Insight into Details of the Photosynthetic Light Reactions and Selected Metabolic Changes in Tomato Seedlings Growing under Various Light Spectra

. 2021 Oct 26 ; 22 (21) : . [epub] 20211026

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34768948

The objective of our study was to characterise the growth of tomato seedlings under various light spectra, but special attention has been paid to gaining a deeper insight into the details of photosynthetic light reactions. The following light combinations (generated by LEDs, constant light intensity at 300 μmol m-2 s-1) were used: blue/red light; blue/red light + far red; blue/red light + UV; white light that was supplemented with green, and white light that was supplemented with blue. Moreover, two combinations of white light for which the light intensity was changed by imitating the sunrise, sunset, and moon were also tested. The reference point was also light generated by high pressure sodium lamps (HPS). Plant growth/morphological parameters under various light conditions were only partly correlated with the photosynthetic efficiency of PSI and PSII. Illumination with blue/red as the main components had a negative effect on the functioning of PSII compared to the white light and HPS-generated light. On the other hand, the functioning of PSI was especially negatively affected under the blue/red light that was supplemented with FR. The FT-Raman studies showed that the general metabolic profile of the leaves (especially proteins and β-carotene) was similar in the plants that were grown under the HPS and under the LED-generated white light for which the light intensity changed during a day. The effect of various light conditions on the leaf hormonal balance (auxins, brassinosteroids) is also discussed.

Zobrazit více v PubMed

Kargul J., Barber J. Photosynthetic acclimation: Structural reorganisation of light harvesting antenna—Role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. FEBS J. 2008;275:1056–1068. doi: 10.1111/j.1742-4658.2008.06262.x. PubMed DOI

Laisk A., Oja V., Eichelmann H., Dall’Osto L. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1. BBA-Bioenerg. 2014;1837:315–325. doi: 10.1016/j.bbabio.2013.12.001. PubMed DOI

Schoettler M.A., Toth S.Z. Photosynthetic complex stoichiometry dynamics in higher plants: Environmental acclimation and photosynthetic flux control. Front. Plant. Sci. 2014;5:188. doi: 10.3389/fpls.2014.00188. PubMed DOI PMC

Niewiadomska E., Pilarska M. Acclimation to salinity in halophytic ice plant prevents a decline of linear electron transport. Environ. Exp. Bot. 2021;184:104401. doi: 10.1016/j.envexpbot.2021.104401. DOI

Lin K.-H., Huang M.-Y., Huang W.-D., Hsu M.-H., Yang Z.-W., Yang C.-M. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata) Sci. Hortic. 2013;150:86–91. doi: 10.1016/j.scienta.2012.10.002. DOI

Paradiso R., Meinen E., Snel J.F.H., Marcelis L.F.M., van Ieperen W., Hogewoning S.W. Light use efficiency at different wavelengths in rose plants. Acta Hortic. 2011;893:849–855. doi: 10.17660/ActaHortic.2011.893.93. DOI

Li H., Tang C., Xu Z., Liu X., Han X. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.) J. Agric. Sci. 2012;4:262. doi: 10.5539/jas.v4n4p262. DOI

Goh C.-H. Phototropins and chloroplast activity in plant blue light signaling. Plant. Signal. Behav. 2009;4:693–695. doi: 10.4161/psb.4.8.8981. PubMed DOI PMC

Demarsy E., Fankhauser C. Higher plants use LOV to perceive blue light. Curr. Opin. Plant. Biol. 2009;12:69–74. doi: 10.1016/j.pbi.2008.09.002. PubMed DOI

Chen X.-l., Guo W.-z., Xue X.-z., Wang L.-c., Qiao X.-j. Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED) Sci. Hortic. 2014;172:168–175. doi: 10.1016/j.scienta.2014.04.009. DOI

Carvalho S.D., Folta K.M. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content. Hortic. Res. 2014;1:8. doi: 10.1038/hortres.2014.8. PubMed DOI PMC

Kang J.H., KrishnaKumar S., Atulba S.L.S., Jeong B.R., Hwang S.J. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hort. Environ. Biotechnol. 2013;54:501–509. doi: 10.1007/s13580-013-0109-8. DOI

Sullivan J.A., Deng X.W. From seed to seed: The role of photoreceptors in Arabidopsis development. Dev. Biol. 2003;260:289–297. doi: 10.1016/S0012-1606(03)00212-4. PubMed DOI

Samuoliene G., Urbonaviciute A., Brazaityte A., Sabajeviene G., Sakalauskaite J., Duchovskis P. The impact of LED illumination on antioxidant properties of sprouted seeds. Cent. Eur. J. Biol. 2011;6:68–74. doi: 10.2478/s11535-010-0094-1. DOI

Samuoliene G., Sirtautas R., Brazaityte A., Duchovskis P. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 2012;134:1494–1499. doi: 10.1016/j.foodchem.2012.03.061. PubMed DOI

Kim H.-H., Wheeler R.M., Sager J.C., Yorio N.C., Goins G.D. Light-emitting diodes as an illumination source for plants: A review of research at Kennedy Space Center. Habitation. 2005;10:71–78. doi: 10.3727/154296605774791232. PubMed DOI

Stutte G.W., Edney S., Skerritt T. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. Hortscience. 2009;44:79–82. doi: 10.21273/HORTSCI.44.1.79. DOI

Sun J.D., Nishio J.N., Vogelmann T.C. Green light drives CO2 fixation deep within leaves. Plant. Cell Physiol. 1998;39:1020–1026. doi: 10.1093/oxfordjournals.pcp.a029298. DOI

Zhang T., Folta K.M. Green light signaling and adaptive response. Plant. Signal. Behav. 2012;7:75–78. doi: 10.4161/psb.7.1.18635. PubMed DOI PMC

Dhingra A., Bies D.H., Lehner K.R., Folta K.M. Green light adjusts the plastid transcriptome during early photomorphogenic development. Plant. Physiol. 2006;142:1256–1266. doi: 10.1104/pp.106.088351. PubMed DOI PMC

Kim H.H., Goins G.D., Wheeler R.M., Sager J.C. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. Hortscience. 2004;39:1617–1622. doi: 10.21273/HORTSCI.39.7.1617. PubMed DOI

Liu X.Y., Chang T.T., Guo S.R., Xu Z.G., Li J. Effect of different light quality of LED on growth and photosynthetic character in cherry tomato seedling. Acta Hortic. 2011;907:325–330. doi: 10.17660/ActaHortic.2011.907.53. DOI

Hogewoning S.W., Trouwborst G., Meinen E., van Ieperen W. Finding the optimal growth-light spectrum for greenhouse crops. Acta Hortic. 2012;956:357–363. doi: 10.17660/ActaHortic.2012.956.41. DOI

Xiaoying L., Shirong G., Taotao C., Zhigang X., Tezuka T. Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED) Afr. J. Biotechnol. 2012;11:6169–6177. doi: 10.5897/AJB11.1191. DOI

Klamkowski K., Treder W., Wójcik K., Puternicki A., Lisak E. Influence of supplementary lighting on growth and photosynthetic activity of tomato transplants. Infrastruct. Ecol. Rural. Areas. 2014;IV:1377–1385.

Liu X.Y., Jiao X.L., Chang T.T., Guo S.R., Xu Z.G. Photosynthesis and leaf development of cherry tomato seedlings under different LED-based blue and red photon flux ratios. Photosynthetica. 2018;56:1212–1217. doi: 10.1007/s11099-018-0814-8. DOI

Yang X., Xu H., Shao L., Li T., Wang Y., Wang R. Response of photosynthetic capacity of tomato leaves to different LED light wavelength. Environ. Exp. Bot. 2018;150:161–171. doi: 10.1016/j.envexpbot.2018.03.013. DOI

Dieleman J.A., de Visser P.H.B., Meinen E., Grit J.G., Dueck T.A. Integrating morphological and physiological responses of tomato plants to light quality to the crop level by 3D modeling. Front. Plant. Sci. 2019;10:839. doi: 10.3389/fpls.2019.00839. PubMed DOI PMC

Kaiser E., Weerheim K., Schipper R., Dieleman J.A. Partial replacement of red and blue by green light increases biomass and yield in tomato. Sci. Hortic. 2019;249:271–279. doi: 10.1016/j.scienta.2019.02.005. DOI

Paponov M., Kechasov D., Lacek J., Verheul M.J., Paponov I.A. Supplemental light-emitting diode inter-lighting increases tomato fruit growth through enhanced photosynthetic light use efficiency and modulated root activity. Front. Plant. Sci. 2020;10:1656. doi: 10.3389/fpls.2019.01656. PubMed DOI PMC

Palmitessa O.D., Pantaleo M.A., Santamaria P. Applications and development of LEDs as supplementary lighting for tomato at different latitudes. Agronomy. 2021;11:835. doi: 10.3390/agronomy11050835. DOI

Kaiser E., Ouzounis T., Giday H., Schipper R., Heuvelink E., Marcelis L.F.M. Adding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes, but only to an optimum. Front. Plant. Sci. 2019;9:2002. doi: 10.3389/fpls.2018.02002. PubMed DOI PMC

Zhang Y., Kaiser E., Zhang Y., Zou J., Bian Z., Yang Q., Li T. UVA radiation promotes tomato growth through morphological adaptation leading to increased light interception. Environ. Exp. Bot. 2020;176:104073. doi: 10.1016/j.envexpbot.2020.104073. DOI

Kalaji M.H., Łoboda T. Fluorescencja Chlorofilu W Badaniach Stanu Fizjologicznego Roślin. Wydawnictwo SGGW; Warszawa, Poland: 2009.

Banks J.M. Continuous excitation chlorophyll fluorescence parameters: A review for practitioners. Tree Physiol. 2017;37:1128–1136. doi: 10.1093/treephys/tpx059. PubMed DOI

Kalaji M.H., Goltsev V.N., Żuk-Gołaszewska K., Zivcak M., Brestic M. Chlorophyll Fluorescence: Understanding Crop Performance—Basics and Applications. CRC Press; Boca Raton, FL, USA: 2017.

Meng L.L., Song J.F., Wen J., Zhang J., Wei J.H. Effects of drought stress on fluorescence characteristics of photosystem II in leaves of Plectranthus scutellarioides. Photosynthetica. 2016;54:414–421. doi: 10.1007/s11099-016-0191-0. DOI

Stirbet A. Excitonic connectivity between photosystem II units: What is it, and how to measure it? Photosynth. Res. 2013;116:189–214. doi: 10.1007/s11120-013-9863-9. PubMed DOI

Srivastava A., Guisse B., Greppin H., Strasser R.J. Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. BBA-Bioenergetics. 1997;1320:95–106. doi: 10.1016/S0005-2728(97)00017-0. DOI

Kalaji H.M., Baba W., Gediga K., Goltsev V., Samborska I.A., Cetner M.D., Dimitrova S., Piszcz U., Bielecki K., Karmowska K., et al. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth. Res. 2018;136:329–343. doi: 10.1007/s11120-017-0467-7. PubMed DOI PMC

Schansker G., Toth S.Z., Strasser R.J. Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. BBA-Bioenerg. 2006;1757:787–797. doi: 10.1016/j.bbabio.2006.04.019. PubMed DOI

Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G.C., Govindjee, editors. Chlorophyll a Fluorescence. Springer; Dordrecht, The Netherlands: 2004. pp. 321–362. DOI

Endo T., Kawase D., Sato F. Stromal over-reduction by high-light stress as measured by decreases in P700 oxidation by far-red light and its physiological relevance. Plant. Cell Physiol. 2005;46:775–781. doi: 10.1093/pcp/pci084. PubMed DOI

Bilger W., Bjorkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbency changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 1990;25:173–185. doi: 10.1007/BF00033159. PubMed DOI

Shikanai T. Cyclic electron transport around photosystem I: Genetic approaches. Annu. Rev. Plant. Biol. 2007;58:199–217. doi: 10.1146/annurev.arplant.58.091406.110525. PubMed DOI

Johnson G.N. Reprint of: Physiology of PSI cyclic electron transport in higher plants. BBA-Bioenerg. 2011;1807:906–911. doi: 10.1016/j.bbabio.2011.05.008. PubMed DOI

Baranski R., Baranska M., Schulz H. Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy. Planta. 2005;222:448–457. doi: 10.1007/s00425-005-1566-9. PubMed DOI

Schulz H., Baranska M., Baranski R. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers. 2005;77:212–221. doi: 10.1002/bip.20215. PubMed DOI

Mandrile L., Rotunno S., Miozzi L., Vaira A.M., Giovannozzi A.M., Rossi A.M., Noris E. Nondestructive Raman spectroscopy as a tool for early detection and discrimination of the infection of tomato plants by two economically important viruses. Anal. Chem. 2019;91:9025–9031. doi: 10.1021/acs.analchem.9b01323. PubMed DOI

Payne W.Z., Kurouski D. Raman-based diagnostics of biotic and abiotic stresses in plants. A review. Front. Plant. Sci. 2021;11:616672. doi: 10.3389/fpls.2020.616672. PubMed DOI PMC

