Clustered abasic lesions profoundly change the structure and stability of human telomeric G-quadruplexes

. 2017 May 05 ; 45 (8) : 4294-4305.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28369584

Ionizing radiation produces clustered damage to DNA which is difficult to repair and thus more harmful than single lesions. Clustered lesions have only been investigated in dsDNA models. Introducing the term 'clustered damage to G-quadruplexes' we report here on the structural effects of multiple tetrahydrofuranyl abasic sites replacing loop adenines (A/AP) and tetrad guanines (G/AP) in quadruplexes formed by the human telomere d[AG3(TTAG3)3] (htel-22) and d[TAG3(TTAG3)3TT] (htel-25) in K+ solutions. Single to triple A/APs increased the population of parallel strands in their structures by stabilizing propeller type loops, shifting the antiparallel htel-22 into hybrid or parallel quadruplexes. In htel-25, the G/APs inhibited the formation of parallel strands and these adopted antiparallel topologies. Clustered G/AP and A/APs reduced the thermal stability of the wild-type htel-25. Depending on position, A/APs diminished or intensified the damaging effect of the G/APs. Taken together, clustered lesions can disrupt the topology and stability of the htel quadruplexes and restrict their conformational space. These in vitro results suggest that formation of clustered lesions in the chromosome capping structure can result in the unfolding of existing G-quadruplexes which can lead to telomere shortening.

Zobrazit více v PubMed

Wang Z. Molecular and Biochemical Toxicology. 2007; John Wiley & Sons, Inc; 441–491.

Jenner T.J., Fulford J., O’Neill P.. Contribution of base lesions to radiation-induced clustered DNA damage: Implication for models of radiation response. Radiation Res. 2001; 156:590–593. PubMed

Tokuyama Y., Furusawa Y., Ide H., Yasui A., Terato H.. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation. J. Radiat. Res. 2015; 56:446–455. PubMed PMC

Sage E., Harrison L.. Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival. Mutat. Res. 2011; 711:123–133. PubMed PMC

Gulston M., de Lara C., Jenner T., Davis E., O’Neill P.. Processing of clustered DNA damage generates additional double-strand breaks in mammalian cells post-irradiation. Nucleic Acids Res. 2004; 32:1602–1609. PubMed PMC

Esposito V., Martino L., Citarella G., Virgilio A., Mayol L., Giancola C., Galeone A.. Effects of abasic sites on structural, thermodynamic and kinetic properties of quadruplex structures. Nucleic Acids Res. 2010; 38:2069–2080. PubMed PMC

von Sonntag C. The Chemical Basis of Radiation Biology. 1987; London: Taylor & Francis.

O΄Neill P., Fielden E.M.. Primary free-radical processes in DNA. Adv. Radiat. Biol. 1993; 17:53–120.

Harrison L., Hatahet Z., Wallace S.S.. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites. J. Mol. Biol. 1999; 290:667–684. PubMed

David-Cordonnier M.H., Boiteux S., O’Neill P.. Excision of 8-oxoguanine within clustered damage by the yeast OGG1 protein. Nucleic Acids Res. 2001; 29:1107–1113. PubMed PMC

Gulston M., Fulford J., Jenner T., de Lara C., O’Neill P.. Clustered DNA damage induced by γ radiation in human fibroblasts (HF19), hamster (V79-4) cells and plasmid DNA is revealed as Fpg and Nth sensitive sites. Nucleic Acids Res. 2002; 30:3464–3472. PubMed PMC

Sutherland B.M., Bennett P.V., Cintron-Torres N., Hada M., Trunk J., Monteleone D., Sutherland J.C., Laval J., Stanislaus M., Gewirtz A.. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation. J. Radiat. Res. 2002; 43:S149–152. PubMed

David-Cordonnier M.H., Laval J., O’Neill P.. Clustered DNA damage, influence on damage excision by XRS5 nuclear extracts and Escherichia coli Nth and Fpg proteins. J. Biol. Chem. 2000; 275:11865–11873. PubMed

Bennett P.V., Cuomo N.L., Paul S., Tafrov S.T., Sutherland B.M.. Endogenous DNA damage clusters in human skin, 3-D model, and cultured skin cells. Free Radic. Biol. Med. 2005; 39:832–839. PubMed PMC

Bennett P., Ishchenko A.A., Laval J., Paap B., Sutherland B.M.. Endogenous DNA damage clusters in human hematopoietic stem and progenitor cells. Free Radic. Biol. Med. 2008; 45:1352–1359. PubMed

Sutherland B.M., Bennett P.V., Sutherland J.C., Laval J.. Clustered DNA damages induced by X rays in human cells. Radiat. Res. 2002; 157:611–616. PubMed

Song J.M., Milligan J.R., Sutherland B.M.. Bistranded oxidized purine damage clusters: induced in DNA by long-wavelength ultraviolet (290-400 nm) radiation. Biochemistry. 2002; 41:8683–8688. PubMed

Neidle S., Balasubramanian S.. Quadruplex Nucleic Acids. 2006; London: Royal Society of Chemistry.

