• This record comes from PubMed

Non-canonical DNA in human and other ape telomere-to-telomere genomes

. 2025 Apr 10 ; 53 (7) : .

Language English Country Great Britain, England Media print

Document type Journal Article

Grant support
R35 GM151945 NIGMS NIH HHS - United States
R35GM151945 NIGMS NIH HHS - United States
21-00580S Grantová Agentura České Republiky

Non-canonical (non-B) DNA structures-e.g. bent DNA, hairpins, G-quadruplexes (G4s), Z-DNA, etc.-which form at certain sequence motifs (e.g. A-phased repeats, inverted repeats, etc.), have emerged as important regulators of cellular processes and drivers of genome evolution. Yet, they have been understudied due to their repetitive nature and potentially inaccurate sequences generated with short-read technologies. Here we comprehensively characterize such motifs in the long-read telomere-to-telomere (T2T) genomes of human, bonobo, chimpanzee, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. Non-B DNA motifs are enriched at the genomic regions added to T2T assemblies and occupy 9%-15%, 9%-11%, and 12%-38% of autosomes and chromosomes X and Y, respectively. G4s and Z-DNA are enriched at promoters and enhancers, as well as at origins of replication. Repetitive sequences harbor more non-B DNA motifs than non-repetitive sequences, especially in the short arms of acrocentric chromosomes. Most centromeres and/or their flanking regions are enriched in at least one non-B DNA motif type, consistent with a potential role of non-B structures in determining centromeres. Our results highlight the uneven distribution of predicted non-B DNA structures across ape genomes and suggest their novel functions in previously inaccessible genomic regions.

Update Of

PubMed

See more in PubMed

Watson  JD, Crick  FHC  Genetical implications of the structure of deoxyribonucleic acid. Nature. 1953; 171:964–7.10.1038/171964b0. PubMed DOI

Guiblet  WM, Cremona  MA, Cechova  M  et al. .  Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate. Genome Res. 2018; 28:1767–78.10.1101/gr.241257.118. PubMed DOI PMC

Fleming  AM, Burrows  CJ  Interplay of guanine oxidation and G-quadruplex folding in gene promoters. J Am Chem Soc. 2020; 142:1115–36.10.1021/jacs.9b11050. PubMed DOI PMC

Roychoudhury  S, Pramanik  S, Harris  HL  et al. .  Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome. Proc Natl Acad Sci USA. 2020; 117:11409–20.10.1073/pnas.1912355117. PubMed DOI PMC

Zyner  KG, Simeone  A, Flynn  SM  et al. .  G-quadruplex DNA structures in human stem cells and differentiation. Nat Commun. 2022; 13:142.10.1038/s41467-021-27719-1. PubMed DOI PMC

Matos-Rodrigues  G, van Wietmarschen  N, Wu  W  et al. .  S1-END-seq reveals DNA secondary structures in human cells. Mol Cell. 2022; 82:3538–52.10.1016/j.molcel.2022.08.007. PubMed DOI PMC

Cer  RZ, Bruce  KH, Mudunuri  US  et al. .  Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes. Nucleic Acids Res. 2011; 39:D383–91.10.1093/nar/gkq1170. PubMed DOI PMC

Prorok  P, Artufel  M, Aze  A  et al. .  Involvement of G-quadruplex regions in mammalian replication origin activity. Nat Commun. 2019; 10:3274.10.1038/s41467-019-11104-0. PubMed DOI PMC

Akerman  I, Kasaai  B, Bazarova  A  et al. .  A predictable conserved DNA base composition signature defines human core DNA replication origins. Nat Commun. 2020; 11:4826.10.1038/s41467-020-18527-0. PubMed DOI PMC

Sahakyan  AB, Murat  P, Mayer  C  et al. .  G-quadruplex structures within the 3′ UTR of LINE-1 elements stimulate retrotransposition. Nat Struct Mol Biol. 2017; 24:243–7.10.1038/nsmb.3367. PubMed DOI

Moye  AL, Porter  KC, Cohen  SB  et al. .  Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat Commun. 2015; 6:7643.10.1038/ncomms8643. PubMed DOI PMC

Haran  TE, Mohanty  U  The unique structure of A-tracts and intrinsic DNA bending. Quart Rev Biophys. 2009; 42:41–81.10.1017/S0033583509004752. PubMed DOI

Spiegel  J, Cuesta  SM, Adhikari  S  et al. .  G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol. 2021; 22:117.10.1186/s13059-021-02324-z. PubMed DOI PMC

Gong  J-Y, Wen  C-J, Tang  M-L  et al. .  G-quadruplex structural variations in human genome associated with single-nucleotide variations and their impact on gene activity. Proc Natl Acad Sci USA. 2021; 118:e2013230118.10.1073/pnas.2013230118. PubMed DOI PMC

Gazanion  E, Lacroix  L, Alberti  P  et al. .  Genome wide distribution of G-quadruplexes and their impact on gene expression in malaria parasites. PLoS Genet. 2020; 16:e1008917.10.1371/journal.pgen.1008917. PubMed DOI PMC

Saranathan  N, Vivekanandan  P  G-quadruplexes: more than just a kink in microbial genomes. Trends Microbiol. 2019; 27:148–63.10.1016/j.tim.2018.08.011. PubMed DOI PMC

Biswas  B, Kandpal  M, Vivekanandan  P  A G-quadruplex motif in an envelope gene promoter regulates transcription and virion secretion in HBV genotype B. Nucleic Acids Res. 2017; 45:11268–80.10.1093/nar/gkx823. PubMed DOI PMC

Shin  S-I, Ham  S, Park  J  et al. .  Z-DNA-forming sites identified by ChIP-seq are associated with actively transcribed regions in the human genome. DNA Res. 2016; 23:477–86.10.1093/dnares/dsw031. PubMed DOI PMC

Sulovari  A, Li  R, Audano  PA  et al. .  Human-specific tandem repeat expansion and differential gene expression during primate evolution. Proc Natl Acad Sci USA. 2019; 116:23243–53.10.1073/pnas.1912175116. PubMed DOI PMC

Roberts  JW  Mechanisms of bacterial transcription termination. J Mol Biol. 2019; 431:4030–9.10.1016/j.jmb.2019.04.003. PubMed DOI

Yamamoto  Y, Miura  O, Ohyama  T  Cruciform formable sequences within Pou5f1 enhancer are indispensable for mouse ES cell integrity. Int J Mol Sci. 2021; 22:3399.10.3390/ijms22073399. PubMed DOI PMC

Del  Mundo IMA, Zewail-Foote  M, Kerwin  SM  et al. .  Alternative DNA structure formation in the mutagenic human c-MYC promoter. Nucleic Acids Res. 2017; 45:4929–43.10.1093/nar/gkx100. PubMed DOI PMC

Georgakopoulos-Soares  I, Victorino  J, Parada  GE  et al. .  High-throughput characterization of the role of non-B DNA motifs on promoter function. Cell Genomics. 2022; 2:100111.10.1016/j.xgen.2022.100111. PubMed DOI PMC

Roy  SS, Bagri  S, Vinayagamurthy  S  et al. .  Artificially inserted strong promoter containing multiple G-quadruplexes induces long-range chromatin modification. eLife. 2024; 13:RP96216.10.7554/eLife.96216.3. PubMed DOI PMC

Hänsel-Hertsch  R, Beraldi  D, Lensing  SV  et al. .  G-quadruplex structures mark human regulatory chromatin. Nat Genet. 2016; 48:1267–72.10.1038/ng.3662. PubMed DOI

Lago  S, Nadai  M, Cernilogar  FM  et al. .  Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat Commun. 2021; 12:3885.10.1038/s41467-021-24198-2. PubMed DOI PMC

Miura  O, Ogake  T, Yoneyama  H  et al. .  A strong structural correlation between short inverted repeat sequences and the polyadenylation signal in yeast and nucleosome exclusion by these inverted repeats. Curr Genet. 2019; 65:575–90.10.1007/s00294-018-0907-8. PubMed DOI PMC

Hou  Y, Li  F, Zhang  R  et al. .  Integrative characterization of G-quadruplexes in the three-dimensional chromatin structure. Epigenetics. 2019; 14:894–911.10.1080/15592294.2019.1621140. PubMed DOI PMC

Robinson  J, Raguseo  F, Nuccio  SP  et al. .  DNA G-quadruplex structures: more than simple roadblocks to transcription?. Nucleic Acids Res. 2021; 49:8419–31.10.1093/nar/gkab609. PubMed DOI PMC

Poggi  L, Richard  G-F  Alternative DNA structures in vivo : molecular evidence and remaining questions. Microbiol Mol Biol Rev. 2021; 85:e00110–20.10.1128/MMBR.00110-20. PubMed DOI PMC

