Supplemental Light-Emitting Diode Inter-Lighting Increases Tomato Fruit Growth Through Enhanced Photosynthetic Light Use Efficiency and Modulated Root Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31998343
PubMed Central
PMC6965351
DOI
10.3389/fpls.2019.01656
Knihovny.cz E-zdroje
- Klíčová slova
- diurnal rhythm, fruit growth, light-emitting diode, photosynthesis, tomato, xylem sap,
- Publikační typ
- časopisecké články MeSH
We investigated the effect of supplemental LED inter-lighting (80% red, 20% blue; 70 W m-2; light period 04:00-22:00) on the productivity and physiological traits of tomato plants (Flavance F1) grown in an industrial greenhouse with high pressure sodium (HPS) lamps (235 W m-2, 420 µmol m-2 s-1 at canopy). Physiological trait measurements included diurnal photosynthesis and fruit relative growth rates, fruit weight at specific positions in the truss, root pressure, xylem sap hormone and ion compositions, and fruit quality. In the control treatment with HPS lamps alone, the ratio of far-red to red light (FR:R) was 1.2 at the top of the canopy and increased to 5.4 at the bottom. The supplemental LED inter-lighting decreased the FR:R ratio at the middle and low positions in the canopy and was associated with greener leaves and higher photosynthetic light use efficiency (PLUE) in the leaves in the lower canopy. The use of LED inter-lighting increased the biomass and yield by increasing the fruit weight and enhancing plant growth. The PLUE of plants receiving supplemental LED light decreased at the end of the light period, indicating that photosynthesis of the supplemented plants at the end of the day might be limited by sink capacity. The supplemental LED lighting increased the size of fruits in the middle and distal positions of the truss, resulting in a more even size for each fruit in the truss. Diurnal analysis of fruit growth showed that fruits grew more quickly during the night on the plants receiving LED light than on unsupplemented control plants. This faster fruit growth during the night was related to an increased root pressure. The LED treatment also increased the xylem levels of the phytohormone jasmonate. Supplemental LED inter-lighting increased tomato fruit weight without affecting the total soluble solid contents in fruits by increasing the total assimilates available for fruit growth and by enhancing root activity through an increase in root pressure and water supply to support fruit growth during the night.
Division of Food Production and Society Norwegian Institute of Bioeconomy Research Ås Norway
Institute of Experimental Botany Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Acock B., Charlesedwards D. A., Fitter D. J., Hand D. W., Ludwig L. J., Wilson J. W., et al. (1978). Contribution of leaves from different levels within a tomato crop to canopy net photosynthesis: an experimental examination of 2 canopy models. J. Exp. Bot. 29, 815–827. 10.1093/jxb/29.4.815 DOI
Alexou M., Peuke A. D. (2013). “Methods for xylem sap collection,” in Plant Mineral Nutrients: Methods and Protocols, Methods in Molecular Biology, vol. 195-207 . Ed. Maathuis F. J. M. (Totowa, NJ: Humana Press; ). PubMed
Balaur N. S., Vorontsov V. A., Kleiman E. I., Ton Y. D. (2009). Novel technique for component monitoring of CO2 exchange in plants. Russ. J. Plant Physiol. 56, 423–427. 10.1134/s1021443709030170 DOI
Bantis F., Smirnakou S., Ouzounis T., Koukounaras A., Ntagkas N., Radoglou K. (2018). Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic. 235, 437–451. 10.1016/j.scienta.2018.02.058 DOI
Bertin N., Gautier H., Roche C. (2002). Number of cells in tomato fruit depending on fruit position and source-sink balance during plant development. Plant Growth Regul. 36, 105–112. 10.1023/a:1015075821976 DOI
Bertin N. (2005). Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann. Bot. 95, 439–447. 10.1093/aob/mci042 PubMed DOI PMC
Boonman A., Prinsen E., Gilmer F., Schurr U., Peeters A. J. M., Voesenek L., et al. (2007). Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients. Plant Physiol. 143, 1841–1852. 10.1104/pp.106.094631 PubMed DOI PMC
Bungerkibler S., Bangerth F. (1982). Relationship between cell number, cell-size and fruit size of seeded fruits of tomato (Lycopersicon esculentum Mill), and those induced parthenocarpically by the application of plant-growth regulators. Plant Growth Regul. 1, 143–154. 10.1007/BF00036994 DOI
Cargnel M. D., Demkura P. V., Ballare C. L. (2014). Linking phytochrome to plant immunity: low red: far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin. New Phytol. 204, 342–354. 10.1111/nph.13032 PubMed DOI
Chory J. (2010). Light signal transduction: an infinite spectrum of possibilities. Plant J. 61, 982–991. 10.1111/j.1365-313X.2009.04105.x PubMed DOI PMC
Clewer A. G., Scarisbrick D. H. (2001). Practical statistics and experimental design for plant and crop science (Chichester: John Wiley & Sons; ).
Davis P. A., Burns C. (2016). Photobiology in protected horticulture. Food Energy Secur. 5, 223–238. 10.1002/fes3.97 DOI
de Visser P. H. B., Buck-Sorlin G. H., van der Heijden G. (2014). Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer. Front. Plant Sci. 5, 48. 10.3389/fpls.2014.00048 PubMed DOI PMC
Dieleman J. A., De Visser P. H. B., Meinen E., Grit J. G., Dueck T. A. (2019). Integrating morphological and physiological responses of tomato plants to light quality to the crop level by 3D modeling. Front. Plant Sci. 10, 839. 10.3389/fpls.2019.00839 PubMed DOI PMC
Dobrev P. I., Kaminek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 950, 21–29. 10.1016/S0021-9673(02)00024-9 PubMed DOI
Dobrev P. I., Vankova R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 913, 251–261. 10.1007/978-1-61779-986-0_17 PubMed DOI
Dueck T. A., Janse J., Eveleens B. A., Kempkes F. L. K., Marcelis L. F. M. (2011). Growth of tomatoes under hybrid LED and HPS lighting. Acta Hortic. 952, 335–342. 10.17660/ActaHortic.2012.952.42 DOI
Easlon H. M., Bloom A. J. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci. 2, 1400033. 10.3732/apps.1400033 PubMed DOI PMC
Frantz J. M., Joly R. J., Mitchell C. A. (2000). Intracanopy lighting influences radiation capture, productivity, and leaf senescence in cowpea canopies. J. Am. Soc Hortic. Sci. 125, 694–701. 10.21273/JASHS.125.6.694 DOI
Gomez C., Mitchell C. A. (2016). Physiological and productivity responses of high-wire tomato as affected by supplemental light source and distribution within the canopy. J. Am. Soc Hortic. Sci. 141, 196–208. 10.21273/JASHS.141.2.196 DOI
Gomez C., Morrow R. C., Bourget C. M., Massa G. D., Mitchell C. A. (2013). Comparison of intracanopy light-emitting diode towers and overhead high-pressure sodium lamps for supplemental lighting of greenhouse-grown tomatoes. Horttechnology 23, 93–98. 10.21273/HORTTECH.23.1.93 DOI
Griffiths C. A., Paul M. J., Foyer C. H. (2016). Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. Biochim. Biophys. Acta 1857, 1715–1725. 10.1016/j.bbabio.2016.07.007 PubMed DOI PMC
Guichard S., Bertin N., Leonardi C., Gary C. (2001). Tomato fruit quality in relation to water and carbon fluxes. Agronomie 21, 385–392. 10.1051/agro:2001131 DOI
Han J., Kamber M., Pei J. (2012). Data Mining: Concepts and Techniques (Waltham, MA: Morgan Kaufmann; ).
Hanssens J., De Swaef T., Steppe K. (2015). High light decreases xylem contribution to fruit growth in tomato. Plant Cell Environ. 38, 487–498. 10.1111/pce.12411 PubMed DOI
Hossain M. M., Nonami H. (2010). Effects of water flow from the xylem on the growth-induced water potential and the growth-effective turgor associated with enlarging tomato fruit. Environ. Control Biol. 48, 101–116. 10.2525/ecb.48.101 DOI
Jackson M. (1997). Hormones from roots as signals for the shoots of stressed plants. Trends Plant Sci. 2, 22–28. 10.1016/s1360-1385(96)10050-9 DOI
Javot H., Lauvergeat V., Santoni V., Martin-Laurent F., Guclu J., Vinh J., et al. (2003). Role of a single aquaporin isoform in root water uptake. Plant Cell 15, 509–522. 10.1105/tpc.008888 PubMed DOI PMC
Johnson R. W., Dixon M. A., Lee D. R. (1992). Water relations of the tomato during gruit-growth. Plant Cell Environ. 15, 947–953. 10.1111/j.1365-3040.1992.tb01027.x DOI
Kader A. (2011). USDA Color Chart. Available at: https://ucanr.edu/repository/view.cfm?article=83755%20&groupid=9 [accessed November 1, 2019].
Kreslavski V. D., Carpentier R., Klimov V. V., Allakhverdiev S. I. (2009). Transduction mechanisms of photoreceptor signals in plant cells. J. Photoch. Photobio. C. 10, 63–80. 10.1016/j.jphotochemrev.2009.04.001 DOI
Kudoyarova G., Veselova S., Hartung W., Farhutdinov R., Veselov D., Sharipova G. (2011). Involvement of root ABA and hydraulic conductivity in the control of water relations in wheat plants exposed to increased evaporative demand. Planta 233, 87–94. 10.1007/s00425-010-1286-7 PubMed DOI
Lanoue J., Leonardos E. D., Grodzinski B. (2018). Effects of light quality and intensity on diurnal patterns and rates of photo-assimilate translocation and transpiration in tomato leaves. Front. Plant Sci. 9, 756. 10.3389/fpls.2018.00756 PubMed DOI PMC
Lemoine R., La Camera S., Atanassova R., Dedaldechamp F., Allario T., Pourtau N., et al. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4, 272. 10.3389/fpls.2013.00272 PubMed DOI PMC
Liebsch D., Keech O. (2016). Dark-induced leaf senescence: new insights into a complex light-dependent regulatory pathway. New Phytol. 212, 563–570. 10.1111/nph.14217 PubMed DOI
Lin C. T. (2002). Blue light receptors and signal transduction. Plant Cell 14, S207–S225. 10.1105/tpc.000646 PubMed DOI PMC
Lopez M., Bousser A. S., Sissoeff I., Gaspar M., Lachaise B., Hoarau J., et al. (2003). Diurnal regulation of water transport and aquaporin gene expression in maize roots: Contribution of PIP2 proteins. Plant Cell Physiol. 44, 1384–1395. 10.1093/pcp/pcg168 PubMed DOI
Marschner H. (1995). Mineral nutrition of higher plans (London: Academic Press; ).
Matthews J. S. A., Vialet-Chabrand S. R. M., Lawson T. (2017). Diurnal variation in gas exchange: the balance between carbon fixation and water loss. Plant Physiol. 174, 614–623. 10.1104/pp.17.00152 PubMed DOI PMC
Nikinmaa E., Holtta T., Hari P., Kolari P., Makela A., Sevanto S., et al. (2013). Assimilate transport in phloem sets conditions for leaf gas exchange. Plant Cell Environ. 36, 655–669. 10.1111/pce.12004 PubMed DOI
Pettersen R. I., Torre S., Gislerod H. R. (2010). Effects of intracanopy lighting on photosynthetic characteristics in cucumber. Sci. Hortic. 125, 77–81. 10.1016/j.scienta.2010.02.006 DOI
Postaire O., Tournaire-Roux C., Grondin A., Boursiac Y., Morillon R., Schaffner A. R., et al. (2010). A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physiol. 152, 1418–1430. 10.1104/pp.109.145326 PubMed DOI PMC
Sanchez-Romera B., Ruiz-Lozano J. M., Li G. W., Luu D. T., Martinez-Ballesta M. D., Carvajal M., et al. (2014). Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant Cell Environ. 37, 995–1008. 10.1111/pce.12214 PubMed DOI
Sarlikioti V., de Visser P. H. B., Marcelis L. F. M. (2011). Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model. Ann. Bot. 107, 875–883. 10.1093/aob/mcr006 PubMed DOI PMC
Schachtman D. P., Goodger J. Q. D. (2008). Chemical root to shoot signaling under drought. Trends Plant Sci. 13, 281–287. 10.1016/j.tplants.2008.04.003 PubMed DOI
Singh D., Basu C., Meinhardt-Wollweber M., Roth B. (2015). LEDs for energy efficient greenhouse lighting. Renew. Sust. Energ. Revi. 49, 139–147. 10.1016/j.rser.2015.04.117 DOI
Smith J. A. C., Milburn J. A. (1980). Phloem turgor and the regulation of sucrose loading in Ricinus communis L. Planta 148, 42–48. 10.1007/bf00385440 PubMed DOI
Steudle E. (2001). The cohesion-tension mechanism and the acquisition of water by plant roots. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52, 847–875. 10.1146/annurev.arplant.52.1.847 PubMed DOI
Taylor M. D., Locascio S. J. (2004). Blossom-end rot: a calcium deficiency. J. Plant Nutr. 27, 123–139. 10.1081/pln-120027551 DOI
Terashima I., Araya T., Miyazawa S., Sone K., Yano S. (2005). Construction and maintenance of the optimal photosynthetic systems of the leaf, herbaceous plant and tree: an eco-developmental treatise. Ann. Bot. 95, 507–519. 10.1093/aob/mci049 PubMed DOI PMC
Trouwborst G., Hogewoning S. W., Harbinson J., Van Ieperen W. (2011). The influence of light intensity and leaf age on the photosynthetic capacity of leaves within a tomato canopy. J. Hortic. Sci. Biotech. 86, 403–407. 10.1080/14620316.2011.11512781 DOI
Verheul M. J., Maessen H. F. R., Grimstad S. O. (2012). Optimizing a year-round cultivation system of tomato under artificial light. Acta Hortic. 956, 389–394. 10.17660/ActaHortic.2012.956.45 DOI
Wardlaw I. F. (1990). Tansley Review No. 27 The control of carbon partitioning in plants. New Phytol. 116, 341–381. 10.1111/j.1469-8137.1990.tb00524.x PubMed DOI
Windt C. W., Vergeldt F. J., De Jager P. A., Van As H. (2006). MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ. 29, 1715–1729. 10.1111/j.1365-3040.2006.01544.x PubMed DOI
Xu H. L., Gauthier L., Desjardins Y., Gosselin A. (1997). Photosynthesis in leaves, fruits, stem and petioles of greenhouse-grown tomato plants. Photosynthetica 33, 113–123. 10.1023/a:1022135507700 DOI
Xu Q. Y., Chen S. Y., Ren Y. J., Chen S. L., Liesche J. (2018). Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiol. 176, 930–945. 10.1104/pp.17.01088 PubMed DOI PMC