Sagi J. G-quadruplexes incorporating modified constituents: a review. J. Biomol. Struct. Dyn. 2014; 32:477–511. PubMed

Pedroso I.M., Hayward W., Fletcher T.M.. The effect of the TRF2 N-terminal and TRFH regions on telomeric G-quadruplex structures. Nucleic Acids Res. 2009; 37:1541–1554. PubMed PMC

Xu Y., Sato H., Sannohe Y., Shinohara K., Sugiyama H.. Stable lariat formation based on a G-quadruplex scaffold. J. Am. Chem. Soc. 2008; 130:16470–16471. PubMed

Baird D.M., Jeffreys A.J., Royle N.J.. Mechanisms underlying telomere repeat turnover, revealed by hypervariable variant repeat distribution patterns in the human Xp/Yp telomere. EMBO J. 1995; 14:5433–5443. PubMed PMC

Sattin G., Artese A., Nadai M., Costa G., Parrotta L., Alcaro S., Palumbo M., Richter S.N.. Conformation and stability of intramolecular telomeric G-quadruplexes: Sequence effects in the loops. PLoS One. 2013; 8:e84113. PubMed PMC

Aviňo A., Portella G., Ferreira R., Gargallo R., Mazzini S., Gabelica V., Orozco M., Eritja R.. Specific loop modifications of the thrombin-binding aptamer trigger the formation of parallel structures. FEBS J. 2014; 281:1085–1099. PubMed

Babinsky M., Fiala R., Kejnovska I., Bednarova K., Marek R., Sagi J., Sklenar V., Vorlickova M.. Loss of loop adenines alters human telomere d[AG3(TTAG3)3] quadruplex folding. Nucleic Acids Res. 2014; 42:14031–14041. PubMed PMC

Piotto M., Saudek V., Sklenar V.. Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J. Biomol. NMR. 1992; 6:661–665. PubMed

Renciuk D., Kejnovska I., Skolakova P., Bednarova K., Motlova J., Vorlickova M.. Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions. Nucleic Acids Res. 2009; 37:6625–6634. PubMed PMC

Vorlíckova M., Kejnovska I., Sagi J., Renciuk D., Bednarova K., Motlova J., Kypr J.. Circular dichroism and guanine quadruplexes. Methods. 2012; 57:64–75. PubMed

Palacký J., Vorlíčková M., Kejnovská I., Mojzeš P.. Polymorphism of human telomeric quadruplex structure controlled by DNA concentration: a Raman study. Nucleic Acids Res. 2013; 41:1005–1016. PubMed PMC

Vorlickova M., Chladkova J., Kejnovska I., Fialova M., Kypr J.. Guanine tetraplex topology of human telomere DNA is governed by the number of (TTAGGG) repeats. Nucleic Acids Res. 2005; 33:5851–5860. PubMed PMC

Phan A.T., Luu K.N., Patel D.J.. Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution. Nucleic Acids Res. 2006; 34:5715–5719. PubMed PMC

An N., Fleming A.M., Burrows C.J.. Interactions of the human telomere sequence with the nanocavity of the α-hemolysin ion channel reveal structure-dependent electrical signatures for hybrid folds. J. Am. Chem. Soc. 2013; 135:8562–8570. PubMed PMC

Masiero S., Trotta R., Pieraccini S., De Tito S., Perone R., Randazzo A., Spada G.P.. A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures. Org. Biomol. Chem. 2010; 8:2653–2872. PubMed

Gray D.M., Wen J., Gray C.V., Repges R., Repges C., Raabe G., Fleischhauer J.. Measured and calculated CD spectra of G-quartets stacked with the same or opposite polarities. Chirality. 2008; 20:431–440. PubMed

Wang Z.-F., Li M.-H., Hsu S.-T.D., Chang T.-C.. Structural basis of sodium–potassium exchange of a human telomeric DNA quadruplex without topological conversion. Nucleic Acids Res. 2014; 42:4723–4733. PubMed PMC

Skolakova P., Bednarova K., Vorlickova M., Sagi J.. Quadruplexes of human telomere dG(3)(TTAG(3))(3) sequences containing guanine abasic sites. Biochem. Biophys. Res. Commun. 2010; 399:203–208. PubMed

Virgilio A., Petraccone L., Esposito V., Citarella G., Giancola C., Galeone A.. The abasic site lesions in the human telomeric sequence d[TA(G3T2A)3G3]: A thermodynamic point of view. Biochim. Biophys. Acta (BBA) - Gen. Subj. 2012; 1820:2037–2043. PubMed

Sabharwal N.C., Savikhin V., Turek-Herman J.R., Nicoludis J.M., Szalai V.A., Yatsunyk L.A.. N-methylmesoporphyrin IX fluorescence as a reporter of strand orientation in guanine quadruplexes. FEBS J. 2014; 281:1726–1737. PubMed PMC

Stebbeds W.J.D., Lunec J., Larcombe L.D.. An in silico study of the differential effect of oxidation on two biologically relevant G-quadruplexes: Possible implications in oncogene expression. PLoS One. 2012; 7:e43735. PubMed PMC

Zhou C., Greenberg M.M.. DNA damage by histone radicals in nucleosome core particles. J. Am. Chem. Soc. 2014; 136:6562–6565. PubMed PMC

Sun L., Tan R., Xu J., LaFace J., Gao Y., Xiao Y., Attar M., Neumann C., Li G.M., Su B. et al. . Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death. Nucleic Acids Res. 2015; 43:6334–6347. PubMed PMC

Sagi J., Renciuk D., Tomasko M., Vorlickova M.. Quadruplexes of human telomere DNA analogs designed to contain G:A:G:A, G:G:A:A, and A:A:A:A tetrads. Biopolymers. 2010; 93:880–886. PubMed

Benz A., Hartig J.S.. Redesigned tetrads with altered hydrogen bonding patterns enable programming of quadruplex topologies. Chem. Commun. 2008; 4010–4012. PubMed

Singh V., Benz A., Hartig J.S.. G quadruplexes stabilised by 8-oxo-2΄-deoxyguanosine. Chemistry. 2011; 17:10838–10843. PubMed

Cheong V.V., Heddi B., Lech C.J., Phan A.T.. Xanthine and 8-oxoguanine in G-quadruplexes: formation of a G·G·X·O tetrad. Nucleic Acids Res. 2015; 43:10506–10514. PubMed PMC

Cheong V.V., Lech C.J., Heddi B., Phan A.T.. Inverting the G-tetrad polarity of a G-quadruplex by using xanthine and 8-oxoguanine. Angew. Chem. 2016; 55:160–163. PubMed

Ying L.M., Green J.J., Li H.T., Klenerman D., Balasubramanian S.. Studies on the structure and dynamics of the human telomeric G quadruplex by single-molecule fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. U.S.A. 2003; 100:14629–14634. PubMed PMC

Lee J.Y., Okumus B., Kim D.S., Ha T.. Extreme conformational diversity in human telomeric DNA. Proc. Natl. Acad. Sci. U.S.A. 2005; 102:18938–18943. PubMed PMC

Noer S.L., Preus S., Gudnason D., Aznauryan M., Mergny J.-L., Birkedal V.. Folding dynamics and conformational heterogeneity of human telomeric G-quadruplex structures in Na+ solutions by single molecule FRET microscopy. Nucleic Acids Res. 2016; 44:464–471. PubMed PMC

Lim K.W., Amrane S., Bouaziz S., Xu W., Mu Y., Patel D.J., Luu K.N., Phan A.T.. Structure of the human telomere in K+ solution: A stable basket-type G-quadruplex with only two G-tetrad layers. J. Am. Chem. Soc. 2009; 131:4301–4309. PubMed PMC

Zhang Z., Dai J., Veliath E., Jones R.A., Yang D.. Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures. Nucleic Acids Res. 2010; 38:1009–1021. PubMed PMC

Lim K.W., Ng V.C.M., Martin-Pintado N., Heddi B., Phan A.T.. Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. Nucleic Acids Res. 2013; 41:10556–10562. PubMed PMC

Phan A.T., Kuryavyi V., Luu K.N., Patel D.J.. Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res. 2007; 35:6517–6525. PubMed PMC

Konvalinova H., Dvorakova Z., Renciuk D., Bednarova K., Kejnovska I., Trantirek L., Vorlickova M., Sagi J.. Diverse effects of naturally occurring base lesions on the structure and stability of the human telomere DNA quadruplex. Biochimie. 2015; 118:15–25. PubMed

Wang Y., Patel D.J.. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure. 1993; 1:263–282. PubMed

Galer P., Wang B., Šket P., Plavec J.. Reversible pH switch of two‐quartet G‐quadruplexes formed by human telomere. Angewandte Chemie International Edition. 2016; 55:1993–1997. PubMed

Sedletska Y., Radicella J.P., Sage E.. Replication fork collapse is a major cause of the high mutation frequency at three-base lesion clusters. Nucleic Acids Res. 2013; 41:9339–9348. PubMed PMC

Eccles L.J., O’Neill P., Lomax M.E.. Delayed repair of radiation induced clustered DNA damage: friend or foe?. Mutat. Res. 2011; 711:134–141. PubMed PMC

Hänsel R., Löhr F., Trantirek L., Dötsch V.. High-resolution insight into G-overhang architecture. J. Am. Chem. Soc. 2013; 135:2816–2824. PubMed

Moye A.L., Porter K.C., Cohen S.B., Phan T., Zyner K.G., Sasaki N., Lovrecz G.O., Beck J.L., Bryan T.M.. Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat. Commun. 2015; 6:7643. PubMed PMC

Mullins M.R., Rajavel M., Hernandez-Sanchez W., de la Fuente M., Biendarra S.M., Harris M.E., Taylor D.J.. POT1-TPP1 binding and unfolding of telomere DNA discriminates against structural polymorphism. J. Mol. Biol. 2016; 428:2695–2708. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace