Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia

. 2021 Feb 02 ; 11 (1) : 2801. [epub] 20210202

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, pozorovací studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33531590
Odkazy

PubMed 33531590
PubMed Central PMC7854679
DOI 10.1038/s41598-021-82509-5
PII: 10.1038/s41598-021-82509-5
Knihovny.cz E-zdroje

Juvenile myelomonocytic leukemia (JMML) treatment primarily relies on hematopoietic stem cell transplantation and results in long-term overall survival of 50-60%, demonstrating a need to develop novel treatments. Dysregulation of the non-coding RNA transcriptome has been demonstrated before in this rare and unique disorder of early childhood. In this study, we investigated the therapeutic potential of targeting overexpressed long non-coding RNAs (lncRNAs) in JMML. Total RNA sequencing of bone marrow and peripheral blood mononuclear cell preparations from 19 untreated JMML patients and three healthy children revealed 185 differentially expressed lncRNA genes (131 up- and 54 downregulated). LNA GapmeRs were designed for 10 overexpressed and validated lncRNAs. Molecular knockdown (≥ 70% compared to mock control) after 24 h of incubation was observed with two or more independent GapmeRs in 6 of them. For three lncRNAs (lnc-THADA-4, lnc-ACOT9-1 and NRIR) knockdown resulted in a significant decrease of cell viability after 72 h of incubation in primary cultures of JMML mononuclear cells, respectively. Importantly, the extent of cellular damage correlated with the expression level of the lncRNA of interest. In conclusion, we demonstrated in primary JMML cell cultures that knockdown of overexpressed lncRNAs such as lnc-THADA-4, lnc-ACOT9-1 and NRIR may be a feasible therapeutic strategy.

Zobrazit více v PubMed

Niemeyer CM. RAS diseases in children. Haematologica. 2014;99:1653–1662. doi: 10.3324/haematol.2014.114595. PubMed DOI PMC

Locatelli F, Niemeyer CM. How I treat juvenile myelomonocytic leukemia. Blood. 2015;125:1083–1090. doi: 10.1182/blood-2014-08-550483. PubMed DOI

Chang TY, Dvorak CC, Loh ML. Bedside to bench in juvenile myelomonocytic leukemia: Insights into leukemogenesis from a rare pediatric leukemia. Blood. 2014;124:2487–2497. doi: 10.1182/blood-2014-03-300319. PubMed DOI

Niemeyer CM, Kratz CP. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: Molecular classification and treatment options. Br. J. Haematol. 2008;140:610–624. doi: 10.1111/j.1365-2141.2007.06958.x. PubMed DOI

Caye A, et al. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat. Genet. 2015;47:1334–1340. doi: 10.1038/ng.3420. PubMed DOI

Stieglitz E, et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat. Genet. 2015;47:1326–1333. doi: 10.1038/ng.3400. PubMed DOI PMC

Hofmans M, et al. The long non-coding RNA landscape in juvenile myelomonocytic leukemia. Haematologica. 2018;103:e501–e504. doi: 10.3324/haematol.2018.189977. PubMed DOI PMC

Leoncini PP, et al. MicroRNA fingerprints in juvenile myelomonocytic leukemia (JMML) identified miR-150-5p as a tumor suppressor and potential target for treatment. Oncotarget. 2016;7:55395–55408. doi: 10.18632/oncotarget.10577. PubMed DOI PMC

Olk-Batz C, et al. Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome. Blood. 2011;117:4871–4880. doi: 10.1182/blood-2010-08-298968. PubMed DOI

Lipka DB, et al. RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat. Commun. 2017;8:2126. doi: 10.1038/s41467-017-02177-w. PubMed DOI PMC

Stieglitz E, et al. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nat. Commun. 2017;8:2127. doi: 10.1038/s41467-017-02178-9. PubMed DOI PMC

Hofmans M, et al. Noonan syndrome-associated myeloproliferative disorder with somatically acquired monosomy 7: Impact on clinical decision making. Br. J. Haematol. 2019 doi: 10.1111/bjh.16191. PubMed DOI

Cseh A, et al. Bridging to transplant with azacitidine in juvenile myelomonocytic leukemia: A retrospective analysis of the EWOG-MDS study group. Blood. 2015;125:2311–2313. doi: 10.1182/blood-2015-01-619734. PubMed DOI

Furlan I, et al. Intriguing response to azacitidine in a patient with juvenile myelomonocytic leukemia and monosomy 7. Blood. 2009;113:2867–2868. doi: 10.1182/blood-2008-12-195693. PubMed DOI

Krombholz CF, et al. Azacitidine is effective for targeting leukemia-initiating cells in juvenile myelomonocytic leukemia. Leukemia. 2019 doi: 10.1038/s41375-018-0343-2. PubMed DOI

Niemeyer CM, et al. Upfront azacitidine (AZA) in juvenile myelomonocytic leukemia (JMML): Interim analysis of the prospective AZA-JMML-001 study. J. Clin. Oncol. 2019;37:10031–10031. doi: 10.1200/JCO.2019.37.15_suppl.10031. DOI

Alvarez-Dominguez JR, Lodish HF. Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood. 2017;130:1965–1975. doi: 10.1182/blood-2017-06-788695. PubMed DOI PMC

Dahariya S, et al. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol. Immunol. 2019 doi: 10.1016/j.molimm.2019.04.011. PubMed DOI

Delás MJ, et al. lncRNA requirements for mouse acute myeloid leukemia and normal differentiation. eLife. 2017 doi: 10.7554/eLife.25607. PubMed DOI PMC

Derrien T, et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–1789. doi: 10.1101/gr.132159.111. PubMed DOI PMC

Volders PJ, et al. LNCipedia: A database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 2013;41:D246–251. doi: 10.1093/nar/gks915. PubMed DOI PMC

Lennox KA, Behlke MA. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res. 2016 doi: 10.1093/nar/gkv1206. PubMed DOI PMC

Ghazavi F, et al. Unique long non-coding RNA expression signature in ETV6/RUNX1-driven B-cell precursor acute lymphoblastic leukemia. Oncotarget. 2016;7:73769–73780. doi: 10.18632/oncotarget.12063. PubMed DOI PMC

Leucci E, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016;531:518–522. doi: 10.1038/nature17161. PubMed DOI

Carlevaro-Fita J, et al. Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun. Biol. 2020;3:1–16. doi: 10.1038/s42003-019-0741-7. PubMed DOI PMC

Xu Y, Johansson M, Karlsson A. Human UMP-CMP Kinase 2, a novel nucleoside monophosphate kinase localized in mitochondria. J. Biol. Chem. 2008 doi: 10.1074/jbc.M707997200. PubMed DOI

Cheng X, et al. PKR inhibits the DNA damage response, and is associated with poor survival in AML and accelerated leukemia in NHD13 mice. Blood. 2015;126:1585–1594. doi: 10.1182/blood-2015-03-635227. PubMed DOI PMC

Liu Y, et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat. Biotechnol. 2018 doi: 10.1038/nbt.4283. PubMed DOI

Kamola PJ, et al. In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic aso gapmer optimization. Nucleic Acids Res. 2015 doi: 10.1093/nar/gkv857. PubMed DOI PMC

Swayze EE, et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res. 2007 doi: 10.1093/nar/gkl1071. PubMed DOI PMC

Stanton R, et al. Chemical modification study of antisense gapmers. Nucleic Acid Therap. 2012 doi: 10.1089/nat.2012.0366. PubMed DOI

Krombholz CF, et al. Long-term serial xenotransplantation of juvenile myelomonocytic leukemia recapitulates human disease in Rag2−/−gammac−/− mice. Haematologica. 2016;101:597–606. doi: 10.3324/haematol.2015.138545. PubMed DOI PMC

Yoshimi A, et al. Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMML and JMML. Blood. 2017 doi: 10.1182/blood-2017-01-763219. PubMed DOI PMC

Caye A, et al. Despite mutation acquisition in hematopoietic stem cells, JMML-propagating cells are not always restricted to this compartment. Leukemia. 2019 doi: 10.1038/s41375-019-0662-y. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...