) DNA structures-e.g. bent DNA, hairpins, G-quadruplexes (G4s), Z-DNA, etc.-which form at certain sequence motifs (e.g. A-phased repeats, inverted repeats, etc.), have emerged as important regulators of cellular processes and drivers of genome evolution. Yet, they have been understudied due to their repetitive nature and potentially inaccurate sequences generated with short-read technologies. Here we comprehensively characterize such motifs in the long-read telomere-to-telomere (T2T) genomes of human, bonobo, chimpanzee, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. Non-B DNA motifs are enriched at the genomic regions added to T2T assemblies and occupy 9%-15%, 9%-11%, and 12%-38% of autosomes and chromosomes X and Y, respectively. G4s and Z-DNA are enriched at promoters and enhancers, as well as at origins of replication. Repetitive sequences harbor more non-B DNA motifs than non-repetitive sequences, especially in the short arms of acrocentric chromosomes. Most centromeres and/or their flanking regions are enriched in at least one non-B DNA motif type, consistent with a potential role of non-B structures in determining centromeres. Our results highlight the uneven distribution of predicted non-B DNA structures across ape genomes and suggest their novel functions in previously inaccessible genomic regions.
Center for Medical Genomics Penn State University University Park PA 16802 United States
Department of Biology Penn State University University Park PA 16802 United States
Department of Statistics Penn State University University Park PA 16802 United States
L'EMbeDS Sant'Anna School of Advanced Studies 56127 Pisa Italy
See more in PubMed
Watson JD, Crick FHC Genetical implications of the structure of deoxyribonucleic acid. Nature. 1953; 171:964–7.10.1038/171964b0. PubMed DOI
Guiblet WM, Cremona MA, Cechova M et al. . Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate. Genome Res. 2018; 28:1767–78.10.1101/gr.241257.118. PubMed DOI PMC
Fleming AM, Burrows CJ Interplay of guanine oxidation and G-quadruplex folding in gene promoters. J Am Chem Soc. 2020; 142:1115–36.10.1021/jacs.9b11050. PubMed DOI PMC
Roychoudhury S, Pramanik S, Harris HL et al. . Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome. Proc Natl Acad Sci USA. 2020; 117:11409–20.10.1073/pnas.1912355117. PubMed DOI PMC
Zyner KG, Simeone A, Flynn SM et al. . G-quadruplex DNA structures in human stem cells and differentiation. Nat Commun. 2022; 13:142.10.1038/s41467-021-27719-1. PubMed DOI PMC
Matos-Rodrigues G, van Wietmarschen N, Wu W et al. . S1-END-seq reveals DNA secondary structures in human cells. Mol Cell. 2022; 82:3538–52.10.1016/j.molcel.2022.08.007. PubMed DOI PMC
Cer RZ, Bruce KH, Mudunuri US et al. . Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes. Nucleic Acids Res. 2011; 39:D383–91.10.1093/nar/gkq1170. PubMed DOI PMC
Prorok P, Artufel M, Aze A et al. . Involvement of G-quadruplex regions in mammalian replication origin activity. Nat Commun. 2019; 10:3274.10.1038/s41467-019-11104-0. PubMed DOI PMC
Akerman I, Kasaai B, Bazarova A et al. . A predictable conserved DNA base composition signature defines human core DNA replication origins. Nat Commun. 2020; 11:4826.10.1038/s41467-020-18527-0. PubMed DOI PMC
Sahakyan AB, Murat P, Mayer C et al. . G-quadruplex structures within the 3′ UTR of LINE-1 elements stimulate retrotransposition. Nat Struct Mol Biol. 2017; 24:243–7.10.1038/nsmb.3367. PubMed DOI
Moye AL, Porter KC, Cohen SB et al. . Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat Commun. 2015; 6:7643.10.1038/ncomms8643. PubMed DOI PMC
Haran TE, Mohanty U The unique structure of A-tracts and intrinsic DNA bending. Quart Rev Biophys. 2009; 42:41–81.10.1017/S0033583509004752. PubMed DOI
Spiegel J, Cuesta SM, Adhikari S et al. . G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol. 2021; 22:117.10.1186/s13059-021-02324-z. PubMed DOI PMC
Gong J-Y, Wen C-J, Tang M-L et al. . G-quadruplex structural variations in human genome associated with single-nucleotide variations and their impact on gene activity. Proc Natl Acad Sci USA. 2021; 118:e2013230118.10.1073/pnas.2013230118. PubMed DOI PMC
Gazanion E, Lacroix L, Alberti P et al. . Genome wide distribution of G-quadruplexes and their impact on gene expression in malaria parasites. PLoS Genet. 2020; 16:e1008917.10.1371/journal.pgen.1008917. PubMed DOI PMC
Saranathan N, Vivekanandan P G-quadruplexes: more than just a kink in microbial genomes. Trends Microbiol. 2019; 27:148–63.10.1016/j.tim.2018.08.011. PubMed DOI PMC
Biswas B, Kandpal M, Vivekanandan P A G-quadruplex motif in an envelope gene promoter regulates transcription and virion secretion in HBV genotype B. Nucleic Acids Res. 2017; 45:11268–80.10.1093/nar/gkx823. PubMed DOI PMC
Shin S-I, Ham S, Park J et al. . Z-DNA-forming sites identified by ChIP-seq are associated with actively transcribed regions in the human genome. DNA Res. 2016; 23:477–86.10.1093/dnares/dsw031. PubMed DOI PMC
Sulovari A, Li R, Audano PA et al. . Human-specific tandem repeat expansion and differential gene expression during primate evolution. Proc Natl Acad Sci USA. 2019; 116:23243–53.10.1073/pnas.1912175116. PubMed DOI PMC
Roberts JW Mechanisms of bacterial transcription termination. J Mol Biol. 2019; 431:4030–9.10.1016/j.jmb.2019.04.003. PubMed DOI
Yamamoto Y, Miura O, Ohyama T Cruciform formable sequences within Pou5f1 enhancer are indispensable for mouse ES cell integrity. Int J Mol Sci. 2021; 22:3399.10.3390/ijms22073399. PubMed DOI PMC
Del Mundo IMA, Zewail-Foote M, Kerwin SM et al. . Alternative DNA structure formation in the mutagenic human c-MYC promoter. Nucleic Acids Res. 2017; 45:4929–43.10.1093/nar/gkx100. PubMed DOI PMC
Georgakopoulos-Soares I, Victorino J, Parada GE et al. . High-throughput characterization of the role of non-B DNA motifs on promoter function. Cell Genomics. 2022; 2:100111.10.1016/j.xgen.2022.100111. PubMed DOI PMC
Roy SS, Bagri S, Vinayagamurthy S et al. . Artificially inserted strong promoter containing multiple G-quadruplexes induces long-range chromatin modification. eLife. 2024; 13:RP96216.10.7554/eLife.96216.3. PubMed DOI PMC
Hänsel-Hertsch R, Beraldi D, Lensing SV et al. . G-quadruplex structures mark human regulatory chromatin. Nat Genet. 2016; 48:1267–72.10.1038/ng.3662. PubMed DOI
Lago S, Nadai M, Cernilogar FM et al. . Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat Commun. 2021; 12:3885.10.1038/s41467-021-24198-2. PubMed DOI PMC
Miura O, Ogake T, Yoneyama H et al. . A strong structural correlation between short inverted repeat sequences and the polyadenylation signal in yeast and nucleosome exclusion by these inverted repeats. Curr Genet. 2019; 65:575–90.10.1007/s00294-018-0907-8. PubMed DOI PMC
Hou Y, Li F, Zhang R et al. . Integrative characterization of G-quadruplexes in the three-dimensional chromatin structure. Epigenetics. 2019; 14:894–911.10.1080/15592294.2019.1621140. PubMed DOI PMC
Robinson J, Raguseo F, Nuccio SP et al. . DNA G-quadruplex structures: more than simple roadblocks to transcription?. Nucleic Acids Res. 2021; 49:8419–31.10.1093/nar/gkab609. PubMed DOI PMC
Poggi L, Richard G-F Alternative DNA structures in vivo : molecular evidence and remaining questions. Microbiol Mol Biol Rev. 2021; 85:e00110–20.10.1128/MMBR.00110-20. PubMed DOI PMC
Georgakopoulos-Soares I, Parada GE, Wong HY et al. . Alternative splicing modulation by G-quadruplexes. Nat Commun. 2022; 13:2404.10.1038/s41467-022-30071-7. PubMed DOI PMC
Bochman ML, Paeschke K, Zakian VA DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet. 2012; 13:770–80.10.1038/nrg3296. PubMed DOI PMC
Bugaut A, Balasubramanian S 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res. 2012; 40:4727–41.10.1093/nar/gks068. PubMed DOI PMC
Lyu K, Chow EY-C, Mou X et al. . RNA G-quadruplexes (rG4s): genomics and biological functions. Nucleic Acids Res. 2021; 49:5426–50.10.1093/nar/gkab187. PubMed DOI PMC
Kasinathan S, Henikoff S Non-B-form DNA is enriched at centromeres. Mol Biol Evol. 2018; 35:949–62.10.1093/molbev/msy010. PubMed DOI PMC
Kipling D, Warburton PE Centromeres, CENP-B and Tigger too. Trends Genet. 1997; 13:141–5.10.1016/s0168-9525(97)01098-6. PubMed DOI
Goldberg IG, Sawhney H, Pluta AF et al. . Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres. Mol Cell Biol. 1996; 16:5156–68.10.1128/MCB.16.9.5156. PubMed DOI PMC
Patchigolla VSP, Mellone BG Enrichment of non-B-form DNA at D. melanogaster centromeres. Genome Biol Evol. 2022; 14:evac054. PubMed PMC
Liu Q, Yi C, Zhang Z et al. . Non-B-form DNA tends to form in centromeric regions and has undergone changes in polyploid oat subgenomes. Proc Natl Acad Sci USA. 2023; 120:e2211683120. PubMed PMC
Yi C, Liu Q, Huang Y et al. . Non-B-form DNA is associated with centromere stability in newly-formed polyploid wheat. Sci China Life Sci. 2024; 67:1479–88. PubMed
Mirkin EV, Mirkin SM Replication fork stalling at natural impediments. Microbiol Mol Biol Rev. 2007; 71:13–35. PubMed PMC
Wang G, Vasquez KM Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair (Amst). 2014; 19:143–51. PubMed PMC
Kaushal S, Freudenreich CH The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer. 2019; 58:270–83. PubMed PMC
Sauer M, Paeschke K G-quadruplex unwinding helicases and their function. Biochem Soc Trans. 2017; 45:1173–82. PubMed
Twayana S, Bacolla A, Barreto-Galvez A et al. . Translesion polymerase eta both facilitates DNA replication and promotes increased human genetic variation at common fragile sites. Proc Natl Acad Sci USA. 2021; 118:e2106477118. PubMed PMC
Bournique E, Dall’Osto M, Hoffmann J-S et al. . Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutat Res. 2018; 808:62–73. PubMed
Tsao W-C, Eckert KA Detours to replication: functions of specialized DNA polymerases during oncogene-induced replication stress. Int J Mol Sci. 2018; 19:3255. PubMed PMC
Boyer A-S, Grgurevic S, Cazaux C et al. . The human specialized DNA polymerases and non-B DNA: vital relationships to preserve genome integrity. J Mol Biol. 2013; 425:4767–81.10.1016/j.jmb.2013.09.022. PubMed DOI
McKinney JA, Wang G, Vasquez KM Distinct mechanisms of mutagenic processing of alternative DNA structures by repair proteins. Mol Cell Oncol. 2020; 7:1743807.10.1080/23723556.2020.1743807. PubMed DOI PMC
McGinty RJ, Sunyaev SR Mutagenesis at non-B DNA motifs in the human genome: a course correction. Nat Struct Mol Biol. 2023; 30:417–24.10.1038/s41594-023-00936-6. PubMed DOI PMC
Makova KD, Weissensteiner MH Noncanonical DNA structures are drivers of genome evolution. Trends Genet. 2023; 39:109–24.10.1016/j.tig.2022.11.005. PubMed DOI PMC
Haeusler AR, Donnelly CJ, Periz G et al. . C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature. 2014; 507:195–200.10.1038/nature13124. PubMed DOI PMC
Tateishi-Karimata H, Sugimoto N Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Res. 2021; 49:7839–55.10.1093/nar/gkab580. PubMed DOI PMC
Cheloshkina K, Poptsova M Comprehensive analysis of cancer breakpoints reveals signatures of genetic and epigenetic contribution to cancer genome rearrangements. PLoS Comput Biol. 2021; 17:e1008749.10.1371/journal.pcbi.1008749. PubMed DOI PMC
Maizels N G4-associated human diseases. EMBO Rep. 2015; 16:910–22.10.15252/embr.201540607. PubMed DOI PMC
Weissensteiner MH, Cremona MA, Guiblet WM et al. . Accurate sequencing of DNA motifs able to form alternative (non-B) structures. Genome Res. 2023; 33:907–22.10.1101/gr.277490.122. PubMed DOI PMC
McGinty RJ, Sunyaev SR Revisiting mutagenesis at non-B DNA motifs in the human genome. Nat Struct Mol Biol. 2023; 30:417–24.10.1038/s41594-023-00936-6. PubMed DOI PMC
Nurk S, Koren S, Rhie A et al. . The complete sequence of a human genome. Science. 2022; 376:44–53.10.1126/science.abj6987. PubMed DOI PMC
Rhie A, Nurk S, Cechova M et al. . The complete sequence of a human Y chromosome. Nature. 2023; 621:344–54.10.1038/s41586-023-06457-y. PubMed DOI PMC
Makova KD, Pickett BD, Harris RS et al. . The complete sequence and comparative analysis of ape sex chromosomes. Nature. 2024; 630:401–11.10.1038/s41586-024-07473-2. PubMed DOI PMC
Yoo D, Rhie A, Hebbar P et al. . Complete sequencing of ape genomes. Nature. 2025; 10.1038/s41586-025-08816-3. PubMed DOI
Sahakyan AB, Chambers VS, Marsico G et al. . Machine learning model for sequence-driven DNA G-quadruplex formation. Sci Rep. 2017; 7:14535.10.1038/s41598-017-14017-4. PubMed DOI PMC
Quinlan AR, Hall IM BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841–2.10.1093/bioinformatics/btq033. PubMed DOI PMC
Yu H, Li F, Yang B et al. . iM-Seeker: a webserver for DNA i-motifs prediction and scoring via automated machine learning. Nucleic Acids Res. 2024; 52:W19–28.10.1093/nar/gkae315. PubMed DOI PMC
Jain C, Rhie A, Zhang H et al. . Weighted minimizer sampling improves long read mapping. Bioinformatics. 2020; 36:i111–8.10.1093/bioinformatics/btaa435. PubMed DOI PMC
Rhie A, Walenz BP, Koren S et al. . Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020; 21:245.10.1186/s13059-020-02134-9. PubMed DOI PMC
Mohanty SK, Chiaromonte F, Makova KD Evolutionary dynamics of G-quadruplexes in human and other great ape telomere-to-telomere genomes. bioRxiv6 November 2024, preprint: not peer reviewed10.1101/2024.11.05.621973. DOI
Guiblet WM, DeGiorgio M, Cheng X et al. . Selection and thermostability suggest G-quadruplexes are novel functional elements of the human genome. Genome Res. 2021; 31:1136–49.10.1101/gr.269589.120. PubMed DOI PMC
Hoyt SJ, Storer JM, Hartley GA et al. . From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science. 2022; 376:eabk3112.10.1126/science.abk3112. PubMed DOI PMC
Gershman A, Sauria MEG, Guitart X et al. . Epigenetic patterns in a complete human genome. Science. 2022; 376:eabj5089.10.1126/science.abj5089. PubMed DOI PMC
Hui WWI, Simeone A, Zyner KG et al. . Single-cell mapping of DNA G-quadruplex structures in human cancer cells. Sci Rep. 2021; 11:23641.10.1038/s41598-021-02943-3. PubMed DOI PMC
Hinrichs AS, Karolchik D, Baertsch R et al. . The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 2006; 34:D590–8.10.1093/nar/gkj144. PubMed DOI PMC
Brázda V, Kolomazník J, Lýsek J et al. . G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics. 2019; 35:3493–5.10.1093/bioinformatics/btz087. PubMed DOI PMC
Katoh K, Standley DM MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30:772–80.10.1093/molbev/mst010. PubMed DOI PMC
Zorita E, Cuscó P, Filion GJ Starcode: sequence clustering based on all-pairs search. Bioinformatics. 2015; 31:1913–9.10.1093/bioinformatics/btv053. PubMed DOI PMC
Kejnovská I, Bednárová K, Renciuk D et al. . Clustered abasic lesions profoundly change the structure and stability of human telomeric G-quadruplexes. Nucleic Acids Res. 2017; 45:4294–305.10.1093/nar/gkx191. PubMed DOI PMC
Perez G, Barber GP, Benet-Pages A et al. . The UCSC Genome Browser database: 2025 update. Nucleic Acids Res. 2025; 53:D1243–9.10.1093/nar/gkae974. PubMed DOI PMC
Altemose N, Logsdon GA, Bzikadze AV et al. . Complete genomic and epigenetic maps of human centromeres. Science. 2022; 376:eabl4178.10.1126/science.abl4178. PubMed DOI PMC
Krzywinski M, Schein J, Birol I et al. . Circos: an information aesthetic for comparative genomics. Genome Res. 2009; 19:1639–45.10.1101/gr.092759.109. PubMed DOI PMC
R Core Team R: A language and environment for statistical computing. 2024; Vienna, Austria: R Foundation for Statistical Computing; https://www.R-project.org/.
Wickham H, Averick M, Bryan J et al. . Welcome to the Tidyverse. JOSS. 2019; 4:1686.10.21105/joss.01686. DOI
Cox R, Mirkin SM Characteristic enrichment of DNA repeats in different genomes. Proc Natl Acad Sci USA. 1997; 94:5237–42.10.1073/pnas.94.10.5237. PubMed DOI PMC
Zhao J, Bacolla A, Wang G et al. . Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci. 2010; 67:43–62.10.1007/s00018-009-0131-2. PubMed DOI PMC
Sinden RR, Zheng GX, Brankamp RG et al. . On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo. Genetics. 1991; 129:991–1005.10.1093/genetics/129.4.991. PubMed DOI PMC
Halder R, Halder K, Sharma P et al. . Guanine quadruplex DNA structure restricts methylation of CpG dinucleotides genome-wide. Mol Biosyst. 2010; 6:2439–47.10.1039/c0mb00009d. PubMed DOI
Mao S-Q, Ghanbarian AT, Spiegel J et al. . DNA G-quadruplex structures mold the DNA methylome. Nat Struct Mol Biol. 2018; 25:951–7.10.1038/s41594-018-0131-8. PubMed DOI PMC
Gerton JL A working model for the formation of Robertsonian chromosomes. J Cell Sci. 2024; 137:jcs261912.10.1242/jcs.261912. PubMed DOI PMC
de Lima LG, Guarracino A, Koren S et al. . The formation and propagation of human robertsonian chromosomes. bioRxiv26 September 2024, preprint: not peer reviewed10.1101/2024.09.24.614821. DOI
Kejnovsky E, Tokan V, Lexa M Transposable elements and G-quadruplexes. Chromosome Res. 2015; 23:615–23.10.1007/s10577-015-9491-7. PubMed DOI
Kejnovsky E, Lexa M Quadruplex-forming DNA sequences spread by retrotransposons may serve as genome regulators. Mob Genet Elements. 2014; 4:e28084.10.4161/mge.28084. PubMed DOI PMC
Lexa M, Steflova P, Martinek T et al. . Guanine quadruplexes are formed by specific regions of human transposable elements. BMC Genomics. 2014; 15:1032.10.1186/1471-2164-15-1032. PubMed DOI PMC
Langley SA, Miga KH, Karpen GH et al. . Haplotypes spanning centromeric regions reveal persistence of large blocks of archaic DNA. eLife. 2019; 8:e42989.10.7554/eLife.42989. PubMed DOI PMC
Sigurpalsdottir BD, Stefansson OA, Holley G et al. . A comparison of methods for detecting DNA methylation from long-read sequencing of human genomes. Genome Biol. 2024; 25:69.10.1186/s13059-024-03207-9. PubMed DOI PMC
Nicoletto G, Terreri M, Maurizio I et al. . G-quadruplexes in an SVA retrotransposon cause aberrant TAF1 gene expression in X-linked dystonia parkinsonism. Nucleic Acids Res. 2024; 52:11571–86.10.1093/nar/gkae797. PubMed DOI
Esnault C, Magat T, Zine El Aabidine A et al. . G4access identifies G-quadruplexes and their associations with open chromatin and imprinting control regions. Nat Genet. 2023; 55:1359–69.10.1038/s41588-023-01437-4. PubMed DOI
Bárcenas-Walls JR, Ansaloni F, Hervé B et al. . Nano-CUT&Tag for multimodal chromatin profiling at single-cell resolution. Nat Protoc. 2024; 19:791–830. PubMed
Lahnsteiner A, Craig SJC, Kamali K et al. . In vivo detection of DNA secondary structures using permanganate/S1 footprinting with direct adapter ligation and sequencing (PDAL-seq). Methods Enzymol. 2024; 695:159–91.10.1016/bs.mie.2023.12.003. PubMed DOI
Meneveri R, Agresti A, Marozzi A et al. . Molecular organization and chromosomal location of human GC-rich heterochromatic blocks. Gene. 1993; 123:227–34.10.1016/0378-1119(93)90128-P. PubMed DOI
Meneveri R, Agresti A, Rocchi M et al. . Analysis of GC-rich repetitive nucleotide sequences in great apes. J Mol Evol. 1995; 40:405–12.10.1007/BF00164027. PubMed DOI
Butterfield RJ, Dunn DM, Duval B et al. . Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. Genome Res. 2023; 33:1439–54.10.1101/gr.277871.123. PubMed DOI PMC
Bedrat A, Lacroix L, Mergny J-L Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016; 44:1746–59.10.1093/nar/gkw006. PubMed DOI PMC
Wang G, Christensen LA, Vasquez KM Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc Natl Acad Sci USA. 2006; 103:2677–82.10.1073/pnas.0511084103. PubMed DOI PMC
Chittoor SS, Giunta S Comparative analysis of predicted DNA secondary structures infers complex human centromere topology. Am Hum Genet. 2024; 111:2707–19.10.1016/j.ajhg.2024.10.016. PubMed DOI PMC
Ohzeki J-I, Nakano M, Okada T et al. . CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol. 2002; 159:765–75.10.1083/jcb.200207112. PubMed DOI PMC
Sen Gupta A, Seidel C, Tsuchiya D et al. . Defining a core configuration for human centromeres during mitosis. Nat Commun. 2023; 14:7947.10.1038/s41467-023-42980-2. PubMed DOI PMC
Brázda V, Bartas M, Bowater RP Evolution of diverse strategies for promoter regulation. Trends Genet. 2021; 37:730–44.10.1016/j.tig.2021.04.003. PubMed DOI
Yella VR, Vanaja A Computational analysis on the dissemination of non-B DNA structural motifs in promoter regions of 1180 cellular genomes. Biochimie. 2023; 214:101–11.10.1016/j.biochi.2023.06.002. PubMed DOI
Sinden RR, Pytlos-Sinden MJ, Potaman VN Slipped strand DNA structures. Front Biosci. 2007; 12:4788–99.10.2741/2427. PubMed DOI
Ma H, Ding W, Chen Y et al. . Centromere plasticity with evolutionary conservation and divergence uncovered by wheat 10+ genomes. Mol Biol Evol. 2023; 40:msad176.10.1093/molbev/msad176. PubMed DOI PMC
Jia H, Tan S, Cai Y et al. . Low-input PacBio sequencing generates high-quality individual fly genomes and characterizes mutational processes. Nat Commun. 2024; 15:5644.10.1038/s41467-024-49992-6. PubMed DOI PMC
Gehring K, Leroy JL, Guéron M A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature. 1993; 363:561–5.10.1038/363561a0. PubMed DOI
Dhakal S, Yu Z, Konik R et al. . G-quadruplex and i-motif are mutually exclusive in ILPR double-stranded DNA. Biophys J. 2012; 102:2575–84.10.1016/j.bpj.2012.04.024. PubMed DOI PMC