Zeng J., Ping W., Sanaeifar A., Xu X., Luo W., Sha J., Huang Z., Huang Y., Liu X., Zhan B., et al. Quantitative visualization of photosynthetic pigments in tea leaves based on Raman spectroscopy and calibration model transfer. Plant. Methods. 2021;17:4. doi: 10.1186/s13007-020-00704-3. PubMed DOI PMC

Sene C.F.B., McCann M.C., Wilson R.H., Grinter R. Fourier-transform raman and fourier-transform infrared-spectroscopy: An investigation of 5 higher plant cell walls and their components. Plant. Physiol. 1994;106:1623–1631. doi: 10.1104/pp.106.4.1623. PubMed DOI PMC

Schulte F., Lingott J., Panne U., Kneipp J. Chemical characterization and classification of pollen. Anal. Chem. 2008;80:9551–9556. doi: 10.1021/ac801791a. PubMed DOI

Tschirner N., Schenderlein M., Brose K., Schlodder E., Mroginski M.A., Hildebrandt P., Thomsen C. Raman excitation profiles of β-carotene-novel insights into the nature of the v1-band. Phys. Status Solidi B. 2008;245:2225–2228. doi: 10.1002/pssb.200879649. DOI

Wu H., Volponi J.V., Oliver A.E., Parikh A.N., Simmons B.A., Singh S. In vivo lipidomics using single-cell Raman spectroscopy. Proc. Natl. Acad. Sci. USA. 2011;108:3809–3814. doi: 10.1073/pnas.1009043108. PubMed DOI PMC

Pěnčík A., Simonovik B., Petersson S.V., Henyková E., Simon S., Greenham K., Zhang Y., Kowalczyk M., Estelle M., Zažímalová E., et al. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant. Cell. 2013;25:3858–3870. doi: 10.1105/tpc.113.114421. PubMed DOI PMC

Reinecke D.M., Bandurski R.S. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays. Plant. Physiol. 1988;86:868–872. doi: 10.1104/pp.86.3.868. PubMed DOI PMC

Liu X., Cohen J.D., Gardner G. Low-fluence red light increases the transport and biosynthesis of auxin. Plant. Physiol. 2011;157:891–904. doi: 10.1104/pp.111.181388. PubMed DOI PMC

Rubinstein B. Auxin and red light in the control of hypocotyl hook opening in beans. Plant. Physiol. 1971;48:187–192. doi: 10.1104/pp.48.2.187. PubMed DOI PMC

Folta K.M., Maruhnich S.A. Green light: A signal to slow down or stop. J. Exp. Bot. 2007;58:3099–3111. doi: 10.1093/jxb/erm130. PubMed DOI

Higashide T., Narukawa M., Shimada Y., Soeno K. Suppression of elongation and growth of tomato seedlings by auxin biosynthesis inhibitors and modeling of the growth and environmental response. Sci. Rep. 2014;2:4556. doi: 10.1038/srep04556. PubMed DOI PMC

Almansa E.M., Espin A., Maria Chica R., Teresa Lao M. Changes in endogenous auxin concentration in cultivars of tomato seedlings under artificial light. Hortscience. 2011;46:698–704. doi: 10.21273/HORTSCI.46.5.698. DOI

Grove M.D., Spencer G.F., Rohwedder W.K., Mandava N., Worley J.F., Warthen J.D., Steffens G.L., Flippen-Anderson J.L., Cook J.C. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature. 1979;281:216–217. doi: 10.1038/281216a0. DOI

Sadura I., Janeczko A. Physiological and molecular mechanisms of brassinosteroid-induced tolerance to high and low temperature in plants. Biol. Plant. 2018;62:601–616. doi: 10.1007/s10535-018-0805-4. DOI

Asahina M., Tamaki Y., Sakamoto T., Shibata K., Nomura T., Yokota T. Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone. Phytochemistry. 2014;104:21–29. doi: 10.1016/j.phytochem.2014.04.017. PubMed DOI

Kim B.K., Fujioka S., Takatsuto S., Tsujimoto M., Choe S. Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochem. Biophys. Res. Commun. 2008;374:614–619. doi: 10.1016/j.bbrc.2008.07.073. PubMed DOI

Sadura I., Latowski D., Oklestkova J., Gruszka D., Chyc M., Janeczko A. Molecular dynamics of chloroplast membranes isolated from wild-type barley and a brassinosteroid-deficient mutant acclimated to low and high temperatures. Biomolecules. 2021;11:27. doi: 10.3390/biom11010027. PubMed DOI PMC

Efimova M.V., Kusnetsov V.V., Kravtsov A.K., Karnachuk R.A., Khripach V.A., Kuznetsov V.V. Regulation of the transcription of plastid genes in plants by brassinosteroids. Dokl. Biol. Sci. 2012;445:272–275. doi: 10.1134/S0012496612040199. PubMed DOI

Amann K., Lezhneva L., Wanner G., Herrmann R.G., Meurer J. Accumulation of photosystem ONE1, a member of a novel gene family, is required for accumulation of 4Fe-4S cluster-containing chloroplast complexes and antenna proteins. Plant. Cell. 2004;16:3084–3097. doi: 10.1105/tpc.104.024935. PubMed DOI PMC

Pramanik K., Pradhan J., Sahoo S.K. Role of auxin and gibberellins growth, yield and quality of tomato: A review. J. Pharm. Innov. 2018;7:301–305.

Vardhinl B.V., Rao S.S.R. Effect of brassinosteroids on growth and yield of tomato (Lycopersicon esculentum Mill.) under field conditions. J. Plant. Physiol. 2001;6:326–328.

Nie S., Huang S., Wang S., Cheng D., Liu J., Lv S., Li Q., Wang X. Enhancing brassinosteroid signaling via overexpression of tomato (Solanum lycopersicum) SlBRI1 improves major agronomic traits. Front. Plant. Sci. 2017;8:1386. doi: 10.3389/fpls.2017.01386. PubMed DOI PMC

Hansch F., Jaspar H., von Sivers L., Bitterlich M., Franken P., Kuehn C. Brassinosteroids and sucrose transport in mycorrhizal tomato plants. Plant. Signal. Behav. 2020;15:1714292. doi: 10.1080/15592324.2020.1714292. PubMed DOI PMC

Skoczowski A., Janeczko A., Gullner G., Tóbias I., Kornas A., Barna B. Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringae or with P. fluorescence. J. Therm. Anal. Calorim. 2011;104:131–139. doi: 10.1007/s10973-010-1204-z. DOI

Strasser R.J., Srivastava A., Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M., Pathre U., Mohanty P., editors. Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor and Francis; London, UK: 2000. pp. 445–483.

Bąba W., Kalaji H.M., Kompala-Bąba A., Goltsev V. Acclimatization of photosynthetic apparatus of tor grass (Brachypodium pinnatum) during expansion. PLoS ONE. 2016;11:e0156201. doi: 10.1371/journal.pone.0156201. PubMed DOI PMC

Kalaji H.M., Oukarroum A., Alexandrov V., Kouzmanova M., Brestic M., Zivcak M., Samborska I.A., Cetner M.D., Allakhverdiev S.I., Goltsev V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant. Physiol. 2014;81:16–25. doi: 10.1016/j.plaphy.2014.03.029. PubMed DOI

Kalaji H.M., Schansker G., Brestic M., Bussotti F., Calatayud A., Ferroni L., Goltsev V., Guidi L., Jajoo A., Li P., et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 2016;132:13–66. doi: 10.1007/s11120-016-0318-y. PubMed DOI PMC

Genty B., Briantais J.M., Baker N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 1989;990:87–92. doi: 10.1016/S0304-4165(89)80016-9. DOI

Kramer D.M., Johnson G., Kiirats O., Edwards G.E. New fluorescence parameters for the determination of Q(A) redox state and excitation energy fluxes. Photosynth. Res. 2004;79:209–218. doi: 10.1023/B:PRES.0000015391.99477.0d. PubMed DOI

Klughammer C., Schreiber U. An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta. 1994;192:261–268. doi: 10.1007/BF01089043. DOI

Pěnčík A., Rolčík J., Novák O., Magnus V., Barták P., Buchtík R., Salopek-Sondi B., Strnad M. Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta. 2009;80:651–655. doi: 10.1016/j.talanta.2009.07.043. PubMed DOI

Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant. J. 2012;72:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI

Oklestkova J., Tarkowska D., Eyer L., Elbert T., Marek A., Smrzova Z., Novak O., Franek M., Zhabinskii V.N., Strnad M. Immunoaffinity chromatography combined with tandem mass spectrometry: A new tool for the selective capture and analysis of brassinosteroid plant hormones. Talanta. 2017;170:432–440. doi: 10.1016/j.talanta.2017.04.044. PubMed DOI

Tarkowska D., Novak O., Oklestkova J., Strnad M. The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC-ESI-MS/MS. Anal. Bioanal. Chem. 2016;408:6799–6812. doi: 10.1007/s00216-016-9807-2. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace