Nitrogen Deficiency and Synergism between Continuous Light and Root Ammonium Supply Modulate Distinct but Overlapping Patterns of Phytohormone Composition in Xylem Sap of Tomato Plants

. 2021 Mar 18 ; 10 (3) : . [epub] 20210318

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33803638

Grantová podpora
255613/E50 Norges Forskningsråd

Continuous light (CL) or a predominant nitrogen supply as ammonium (NH4+) can induce leaf chlorosis and inhibit plant growth. The similarity in injuries caused by CL and NH4+ suggests involvement of overlapping mechanisms in plant responses to these conditions; however, these mechanisms are poorly understood. We addressed this topic by conducting full factorial experiments with tomato plants to investigate the effects of NO3- or NH4+ supply under diurnal light (DL) or CL. We used plants at ages of 26 and 15 days after sowing to initiate the treatments, and we modulated the intensity of the stress induced by CL and an exclusive NH4+ supply from mild to strong. Under DL, we also studied the effect of nitrogen (N) deficiency and mixed application of NO3- and NH4+. Under strong stress, CL and exclusive NH4+ supply synergistically inhibited plant growth and reduced chlorophyll content. Under mild stress, when no synergetic effect between CL and NH4+ was apparent on plant growth and chlorophyll content, we found a synergetic effect of CL and NH4+ on the accumulation of several plant stress hormones, with an especially strong effect for jasmonic acid (JA) and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, in xylem sap. This modulation of the hormonal composition suggests a potential role for these plant hormones in plant growth responses to the combined application of CL and NH4+. No synergetic effect was observed between CL and NH4+ for the accumulation of soluble carbohydrates or of mineral ions, indicating that these plant traits are less sensitive than the modulation of hormonal composition in xylem sap to the combined CL and NH4+ application. Under diurnal light, NH4+ did not affect the hormonal composition of xylem sap; however, N deficiency strongly increased the concentrations of phaseic acid (PA), JA, and salicylic acid (SA), indicating that decreased N concentration rather than the presence of NO3- or NH4+ in the nutrient solution drives the hormone composition of the xylem sap. In conclusion, N deficiency or a combined application of CL and NH4+ induced the accumulation of JA in xylem sap. This accumulation, in combination with other plant hormones, defines the specific plant response to stress conditions.

Zobrazit více v PubMed

Oda M., Aoki S., Nagaoka M., Tsuji K. Nutrient solution culture of leaf lettuce under artificial light. II. Growth promotion induced by continuous illumination with low light Intensity. Environ. Control Biol. 1989;27:75–82. doi: 10.2525/ecb1963.27.75. DOI

Ohyama K., Manabe K., Omura Y., Kozai T., Kubota C. Potential use of a 24-h photoperiod (continuous light) with alternating air temperature for production of tomato plug transplants in a closed system. Hortscience. 2005;40:374–377. doi: 10.21273/HORTSCI.40.2.374. DOI

Lillo C. Signalling cascades integrating light-enhanced nitrate metabolism. Biochem. J. 2008;415:11–19. doi: 10.1042/BJ20081115. PubMed DOI

Yoneyama T., Suzuki A. Exploration of nitrate-to-glutamate assimilation in non-photosynthetic roots of higher plants by studies of N-15-tracing, enzymes involved, reductant supply, and nitrate signaling: A review and synthesis. Plant Physiol. Bioch. 2019;136:245–254. doi: 10.1016/j.plaphy.2018.12.011. PubMed DOI

Velez-Ramirez A.I., van Ieperen W., Vreugdenhil D., Millenaar F.F. Plants under continuous light. Trends Plant Sci. 2011;16:310–318. doi: 10.1016/j.tplants.2011.02.003. PubMed DOI

Britto D.T., Kronzucker H.J. NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 2002;159:567–584. doi: 10.1078/0176-1617-0774. DOI

Sysoeva M.I., Markovskaya E.F., Shibaeva T.G. Plants under continuous light: A review. Plant Stress. 2010;5:5–17.

Horchani F., Hajri R., Aschi-Smiti S. Effect of ammonium or nitrate nutrition on photosynthesis, growth, and nitrogen assimilation in tomato plants. J. Plant Nutr. Soil Sc. 2010;173:610–617. doi: 10.1002/jpln.201000055. DOI

Velez-Ramirez A.I., van Ieperen W., Vreugdenhil D., van Poppel P., Heuvelink E., Millenaar F.F. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nat. Commun. 2014;5 doi: 10.1038/ncomms5549. PubMed DOI

Velez-Ramirez A.I., Dunner-Planella G., Vreugdenhil D., Millenaar F.F., van Ieperen W. On the induction of injury in tomato under continuous light: Circadian asynchrony as the main triggering factor. Funct. Plant Biol. 2017;44:597–611. doi: 10.1071/FP16285. PubMed DOI

Drath M., Kloft N., Batschauer A., Marin K., Novak J., Forchhammer K. Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol. 2008;147:206–215. doi: 10.1104/pp.108.117218. PubMed DOI PMC

Esteban R., Ariz I., Cruz C., Moran J.F. Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci. 2016;248:92–101. doi: 10.1016/j.plantsci.2016.04.008. PubMed DOI

Seo D.H., Yoon G.M. Light-induced stabilization of ACS contributes to hypocotyl elongation during the dark-to-light transition in Arabidopsis seedlings. Plant J. 2019;98:898–911. doi: 10.1111/tpj.14289. PubMed DOI

Vinterhalter D., Savic J., Stanisic M., Vinterhalter B., Dobrev P.I., Motyka V. Diurnal rhythmicity of endogenous phytohormones and phototropic bending capacity in potato (Solanum tuberosum L.) shoot cultures. Plant Growth Regul. 2020;90:151–161. doi: 10.1007/s10725-019-00561-8. DOI

Nitschke S., Cortleven A., Iven T., Feussner I., Havaux M., Riefler M., Schmulling T. Circadian stress regimes affect the circadian clock and cause jasmonic acid dependent cell death in cytokinin deficient Arabidopsis Plants. Plant Cell. 2016;28:1616–1639. doi: 10.1105/tpc.16.00016. PubMed DOI PMC

Ueda Y., Konishi M., Yanagisawa S. Molecular basis of the nitrogen response in plants. Soil Sci. Plant Nutr. 2017;63:329–341. doi: 10.1080/00380768.2017.1360128. DOI

Ruffel S., Poitout A., Krouk G., Coruzzi G.M., Lacombe B. Long-distance nitrate signaling displays cytokinin dependent and independent branches. J. Integr. Plant Biol. 2016;58:226–229. doi: 10.1111/jipb.12453. PubMed DOI

Ruffel S. Nutrient-related long-distance signals: Common players and possible cross-talk. Plant Cell Physiol. 2018;59:1723–1732. doi: 10.1093/pcp/pcy152. PubMed DOI

Vega A., O’Brien J.A., Gutierrez R.A. Nitrate and hormonal signaling crosstalk for plant growth and development. Curr. Opin. Plant Biol. 2019;52:155–163. doi: 10.1016/j.pbi.2019.10.001. PubMed DOI

Walch-Liu P., Neumann G., Bangerth F., Engels C. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J. Exp. Bot. 2000;51:227–237. doi: 10.1093/jexbot/51.343.227. PubMed DOI

Ruffel S., Krouk G., Ristova D., Shasha D., Birnbaum K.D., Coruzzi G.M. Nitrogen economics of root foraging: Transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc. Natl. Acad. Sci. USA. 2011;108:18524–18529. doi: 10.1073/pnas.1108684108. PubMed DOI PMC

Jia W.S., Davies W.J. Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals. Plant Physiol. 2007;143:68–77. doi: 10.1104/pp.106.089110. PubMed DOI PMC

Hartung W., Sauter A., Hose E. Abscisic acid in the xylem: Where does it come from, where does it go to? J. Exp. Bot. 2002;53:27–32. doi: 10.1093/jexbot/53.366.27. PubMed DOI

Liu Y., von Wirén N. Ammonium as a signal for physiological and morphological responses in plants. J. Exp. Bot. 2017;68:2581–2592. doi: 10.1093/jxb/erx086. PubMed DOI

Peuke A.D., Jeschke W.D., Hartung W. Foliar application of nitrate or ammonium as sole nitrogen supply in Ricinus communis II. The flows of cations, chloride and abscisic acid. New Phytol. 1998;140:625–636. doi: 10.1046/j.1469-8137.1998.00304.x. PubMed DOI

Li B.H., Li Q., Xiong L.M., Kronzucker H.J., Kramer U., Shi W.M. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress. Plant Physiol. 2012;160:2040–2051. doi: 10.1104/pp.112.206508. PubMed DOI PMC

Carlisle E., Myers S., Raboy V., Bloom A. The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution. Front. Plant Sci. 2012;3 doi: 10.3389/fpls.2012.00195. PubMed DOI PMC

Salem M.A., Juppner J., Bajdzienko K., Giavalisco P. Protocol: A fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods. 2016;12 doi: 10.1186/s13007-016-0146-2. PubMed DOI PMC

Lichtenthaler H.K. Methods Enzymology. Volume 148. Academic Press; Cambridge, MA, USA: 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes; pp. 350–382.

Warren C.R. Rapid measurement of chlorophylls with a microplate reader. J. Plant Nutr. 2008;31:1321–1332. doi: 10.1080/01904160802135092. DOI

Zhao D., MacKown C.T., Starks P.J., Kindiger B.K. Rapid analysis of nonstructural carbohydrate components in grass forage using microplate enzymatic assays. Crop Sci. 2010;50:1537–1545. doi: 10.2135/cropsci2009.09.0521. DOI

Hendrix D.L. apid extraction and analysis of nonstructural carbohydrates in plant-tissues. Crop Sci. 1993;33:1306–1311. doi: 10.2135/cropsci1993.0011183X003300060037x. DOI

Paponov M., Kechasov D., Lacek J., Verheul M.J., Paponov I.A. Supplemental light-emitting diode inter-lighting increases tomato fruit growth through enhanced photosynthetic light use efficiency and modulated root activity. Front. Plant Sci. 2020;10:1656. doi: 10.3389/fpls.2019.01656. PubMed DOI PMC

Purcell L.C., King C.A. Total nitrogen determination in plant material by persulfate digestion. Agron. J. 1996;88:111–113. doi: 10.2134/agronj1996.00021962008800010023x. DOI

Alexou M., Peuke A.D. Methods for xylem sap collection. In: Maathuis F.J.M., editor. Plant Mineral Nutrients: Methods and Protocols, Methods in Molecular Biology. Volume 953. Springer Science + Business Media; Berlin/Heidelberg, Germany: 2013. pp. 195–207. PubMed

Dobrev P.I., Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI

Dobrev P.I., Vankova R. Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 2012;913:251–261. doi: 10.1007/978-1-61779-986-0_17. PubMed DOI

Kirkby E.A., Mengel K. Ionic balance in different tissues of tomato plant in relation to nitrate urea or ammonium nutrition. Plant Physiol. 1967;42:6–14. doi: 10.1104/pp.42.1.6. PubMed DOI PMC

Hilbert D.W. Optimization of plant root:shoot ratios and internal nitrogen concentration. Ann. Bot. 1990;66:91–99. doi: 10.1093/oxfordjournals.aob.a088005. DOI

Poorter H., Niklas K.J., Reich P.B., Oleksyn J., Poot P., Mommer L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012;193:30–50. doi: 10.1111/j.1469-8137.2011.03952.x. PubMed DOI

Vile D., Garnier E., Shipley B., Laurent G., Navas M.L., Roumet C., Lavorel S., Diaz S., Hodgson J.G., Lloret F., et al. Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann. Bot. 2005;96:1129–1136. doi: 10.1093/aob/mci264. PubMed DOI PMC

Pettigrew W.T., Heitholt J.J., Vaughn K.C. Gas-exchange differences and comparative anatomy among cotton leaf-type isolines. Crop Sci. 1993;33:1295–1299. doi: 10.2135/cropsci1993.0011183X003300060035x. DOI

Pettigrew W.T., Meredith W.R. Leaf gas-exchange parameters vary among cotton genotypes. Crop Sci. 1994;34:700–705. doi: 10.2135/cropsci1994.0011183X003400030019x. DOI

Lecoeur J., Wery J., Turc O., Tardieu F. Expansion of pea leaves subjected to short water-deficit: Cell number and cell size are sensitive to stress at different periods of leaf development. J. Exp. Bot. 1995;46:1093–1101. doi: 10.1093/jxb/46.9.1093. DOI

Olff H. Effects of light and nutrient availability on dry-matter and N allocation in six successional grassland species: Testing for resource ratio effects. Oecologia. 1992;89:412–421. doi: 10.1007/BF00317420. PubMed DOI

Kepka M., Benson C.L., Gonugunta V.K., Nelson K.M., Christmann A., Grill E., Abrams S.R. Action of natural abscisic acid precursors and catabolites on abscisic acid receptor complexes. Plant Physiol. 2011;157:2108–2119. doi: 10.1104/pp.111.182584. PubMed DOI PMC

Fernandez-Crespo E., Camanes G., Garcia-Agustin P. Ammonium enhances resistance to salinity stress in citrus plants. J. Plant Physio. 2012;169:1183–1191. doi: 10.1016/j.jplph.2012.04.011. PubMed DOI

Van Gestel N.C., Nesbit A.D., Gordon E.P., Green C., Pare P.W., Thompson L., Peffley E.B., Tissue D.T. Continuous light may induce photosynthetic downregulation in onion—Consequences for growth and biomass partitioning. Physiol. Plantarum. 2005;125:235–246. doi: 10.1111/j.1399-3054.2005.00560.x. DOI

Poorter H., Niinemets U., Ntagkas N., Siebenkas A., Maenpaa M., Matsubara S., Pons T. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytol. 2019;223:1073–1105. doi: 10.1111/nph.15754. PubMed DOI

ten Hoopen F., Cuin T.A., Pedas P., Hegelund J.N., Shabala S., Schjoerring J.K., Jahn T.P. Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: Molecular mechanisms and physiological consequences. J. Exp. Bot. 2010;61:2303–2315. doi: 10.1093/jxb/erq057. PubMed DOI PMC

Noctor G., Foyer C.H. A re-evaluation of the ATP: NADPH budget during C(3) photosynthesis: A contribution from nitrate assimilation and its associated respiratory activity? J. Exp. Bot. 1998;49:1895–1908. doi: 10.1093/jxb/49.329.1895. DOI

Haque M.S., de Sousa A., Soares C., Kjaer K.H., Fidalgo F., Rosenqvist E., Ottosen C.O. Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.01602. PubMed DOI PMC

Raza A., Charagh S., Zahid Z., Mubarik M.S., Javed R., Siddiqui M.H., Hasanuzzaman M. Jasmonic acid: A key frontier in conferring abiotic stress tolerance in plants. Plant Cell Rep. 2020 doi: 10.1007/s00299-020-02614-z. PubMed DOI

Wasternack C., Hause B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 2013;111:1021–1058. doi: 10.1093/aob/mct067. PubMed DOI PMC

Huang H., Liu B., Liu L.Y., Song S.S. Jasmonate action in plant growth and development. J. Exp. Bot. 2017;68:1349–1359. doi: 10.1093/jxb/erw495. PubMed DOI

Spoel S.H., Johnson J.S., Dong X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA. 2007;104:18842–18847. doi: 10.1073/pnas.0708139104. PubMed DOI PMC

Pandey D., Rajendran S., Gaur M., Sajeesh P.K., Kumar A. Plant defense signaling and responses against necrotrophic fungal pathogens. J. Plant Growth Regul. 2016;35:1159–1174. doi: 10.1007/s00344-016-9600-7. DOI

Per T.S., Khan M.I.R., Anjum N.A., Masood A., Hussain S.J., Khan N.A. Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environ. Exp. Bot. 2018;145:104–120. doi: 10.1016/j.envexpbot.2017.11.004. DOI

Abouelsaad I., Renault S. Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress. J. Plant Physiol. 2018;226:136–144. doi: 10.1016/j.jplph.2018.04.009. PubMed DOI

Sharma M., Laxmi A. Jasmonates: Emerging players in controlling temperature stress tolerance. Front. Plant Sci. 2016;6 doi: 10.3389/fpls.2015.01129. PubMed DOI PMC

Huot B., Yao J., Montgomery B.L., He S.Y. Growth-defense tradeoffs in plants: A balancing act to optimize fitness. Mol. Plant. 2014;7:1267–1287. doi: 10.1093/mp/ssu049. PubMed DOI PMC

Campos M.L., Yoshida Y., Major I.T., de Oliveira Ferreira D., Weraduwage S.M., Froehlich J.E., Johnson B.F., Kramer D.M., Jander G., Sharkey T.D., et al. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat. Commun. 2016;7:12570. doi: 10.1038/ncomms12570. PubMed DOI PMC

Yang J., Duan G.H., Li C.Q., Liu L., Han G.Y., Zhang Y.L., Wang C.M. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front. Plant Sci. 2019;10 doi: 10.3389/fpls.2019.01349. PubMed DOI PMC

Li N., Han X., Feng D., Yuan D., Huang L.-J. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: Do we understand what they are whispering? Int. J. Mol. Sci. 2019;20:671. doi: 10.3390/ijms20030671. PubMed DOI PMC

Pieterse C.M.J., Van der Does D., Zamioudis C., Leon-Reyes A., Van Wees S.C.M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012;28:489–521. doi: 10.1146/annurev-cellbio-092910-154055. PubMed DOI

Demers D.A., Gosselin A. Growing greenhouse tomato and sweet pepper under supplemental lighting: Optimal photoperiod, negative effects of long photoperiod and their causes. Acta Hortic. 2002;580:83–88. doi: 10.17660/ActaHortic.2002.580.9. DOI

Globig S., Rosen I., Janes H.W. Continuous light effects on photosynthesis and carbon metabolism in tomato. Acta Hortic. 1997;418:141–151. doi: 10.17660/ActaHortic.1997.418.19. DOI

Schjoerring J.K., Husted S., Mack G., Mattsson M. The regulation of ammonium translocation in plants. J. Exp. Bot. 2002;53:883–890. doi: 10.1093/jexbot/53.370.883. PubMed DOI

Miflin B.J., Lea P.J. Ammonia assimilation. In: Miflin B.J., editor. The Biochemistry of Plants. Volume 5. Academic Press; New York, NY, USA: 1980. pp. 169–202.

Paponov I.A., Lebedinskai S., Koshkin E.I. Growth analysis of solution culture-grown winter rye, wheat and triticale at different relative rates of nitrogen supply. Ann. Bot. 1999;84:467–473. doi: 10.1006/anbo.1999.0935. DOI

Stitt M. Nitrate regulation of metabolism and growth. Curr. Opin. Plant Biol. 1999;2:178–186. doi: 10.1016/S1369-5266(99)80033-8. PubMed DOI

Vega-Mas I., Marino D., Sanchez-Zabala J., Gonzalez-Murua C., Estavillo J.M., Gonzalez-Moro M.B. CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance. Plant Sci. 2015;241:32–44. doi: 10.1016/j.plantsci.2015.09.021. PubMed DOI

Andrews M., Raven J.A., Lea P.J., Sprent J.I. A role for shoot protein in shoot-root dry matter allocation in higher plants. Ann. Bot. 2006;97:3–10. doi: 10.1093/aob/mcj009. PubMed DOI PMC

Finkelstein R. Abscisic Acid synthesis and response. Arab. Book. 2013;11:e0166. doi: 10.1199/tab.0166. PubMed DOI PMC

Goldbach E., Goldbach H., Wagner H., Michael G. Influence of N deficiency on abscisic acid content of sunflower plants. Physiol. Plantarum. 1975;34:138–140. doi: 10.1111/j.1399-3054.1975.tb03808.x. DOI

Krauss A. Tuberization and abscisic acid content in Solanum tuberosum as affected by nitrogen nutrition. Potato Res. 1978;21:183–193. doi: 10.1007/BF02361619. DOI

Palmer S.J., Berridge D.M., McDonald A.J.S., Davies W.J. Control of leaf expansion in sunflower (Helianthus annuus L) by nitrogen nutrition. J. Exp. Bot. 1996;47:359–368. doi: 10.1093/jxb/47.3.359. DOI

Zdunek E., Lips S.H. Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions. J. Exp. Bot. 2001;52:1269–1276. doi: 10.1093/jxb/52.359.1269. PubMed DOI

Dodd I.C., Tan L.P., He J. Do increases in xylem sap pH and/or ABA concentration mediate stomatal closure following nitrate deprivation? J. Exp. Bot. 2003;54:1281–1288. doi: 10.1093/jxb/erg122. PubMed DOI

Kirkby E.A., Armstrong M.J. Nitrate uptake by roots as regulated by nitrate assimilation in the shoot of castor oil plants. Plant Physiol. 1980;65:286–290. doi: 10.1104/pp.65.2.286. PubMed DOI PMC

Chapin F.S., Walter C.H.S., Clarkson D.T. Growth-response of barley and tomato to nitrogen stress and its control by abscisic-acid, water relations and photosynthesis. Planta. 1988;173:352–366. doi: 10.1007/BF00401022. PubMed DOI

Else M.A., Hall K.C., Arnold G.M., Davies W.J., Jackson M.B. Export of abscisic-acid, 1-aminocyclopropane-1-carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants (accounting for effects of xylem sap flow rate on concentration and delivery. Plant Physiol. 1995;107:377–384. doi: 10.1104/pp.107.2.377. PubMed DOI PMC

Schurr U., Schulze E.D. The concentration of xylem sap constituents in root exudate, and in sap from intact, transpiring castor bean plants (Ricinus communis L.) Plant Cell Environ. 1995;18:409–420. doi: 10.1111/j.1365-3040.1995.tb00375.x. DOI

De Vleesschauwer D., Xu J., Hofte M. Making sense of hormone-mediated defense networking: From rice to Arabidopsis. Front. Plant Sci. 2014;5 doi: 10.3389/fpls.2014.00611. PubMed DOI PMC

Yaeno T., Iba K. BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000. Plant Physiol. 2008;148:1032–1041. doi: 10.1104/pp.108.124529. PubMed DOI PMC

Schmelz E.A., Alborn H.T., Engelberth J., Tumlinson J.H. Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiol. 2003;133:295–306. doi: 10.1104/pp.103.024174. PubMed DOI PMC

Hsieh P.-H., Kan C.-C., Wu H.-Y., Yang H.-C., Hsieh M.-H. Early molecular events associated with nitrogen deficiency in rice seedling roots. Sci. Rep. 2018;8:12207. doi: 10.1038/s41598-018-30632-1. PubMed DOI PMC

Sheflin A.M., Chiniquy D., Yuan C.H., Goren E., Kumar I., Braud M., Brutnell T., Eveland A.L., Tringe S., Liu P., et al. Metabolomics of sorghum roots during nitrogen stress reveals compromised metabolic capacity for salicylic acid biosynthesis. Plant Direct. 2019;3 doi: 10.1002/pld3.122. PubMed DOI PMC

Sun Q., Liu X.G., Yang J., Liu W.W., Du Q.G., Wang H.Q., Fu C.X., Li W.X. MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen luxury conditions. Mol. Plant. 2018;11:806–814. doi: 10.1016/j.molp.2018.03.013. PubMed DOI

Camargo E.L.O., Nascimento L.C., Soler M., Salazar M.M., Lepikson-Neto J., Marques W.L., Alves A., Teixeira P., Mieczkowski P., Carazzolle M.F., et al. Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus. BMC Plant Biol. 2014;14 doi: 10.1186/s12870-014-0256-9. PubMed DOI PMC

Yang L., Wen K.S., Ruan X., Zhao Y.X., Wei F., Wang Q. Response of plant secondary metabolites to environmental factors. Molecules. 2018;23:762. doi: 10.3390/molecules23040762. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Additive effects of light and branching on fruit size and chemical fruit quality of greenhouse tomatoes

. 2023 ; 14 () : 1221163. [epub] 20231024

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...