Georgakopoulos-Soares  I, Parada  GE, Wong  HY  et al. .  Alternative splicing modulation by G-quadruplexes. Nat Commun. 2022; 13:2404.10.1038/s41467-022-30071-7. PubMed DOI PMC

Bochman  ML, Paeschke  K, Zakian  VA  DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet. 2012; 13:770–80.10.1038/nrg3296. PubMed DOI PMC

Bugaut  A, Balasubramanian  S  5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res. 2012; 40:4727–41.10.1093/nar/gks068. PubMed DOI PMC

Lyu  K, Chow  EY-C, Mou  X  et al. .  RNA G-quadruplexes (rG4s): genomics and biological functions. Nucleic Acids Res. 2021; 49:5426–50.10.1093/nar/gkab187. PubMed DOI PMC

Kasinathan  S, Henikoff  S  Non-B-form DNA is enriched at centromeres. Mol Biol Evol. 2018; 35:949–62.10.1093/molbev/msy010. PubMed DOI PMC

Kipling  D, Warburton  PE  Centromeres, CENP-B and Tigger too. Trends Genet. 1997; 13:141–5.10.1016/s0168-9525(97)01098-6. PubMed DOI

Goldberg  IG, Sawhney  H, Pluta  AF  et al. .  Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres. Mol Cell Biol. 1996; 16:5156–68.10.1128/MCB.16.9.5156. PubMed DOI PMC

Patchigolla  VSP, Mellone  BG  Enrichment of non-B-form DNA at D. melanogaster centromeres. Genome Biol Evol. 2022; 14:evac054. PubMed PMC

Liu  Q, Yi  C, Zhang  Z  et al. .  Non-B-form DNA tends to form in centromeric regions and has undergone changes in polyploid oat subgenomes. Proc Natl Acad Sci USA. 2023; 120:e2211683120. PubMed PMC

Yi  C, Liu  Q, Huang  Y  et al. .  Non-B-form DNA is associated with centromere stability in newly-formed polyploid wheat. Sci China Life Sci. 2024; 67:1479–88. PubMed

Mirkin  EV, Mirkin  SM  Replication fork stalling at natural impediments. Microbiol Mol Biol Rev. 2007; 71:13–35. PubMed PMC

Wang  G, Vasquez  KM  Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair (Amst). 2014; 19:143–51. PubMed PMC

Kaushal  S, Freudenreich  CH  The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer. 2019; 58:270–83. PubMed PMC

Sauer  M, Paeschke  K  G-quadruplex unwinding helicases and their function. Biochem Soc Trans. 2017; 45:1173–82. PubMed

Twayana  S, Bacolla  A, Barreto-Galvez  A  et al. .  Translesion polymerase eta both facilitates DNA replication and promotes increased human genetic variation at common fragile sites. Proc Natl Acad Sci USA. 2021; 118:e2106477118. PubMed PMC

Bournique  E, Dall’Osto  M, Hoffmann  J-S  et al. .  Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutat Res. 2018; 808:62–73. PubMed

Tsao  W-C, Eckert  KA  Detours to replication: functions of specialized DNA polymerases during oncogene-induced replication stress. Int J Mol Sci. 2018; 19:3255. PubMed PMC

Boyer  A-S, Grgurevic  S, Cazaux  C  et al. .  The human specialized DNA polymerases and non-B DNA: vital relationships to preserve genome integrity. J Mol Biol. 2013; 425:4767–81.10.1016/j.jmb.2013.09.022. PubMed DOI

McKinney  JA, Wang  G, Vasquez  KM  Distinct mechanisms of mutagenic processing of alternative DNA structures by repair proteins. Mol Cell Oncol. 2020; 7:1743807.10.1080/23723556.2020.1743807. PubMed DOI PMC

McGinty  RJ, Sunyaev  SR  Mutagenesis at non-B DNA motifs in the human genome: a course correction. Nat Struct Mol Biol. 2023; 30:417–24.10.1038/s41594-023-00936-6. PubMed DOI PMC

Makova  KD, Weissensteiner  MH  Noncanonical DNA structures are drivers of genome evolution. Trends Genet. 2023; 39:109–24.10.1016/j.tig.2022.11.005. PubMed DOI PMC

Haeusler  AR, Donnelly  CJ, Periz  G  et al. .  C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature. 2014; 507:195–200.10.1038/nature13124. PubMed DOI PMC

Tateishi-Karimata  H, Sugimoto  N  Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Res. 2021; 49:7839–55.10.1093/nar/gkab580. PubMed DOI PMC

Cheloshkina  K, Poptsova  M  Comprehensive analysis of cancer breakpoints reveals signatures of genetic and epigenetic contribution to cancer genome rearrangements. PLoS Comput Biol. 2021; 17:e1008749.10.1371/journal.pcbi.1008749. PubMed DOI PMC

Maizels  N  G4-associated human diseases. EMBO Rep. 2015; 16:910–22.10.15252/embr.201540607. PubMed DOI PMC

Weissensteiner  MH, Cremona  MA, Guiblet  WM  et al. .  Accurate sequencing of DNA motifs able to form alternative (non-B) structures. Genome Res. 2023; 33:907–22.10.1101/gr.277490.122. PubMed DOI PMC

McGinty  RJ, Sunyaev  SR  Revisiting mutagenesis at non-B DNA motifs in the human genome. Nat Struct Mol Biol. 2023; 30:417–24.10.1038/s41594-023-00936-6. PubMed DOI PMC

Nurk  S, Koren  S, Rhie  A  et al. .  The complete sequence of a human genome. Science. 2022; 376:44–53.10.1126/science.abj6987. PubMed DOI PMC

Rhie  A, Nurk  S, Cechova  M  et al. .  The complete sequence of a human Y chromosome. Nature. 2023; 621:344–54.10.1038/s41586-023-06457-y. PubMed DOI PMC

Makova  KD, Pickett  BD, Harris  RS  et al. .  The complete sequence and comparative analysis of ape sex chromosomes. Nature. 2024; 630:401–11.10.1038/s41586-024-07473-2. PubMed DOI PMC

Yoo  D, Rhie  A, Hebbar  P  et al. .  Complete sequencing of ape genomes. Nature. 2025; 10.1038/s41586-025-08816-3. PubMed DOI

Sahakyan  AB, Chambers  VS, Marsico  G  et al. .  Machine learning model for sequence-driven DNA G-quadruplex formation. Sci Rep. 2017; 7:14535.10.1038/s41598-017-14017-4. PubMed DOI PMC

Quinlan  AR, Hall  IM  BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841–2.10.1093/bioinformatics/btq033. PubMed DOI PMC

Yu  H, Li  F, Yang  B  et al. .  iM-Seeker: a webserver for DNA i-motifs prediction and scoring via automated machine learning. Nucleic Acids Res. 2024; 52:W19–28.10.1093/nar/gkae315. PubMed DOI PMC

Jain  C, Rhie  A, Zhang  H  et al. .  Weighted minimizer sampling improves long read mapping. Bioinformatics. 2020; 36:i111–8.10.1093/bioinformatics/btaa435. PubMed DOI PMC

Rhie  A, Walenz  BP, Koren  S  et al. .  Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020; 21:245.10.1186/s13059-020-02134-9. PubMed DOI PMC

Mohanty  SK, Chiaromonte  F, Makova  KD  Evolutionary dynamics of G-quadruplexes in human and other great ape telomere-to-telomere genomes. bioRxiv6 November 2024, preprint: not peer reviewed10.1101/2024.11.05.621973. DOI

Guiblet  WM, DeGiorgio  M, Cheng  X  et al. .  Selection and thermostability suggest G-quadruplexes are novel functional elements of the human genome. Genome Res. 2021; 31:1136–49.10.1101/gr.269589.120. PubMed DOI PMC

Hoyt  SJ, Storer  JM, Hartley  GA  et al. .  From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science. 2022; 376:eabk3112.10.1126/science.abk3112. PubMed DOI PMC

Gershman  A, Sauria  MEG, Guitart  X  et al. .  Epigenetic patterns in a complete human genome. Science. 2022; 376:eabj5089.10.1126/science.abj5089. PubMed DOI PMC

Hui  WWI, Simeone  A, Zyner  KG  et al. .  Single-cell mapping of DNA G-quadruplex structures in human cancer cells. Sci Rep. 2021; 11:23641.10.1038/s41598-021-02943-3. PubMed DOI PMC

Hinrichs  AS, Karolchik  D, Baertsch  R  et al. .  The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 2006; 34:D590–8.10.1093/nar/gkj144. PubMed DOI PMC

Brázda  V, Kolomazník  J, Lýsek  J  et al. .  G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics. 2019; 35:3493–5.10.1093/bioinformatics/btz087. PubMed DOI PMC

Katoh  K, Standley  DM  MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30:772–80.10.1093/molbev/mst010. PubMed DOI PMC

Zorita  E, Cuscó  P, Filion  GJ  Starcode: sequence clustering based on all-pairs search. Bioinformatics. 2015; 31:1913–9.10.1093/bioinformatics/btv053. PubMed DOI PMC

Kejnovská  I, Bednárová  K, Renciuk  D  et al. .  Clustered abasic lesions profoundly change the structure and stability of human telomeric G-quadruplexes. Nucleic Acids Res. 2017; 45:4294–305.10.1093/nar/gkx191. PubMed DOI PMC

Perez  G, Barber  GP, Benet-Pages  A  et al. .  The UCSC Genome Browser database: 2025 update. Nucleic Acids Res. 2025; 53:D1243–9.10.1093/nar/gkae974. PubMed DOI PMC

Altemose  N, Logsdon  GA, Bzikadze  AV  et al. .  Complete genomic and epigenetic maps of human centromeres. Science. 2022; 376:eabl4178.10.1126/science.abl4178. PubMed DOI PMC

Krzywinski  M, Schein  J, Birol  I  et al. .  Circos: an information aesthetic for comparative genomics. Genome Res. 2009; 19:1639–45.10.1101/gr.092759.109. PubMed DOI PMC

R Core Team  R: A language and environment for statistical computing. 2024; Vienna, Austria: R Foundation for Statistical Computing; https://www.R-project.org/.

Wickham  H, Averick  M, Bryan  J  et al. .  Welcome to the Tidyverse. JOSS. 2019; 4:1686.10.21105/joss.01686. DOI

Cox  R, Mirkin  SM  Characteristic enrichment of DNA repeats in different genomes. Proc Natl Acad Sci USA. 1997; 94:5237–42.10.1073/pnas.94.10.5237. PubMed DOI PMC

Zhao  J, Bacolla  A, Wang  G  et al. .  Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci. 2010; 67:43–62.10.1007/s00018-009-0131-2. PubMed DOI PMC

Sinden  RR, Zheng  GX, Brankamp  RG  et al. .  On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo. Genetics. 1991; 129:991–1005.10.1093/genetics/129.4.991. PubMed DOI PMC

Halder  R, Halder  K, Sharma  P  et al. .  Guanine quadruplex DNA structure restricts methylation of CpG dinucleotides genome-wide. Mol Biosyst. 2010; 6:2439–47.10.1039/c0mb00009d. PubMed DOI

Mao  S-Q, Ghanbarian  AT, Spiegel  J  et al. .  DNA G-quadruplex structures mold the DNA methylome. Nat Struct Mol Biol. 2018; 25:951–7.10.1038/s41594-018-0131-8. PubMed DOI PMC

Gerton  JL  A working model for the formation of Robertsonian chromosomes. J Cell Sci. 2024; 137:jcs261912.10.1242/jcs.261912. PubMed DOI PMC

de Lima  LG, Guarracino  A, Koren  S  et al. .  The formation and propagation of human robertsonian chromosomes. bioRxiv26 September 2024, preprint: not peer reviewed10.1101/2024.09.24.614821. DOI

Kejnovsky  E, Tokan  V, Lexa  M  Transposable elements and G-quadruplexes. Chromosome Res. 2015; 23:615–23.10.1007/s10577-015-9491-7. PubMed DOI

Kejnovsky  E, Lexa  M  Quadruplex-forming DNA sequences spread by retrotransposons may serve as genome regulators. Mob Genet Elements. 2014; 4:e28084.10.4161/mge.28084. PubMed DOI PMC

Lexa  M, Steflova  P, Martinek  T  et al. .  Guanine quadruplexes are formed by specific regions of human transposable elements. BMC Genomics. 2014; 15:1032.10.1186/1471-2164-15-1032. PubMed DOI PMC

Langley  SA, Miga  KH, Karpen  GH  et al. .  Haplotypes spanning centromeric regions reveal persistence of large blocks of archaic DNA. eLife. 2019; 8:e42989.10.7554/eLife.42989. PubMed DOI PMC

Sigurpalsdottir  BD, Stefansson  OA, Holley  G  et al. .  A comparison of methods for detecting DNA methylation from long-read sequencing of human genomes. Genome Biol. 2024; 25:69.10.1186/s13059-024-03207-9. PubMed DOI PMC

Nicoletto  G, Terreri  M, Maurizio  I  et al. .  G-quadruplexes in an SVA retrotransposon cause aberrant TAF1 gene expression in X-linked dystonia parkinsonism. Nucleic Acids Res. 2024; 52:11571–86.10.1093/nar/gkae797. PubMed DOI

Esnault  C, Magat  T, Zine  El Aabidine A  et al. .  G4access identifies G-quadruplexes and their associations with open chromatin and imprinting control regions. Nat Genet. 2023; 55:1359–69.10.1038/s41588-023-01437-4. PubMed DOI

Bárcenas-Walls  JR, Ansaloni  F, Hervé  B  et al. .  Nano-CUT&Tag for multimodal chromatin profiling at single-cell resolution. Nat Protoc. 2024; 19:791–830. PubMed

Lahnsteiner  A, Craig  SJC, Kamali  K  et al. .  In vivo detection of DNA secondary structures using permanganate/S1 footprinting with direct adapter ligation and sequencing (PDAL-seq). Methods Enzymol. 2024; 695:159–91.10.1016/bs.mie.2023.12.003. PubMed DOI

Meneveri  R, Agresti  A, Marozzi  A  et al. .  Molecular organization and chromosomal location of human GC-rich heterochromatic blocks. Gene. 1993; 123:227–34.10.1016/0378-1119(93)90128-P. PubMed DOI

Meneveri  R, Agresti  A, Rocchi  M  et al. .  Analysis of GC-rich repetitive nucleotide sequences in great apes. J Mol Evol. 1995; 40:405–12.10.1007/BF00164027. PubMed DOI

Butterfield  RJ, Dunn  DM, Duval  B  et al. .  Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. Genome Res. 2023; 33:1439–54.10.1101/gr.277871.123. PubMed DOI PMC

Bedrat  A, Lacroix  L, Mergny  J-L  Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016; 44:1746–59.10.1093/nar/gkw006. PubMed DOI PMC

Wang  G, Christensen  LA, Vasquez  KM  Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc Natl Acad Sci USA. 2006; 103:2677–82.10.1073/pnas.0511084103. PubMed DOI PMC

Chittoor  SS, Giunta  S  Comparative analysis of predicted DNA secondary structures infers complex human centromere topology. Am Hum Genet. 2024; 111:2707–19.10.1016/j.ajhg.2024.10.016. PubMed DOI PMC

Ohzeki  J-I, Nakano  M, Okada  T  et al. .  CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol. 2002; 159:765–75.10.1083/jcb.200207112. PubMed DOI PMC

Sen  Gupta A, Seidel  C, Tsuchiya  D  et al. .  Defining a core configuration for human centromeres during mitosis. Nat Commun. 2023; 14:7947.10.1038/s41467-023-42980-2. PubMed DOI PMC

Brázda  V, Bartas  M, Bowater  RP  Evolution of diverse strategies for promoter regulation. Trends Genet. 2021; 37:730–44.10.1016/j.tig.2021.04.003. PubMed DOI

Yella  VR, Vanaja  A  Computational analysis on the dissemination of non-B DNA structural motifs in promoter regions of 1180 cellular genomes. Biochimie. 2023; 214:101–11.10.1016/j.biochi.2023.06.002. PubMed DOI

Sinden  RR, Pytlos-Sinden  MJ, Potaman  VN  Slipped strand DNA structures. Front Biosci. 2007; 12:4788–99.10.2741/2427. PubMed DOI

Ma  H, Ding  W, Chen  Y  et al. .  Centromere plasticity with evolutionary conservation and divergence uncovered by wheat 10+ genomes. Mol Biol Evol. 2023; 40:msad176.10.1093/molbev/msad176. PubMed DOI PMC

Jia  H, Tan  S, Cai  Y  et al. .  Low-input PacBio sequencing generates high-quality individual fly genomes and characterizes mutational processes. Nat Commun. 2024; 15:5644.10.1038/s41467-024-49992-6. PubMed DOI PMC

Gehring  K, Leroy  JL, Guéron  M  A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature. 1993; 363:561–5.10.1038/363561a0. PubMed DOI

Dhakal  S, Yu  Z, Konik  R  et al. .  G-quadruplex and i-motif are mutually exclusive in ILPR double-stranded DNA. Biophys J. 2012; 102:2575–84.10.1016/j.bpj.2012.04.024. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...