Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, pozorovací studie, práce podpořená grantem
PubMed
33531590
PubMed Central
PMC7854679
DOI
10.1038/s41598-021-82509-5
PII: 10.1038/s41598-021-82509-5
Knihovny.cz E-zdroje
- MeSH
- antitumorózní látky farmakologie terapeutické užití MeSH
- dítě MeSH
- genový knockdown MeSH
- juvenilní myelomonocytární leukemie krev farmakoterapie genetika patologie MeSH
- kojenec MeSH
- kostní dřeň patologie MeSH
- leukocyty mononukleární MeSH
- lidé MeSH
- mladiství MeSH
- nádorové buňky kultivované MeSH
- předškolní dítě MeSH
- primární buněčná kultura MeSH
- regulace genové exprese u leukemie účinky léků MeSH
- RNA dlouhá nekódující antagonisté a inhibitory genetika metabolismus MeSH
- sekvenování transkriptomu MeSH
- studie případů a kontrol MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antitumorózní látky MeSH
- RNA dlouhá nekódující MeSH
Juvenile myelomonocytic leukemia (JMML) treatment primarily relies on hematopoietic stem cell transplantation and results in long-term overall survival of 50-60%, demonstrating a need to develop novel treatments. Dysregulation of the non-coding RNA transcriptome has been demonstrated before in this rare and unique disorder of early childhood. In this study, we investigated the therapeutic potential of targeting overexpressed long non-coding RNAs (lncRNAs) in JMML. Total RNA sequencing of bone marrow and peripheral blood mononuclear cell preparations from 19 untreated JMML patients and three healthy children revealed 185 differentially expressed lncRNA genes (131 up- and 54 downregulated). LNA GapmeRs were designed for 10 overexpressed and validated lncRNAs. Molecular knockdown (≥ 70% compared to mock control) after 24 h of incubation was observed with two or more independent GapmeRs in 6 of them. For three lncRNAs (lnc-THADA-4, lnc-ACOT9-1 and NRIR) knockdown resulted in a significant decrease of cell viability after 72 h of incubation in primary cultures of JMML mononuclear cells, respectively. Importantly, the extent of cellular damage correlated with the expression level of the lncRNA of interest. In conclusion, we demonstrated in primary JMML cell cultures that knockdown of overexpressed lncRNAs such as lnc-THADA-4, lnc-ACOT9-1 and NRIR may be a feasible therapeutic strategy.
Cancer Research Institute Ghent Ghent University Ghent Belgium
Department of Biomolecular Medicine Ghent University Ghent Belgium
Department of Laboratory Medicine Hematology University Hospital Brussels Brussels Belgium
Dutch Childhood Oncology Group The Hague The Netherlands
Faculty of Biology University of Freiburg Freiburg Germany
German Cancer Consortium Partner Site Freiburg German Cancer Research Center Heidelberg Germany
Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
Zobrazit více v PubMed
Niemeyer CM. RAS diseases in children. Haematologica. 2014;99:1653–1662. doi: 10.3324/haematol.2014.114595. PubMed DOI PMC
Locatelli F, Niemeyer CM. How I treat juvenile myelomonocytic leukemia. Blood. 2015;125:1083–1090. doi: 10.1182/blood-2014-08-550483. PubMed DOI
Chang TY, Dvorak CC, Loh ML. Bedside to bench in juvenile myelomonocytic leukemia: Insights into leukemogenesis from a rare pediatric leukemia. Blood. 2014;124:2487–2497. doi: 10.1182/blood-2014-03-300319. PubMed DOI
Niemeyer CM, Kratz CP. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: Molecular classification and treatment options. Br. J. Haematol. 2008;140:610–624. doi: 10.1111/j.1365-2141.2007.06958.x. PubMed DOI
Caye A, et al. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat. Genet. 2015;47:1334–1340. doi: 10.1038/ng.3420. PubMed DOI
Stieglitz E, et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat. Genet. 2015;47:1326–1333. doi: 10.1038/ng.3400. PubMed DOI PMC
Hofmans M, et al. The long non-coding RNA landscape in juvenile myelomonocytic leukemia. Haematologica. 2018;103:e501–e504. doi: 10.3324/haematol.2018.189977. PubMed DOI PMC
Leoncini PP, et al. MicroRNA fingerprints in juvenile myelomonocytic leukemia (JMML) identified miR-150-5p as a tumor suppressor and potential target for treatment. Oncotarget. 2016;7:55395–55408. doi: 10.18632/oncotarget.10577. PubMed DOI PMC
Olk-Batz C, et al. Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome. Blood. 2011;117:4871–4880. doi: 10.1182/blood-2010-08-298968. PubMed DOI
Lipka DB, et al. RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat. Commun. 2017;8:2126. doi: 10.1038/s41467-017-02177-w. PubMed DOI PMC
Stieglitz E, et al. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nat. Commun. 2017;8:2127. doi: 10.1038/s41467-017-02178-9. PubMed DOI PMC
Hofmans M, et al. Noonan syndrome-associated myeloproliferative disorder with somatically acquired monosomy 7: Impact on clinical decision making. Br. J. Haematol. 2019 doi: 10.1111/bjh.16191. PubMed DOI
Cseh A, et al. Bridging to transplant with azacitidine in juvenile myelomonocytic leukemia: A retrospective analysis of the EWOG-MDS study group. Blood. 2015;125:2311–2313. doi: 10.1182/blood-2015-01-619734. PubMed DOI
Furlan I, et al. Intriguing response to azacitidine in a patient with juvenile myelomonocytic leukemia and monosomy 7. Blood. 2009;113:2867–2868. doi: 10.1182/blood-2008-12-195693. PubMed DOI
Krombholz CF, et al. Azacitidine is effective for targeting leukemia-initiating cells in juvenile myelomonocytic leukemia. Leukemia. 2019 doi: 10.1038/s41375-018-0343-2. PubMed DOI
Niemeyer CM, et al. Upfront azacitidine (AZA) in juvenile myelomonocytic leukemia (JMML): Interim analysis of the prospective AZA-JMML-001 study. J. Clin. Oncol. 2019;37:10031–10031. doi: 10.1200/JCO.2019.37.15_suppl.10031. DOI
Alvarez-Dominguez JR, Lodish HF. Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood. 2017;130:1965–1975. doi: 10.1182/blood-2017-06-788695. PubMed DOI PMC
Dahariya S, et al. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol. Immunol. 2019 doi: 10.1016/j.molimm.2019.04.011. PubMed DOI
Delás MJ, et al. lncRNA requirements for mouse acute myeloid leukemia and normal differentiation. eLife. 2017 doi: 10.7554/eLife.25607. PubMed DOI PMC
Derrien T, et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–1789. doi: 10.1101/gr.132159.111. PubMed DOI PMC
Volders PJ, et al. LNCipedia: A database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 2013;41:D246–251. doi: 10.1093/nar/gks915. PubMed DOI PMC
Lennox KA, Behlke MA. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res. 2016 doi: 10.1093/nar/gkv1206. PubMed DOI PMC
Ghazavi F, et al. Unique long non-coding RNA expression signature in ETV6/RUNX1-driven B-cell precursor acute lymphoblastic leukemia. Oncotarget. 2016;7:73769–73780. doi: 10.18632/oncotarget.12063. PubMed DOI PMC
Leucci E, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016;531:518–522. doi: 10.1038/nature17161. PubMed DOI
Carlevaro-Fita J, et al. Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun. Biol. 2020;3:1–16. doi: 10.1038/s42003-019-0741-7. PubMed DOI PMC
Xu Y, Johansson M, Karlsson A. Human UMP-CMP Kinase 2, a novel nucleoside monophosphate kinase localized in mitochondria. J. Biol. Chem. 2008 doi: 10.1074/jbc.M707997200. PubMed DOI
Cheng X, et al. PKR inhibits the DNA damage response, and is associated with poor survival in AML and accelerated leukemia in NHD13 mice. Blood. 2015;126:1585–1594. doi: 10.1182/blood-2015-03-635227. PubMed DOI PMC
Liu Y, et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat. Biotechnol. 2018 doi: 10.1038/nbt.4283. PubMed DOI
Kamola PJ, et al. In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic aso gapmer optimization. Nucleic Acids Res. 2015 doi: 10.1093/nar/gkv857. PubMed DOI PMC
Swayze EE, et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res. 2007 doi: 10.1093/nar/gkl1071. PubMed DOI PMC
Stanton R, et al. Chemical modification study of antisense gapmers. Nucleic Acid Therap. 2012 doi: 10.1089/nat.2012.0366. PubMed DOI
Krombholz CF, et al. Long-term serial xenotransplantation of juvenile myelomonocytic leukemia recapitulates human disease in Rag2−/−gammac−/− mice. Haematologica. 2016;101:597–606. doi: 10.3324/haematol.2015.138545. PubMed DOI PMC
Yoshimi A, et al. Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMML and JMML. Blood. 2017 doi: 10.1182/blood-2017-01-763219. PubMed DOI PMC
Caye A, et al. Despite mutation acquisition in hematopoietic stem cells, JMML-propagating cells are not always restricted to this compartment. Leukemia. 2019 doi: 10.1038/s41375-019-0662-y. PubMed DOI PMC