Nanocluster-Based Drug Delivery and Theranostic Systems: Towards Cancer Therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
22-07164S
Czech Science Foundation
PubMed
35335518
PubMed Central
PMC8955999
DOI
10.3390/polym14061188
PII: polym14061188
Knihovny.cz E-zdroje
- Klíčová slova
- cancer therapy, drug delivery, inorganic nanoparticles, nanoclusters, polymeric nanoparticles, theranostics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Over the last decades, the global life expectancy of the population has increased, and so, consequently, has the risk of cancer development. Despite the improvement in cancer therapies (e.g., drug delivery systems (DDS) and theranostics), in many cases recurrence continues to be a challenging issue. In this matter, the development of nanotechnology has led to an array of possibilities for cancer treatment. One of the most promising therapies focuses on the assembly of hierarchical structures in the form of nanoclusters, as this approach involves preparing individual building blocks while avoiding handling toxic chemicals in the presence of biomolecules. This review aims at presenting an overview of the major advances made in developing nanoclusters based on polymeric nanoparticles (PNPs) and/or inorganic NPs. The preparation methods and the features of the NPs used in the construction of the nanoclusters were described. Afterwards, the design, fabrication and properties of the two main classes of nanoclusters, namely noble-metal nanoclusters and hybrid (i.e., hetero) nanoclusters and their mode of action in cancer therapy, were summarized.
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Cancer Research UK Worlwide Cancer Incidence Statistics. [(accessed on 27 February 2022)]. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer/incidence.
Misra R., Acharya S., Sahoo S.K. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discov. Today. 2010;15:842–850. doi: 10.1016/j.drudis.2010.08.006. PubMed DOI
Danhier F., Feron O., Preat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release. 2010;148:135–146. doi: 10.1016/j.jconrel.2010.08.027. PubMed DOI
Estanqueiro M., Amaral M.H., Conceicao J., Sousa Lobo J.M. Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids Surf. B. 2015;126:631–648. doi: 10.1016/j.colsurfb.2014.12.041. PubMed DOI
Din F.U., Aman W., Ullah I., Qureshi O.S., Mustapha O., Shafique S., Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 2017;12:7291–7309. doi: 10.2147/IJN.S146315. PubMed DOI PMC
Koo O.M., Rubinstein I., Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomedicine. 2005;1:193–212. doi: 10.1016/j.nano.2005.06.004. PubMed DOI
Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019;4:e10143. doi: 10.1002/btm2.10143. PubMed DOI PMC
Doane T.L., Burda C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 2012;41:2885–2911. doi: 10.1039/c2cs15260f. PubMed DOI
Moxley J.H., III, De Vita V.T., Brace K., Frei E., III. Intensive Combination Chemotherapy and X-irradiation in Hodgkin’s Disease. Cancer Res. 1967;27:1258–1263. PubMed
Sadighian S., Rostamizadeh K., Hosseini-Monfared H., Hamidi M. Doxorubicin-conjugated core-shell magnetite nanoparticles as dual-targeting carriers for anticancer drug delivery. Colloids Surf. B Biointerfaces. 2014;117:406–413. doi: 10.1016/j.colsurfb.2014.03.001. PubMed DOI
Li X., Wang X., Zhang L., Chen H., Shi J. MBG/PLGA composite microspheres with prolonged drug release. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009;89:148–154. doi: 10.1002/jbm.b.31197. PubMed DOI
Zhao C., Song X., Jin W., Wu F., Zhang Q., Zhang M., Zhou N., Shen J. Image-guided cancer therapy using aptamer-functionalized cross-linked magnetic-responsive Fe3O4@carbon nanoparticles. Anal. Chim. Acta. 2019;1056:108–116. doi: 10.1016/j.aca.2018.12.045. PubMed DOI
Greco F., Vicent M.J. Combination therapy: Opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv. Drug Deliv. Rev. 2009;61:1203–1213. doi: 10.1016/j.addr.2009.05.006. PubMed DOI
Lee D.J., Park G.Y., Oh K.T., Oh N.M., Kwag D.S., Youn Y.S., Oh Y.T., Park J.W., Lee E.S. Multifunctional poly (lactide-co-glycolide) nanoparticles for luminescence/magnetic resonance imaging and photodynamic therapy. Int. J. Pharm. 2012;434:257–263. doi: 10.1016/j.ijpharm.2012.05.068. PubMed DOI
Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007;2:751–760. doi: 10.1038/nnano.2007.387. PubMed DOI
Baker J.R., Jr. Dendrimer-based nanoparticles for cancer therapy. Hematol. Am. Soc. Hematol. Educ. Program. 2009;2009:708–719. doi: 10.1182/asheducation-2009.1.708. PubMed DOI
Zhang N., Chen H., Liu A.Y., Shen J.J., Shah V., Zhang C., Hong J., Ding Y. Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy. Biomaterials. 2016;74:280–291. doi: 10.1016/j.biomaterials.2015.10.004. PubMed DOI
Dadwal A., Baldi A., Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol. 2018;46:295–305. doi: 10.1080/21691401.2018.1457039. PubMed DOI
Tang J., Shi H., Ma G., Luo L., Tang Z. Ultrasmall Au and Ag Nanoclusters for Biomedical Applications: A Review. Front. Bioeng. Biotechnol. 2020;8:1019. doi: 10.3389/fbioe.2020.01019. PubMed DOI PMC
Hossen S., Hossain M.K., Basher M.K., Mia M.N.H., Rahman M.T., Uddin M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019;15:1–18. doi: 10.1016/j.jare.2018.06.005. PubMed DOI PMC
Sun C., Zhang H., Li S., Zhang X., Cheng Q., Ding Y., Wang L.H., Wang R. Polymeric Nanomedicine with “Lego” Surface Allowing Modular Functionalization and Drug Encapsulation. ACS Appl. Mater. Interfaces. 2018;10:25090–25098. doi: 10.1021/acsami.8b06598. PubMed DOI
Jain R.K., Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010;7:653–664. doi: 10.1038/nrclinonc.2010.139. PubMed DOI PMC
Duncan R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer. 2006;6:688–701. doi: 10.1038/nrc1958. PubMed DOI
Stroh M., Zimmer J.P., Duda D.G., Levchenko T.S., Cohen K.S., Brown E.B., Scadden D.T., Torchilin V.P., Bawendi M.G., Fukumura D., et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med. 2005;11:678–682. doi: 10.1038/nm1247. PubMed DOI PMC
Wang H., Lu Z., Wang L., Guo T., Wu J., Wan J., Zhou L., Li H., Li Z., Jiang D., et al. New Generation Nanomedicines Constructed from Self-Assembling Small-Molecule Prodrugs Alleviate Cancer Drug Toxicity. Cancer Res. 2017;77:6963–6974. doi: 10.1158/0008-5472.CAN-17-0984. PubMed DOI
Chen J., Ding J., Wang Y., Cheng J., Ji S., Zhuang X., Chen X. Sequentially Responsive Shell-Stacked Nanoparticles for Deep Penetration into Solid Tumors. Adv. Mater. 2017;29:1701170. doi: 10.1002/adma.201701170. PubMed DOI
Yu Z., Yan B., Gao L., Dong C., Zhong J., D’Ortenzio M., Nguyen B., Seong Lee S., Hu X., Liang F. Targeted Delivery of Bleomycin: A Comprehensive Anticancer Review. Curr. Cancer Drug Targets. 2016;16:509–521. doi: 10.2174/1568009616666151130213910. PubMed DOI
Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392. PubMed
Sadat S.M.A., Jahan S.T., Haddadi A. Effects of Size and Surface Charge of Polymeric Nanoparticles on In Vitro and In Vivo Applications. J. Biomater. Nanobiotechnol. 2016;7:91–108. doi: 10.4236/jbnb.2016.72011. DOI
McNeeley K.M., Karathanasis E., Annapragada A.V., Bellamkonda R.V. Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials. 2009;30:3986–3995. doi: 10.1016/j.biomaterials.2009.04.012. PubMed DOI
Torchilin V.P., Rammohan R., Weissig V., Levchenko T.S. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. USA. 2001;98:8786–8791. doi: 10.1073/pnas.151247498. PubMed DOI PMC
Maeda T., Fujimoto K. A reduction-triggered delivery by a liposomal carrier possessing membrane-permeable ligands and a detachable coating. Colloids Surf. B. 2006;49:15–21. doi: 10.1016/j.colsurfb.2006.02.006. PubMed DOI
Patel J.K., Patel A.P. Biointeractions of Nanomaterials. CRC Press; Boca Raton, FL, USA: 2014. Toxicity of Nanomaterials on the Liver, Kidney, and Spleen.
Fernandez-Fernandez A., Manchanda R., Carvajal D.A., Lei T., Srinivasan S., McGoron A.J. Covalent IR820-PEG-diamine nanoconjugates for theranostic applications in cancer. Int. J. Nanomed. 2014;9:4631–4648. doi: 10.2147/IJN.S69550. PubMed DOI PMC
Duong T., Li X., Yang B., Schumann C., Albarqi H.A., Taratula O., Taratula O. Phototheranostic nanoplatform based on a single cyanine dye for image-guided combinatorial phototherapy. Nanomedicine. 2017;13:955–963. doi: 10.1016/j.nano.2016.11.005. PubMed DOI
Yuan A., Qiu X., Tang X., Liu W., Wu J., Hu Y. Self-assembled PEG-IR-780-C13 micelle as a targeting, safe and highly-effective photothermal agent for in vivo imaging and cancer therapy. Biomaterials. 2015;51:184–193. doi: 10.1016/j.biomaterials.2015.01.069. PubMed DOI
Palao-Suay R., Martin-Saavedra F.M., Rosa Aguilar M., Escudero-Duch C., Martin-Saldana S., Parra-Ruiz F.J., Rohner N.A., Thomas S.N., Vilaboa N., San Roman J. Photothermal and photodynamic activity of polymeric nanoparticles based on alpha-tocopheryl succinate-RAFT block copolymers conjugated to IR-780. Acta Biomater. 2017;57:70–84. doi: 10.1016/j.actbio.2017.05.028. PubMed DOI PMC
Guo F., Yu M., Wang J., Tan F., Li N. Smart IR780 Theranostic Nanocarrier for Tumor-Specific Therapy: Hyperthermia-Mediated Bubble-Generating and Folate-Targeted Liposomes. ACS Appl. Mater. Interfaces. 2015;7:20556–20567. doi: 10.1021/acsami.5b06552. PubMed DOI
Liu Q., Song L., Chen S., Gao J., Zhao P., Du J. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials. 2017;114:23–33. doi: 10.1016/j.biomaterials.2016.10.027. PubMed DOI
Li X., Li H., Yi W., Chen J., Liang B. Acid-triggered core cross-linked nanomicelles for targeted drug delivery and magnetic resonance imaging in liver cancer cells. Int. J. Nanomed. 2013;8:3019–3031. doi: 10.2147/IJN.S45767. PubMed DOI PMC
Yang X., Grailer J.J., Rowland I.J., Javadi A., Hurley S.A., Matson V.Z., Steeber D.A., Gong S. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano. 2010;4:6805–6817. doi: 10.1021/nn101670k. PubMed DOI
Qin J., Liu Q., Zhang J., Chen J., Chen S., Zhao Y., Du J. Rationally Separating the Corona and Membrane Functions of Polymer Vesicles for Enhanced T(2) MRI and Drug Delivery. ACS Appl. Mater. Interfaces. 2015;7:14043–14052. doi: 10.1021/acsami.5b03222. PubMed DOI
Schleich N., Sibret P., Danhier P., Ucakar B., Laurent S., Muller R.N., Jerome C., Gallez B., Preat V., Danhier F. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int. J. Pharm. 2013;447:94–101. doi: 10.1016/j.ijpharm.2013.02.042. PubMed DOI
Oh I.H., Min H.S., Li L., Tran T.H., Lee Y.K., Kwon I.C., Choi K., Kim K., Huh K.M. Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials. 2013;34:6454–6463. doi: 10.1016/j.biomaterials.2013.05.017. PubMed DOI
Wang H., Di J., Sun Y., Fu J., Wei Z., Matsui H., del C. Alonso A., Zhou S. Biocompatible PEG-Chitosan@Carbon Dots Hybrid Nanogels for Two-Photon Fluorescence Imaging, Near-Infrared Light/pH Dual-Responsive Drug Carrier, and Synergistic Therapy. Adv. Funct. Mater. 2015;25:5537–5547. doi: 10.1002/adfm.201501524. DOI
Tan L., Wan A., Li H. Ag2S quantum dots conjugated chitosan nanospheres toward light-triggered nitric oxide release and near-infrared fluorescence imaging. Langmuir. 2013;29:15032–15042. doi: 10.1021/la403028j. PubMed DOI
Avramovic N., Mandic B., Savic-Radojevic A., Simic T. Polymeric Nanocarriers of Drug Delivery Systems in Cancer Therapy. Pharmaceutics. 2020;12:298. doi: 10.3390/pharmaceutics12040298. PubMed DOI PMC
Szczech M., Szczepanowicz K. Polymeric Core-Shell Nanoparticles Prepared by Spontaneous Emulsification Solvent Evaporation and Functionalized by the Layer-by-Layer Method. Nanomaterials. 2020;10:496. doi: 10.3390/nano10030496. PubMed DOI PMC
Bechnak L., Khalil C., Kurdi R.E., Khnayzer R.S., Patra D. Curcumin encapsulated colloidal amphiphilic block co-polymeric nanocapsules: Colloidal nanocapsules enhance photodynamic and anticancer activities of curcumin. Photochem. Photobiol. Sci. 2020;19:1088–1098. doi: 10.1039/D0PP00032A. PubMed DOI
Douglas D. Pharmaceutical Nanotechnology: A Therapeutic Revolution. Int. J. Pharm. Sci. Dev. Res. 2020;6:009–011. doi: 10.17352/ijpsdr.000027. DOI
Zielinska A., Carreiro F., Oliveira A.M., Neves A., Pires B., Venkatesh D.N., Durazzo A., Lucarini M., Eder P., Silva A.M., et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules. 2020;25:3731. doi: 10.3390/molecules25163731. PubMed DOI PMC
Bukchin A., Sanchez-Navarro M., Carrera A., Teixidó M., Carcaboso A.M., Giralt E., Sosnik A. Amphiphilic Polymeric Nanoparticles Modified with a Retro-Enantio Peptide Shuttle Target the Brain of Mice. Chem. Mater. 2020;32:7679–7693. doi: 10.1021/acs.chemmater.0c01696. DOI
Şenel B., Öztürk A.A. New approaches to tumor therapy with siRNA-decorated and chitosan-modified PLGA nanoparticles. Drug Dev. Ind. Pharm. 2019;45:1835–1848. doi: 10.1080/03639045.2019.1665061. PubMed DOI
Chen S.H., Liu T.I., Chuang C.L., Chen H.H., Chiang W.H., Chiu H.C. Alendronate/folic acid-decorated polymeric nanoparticles for hierarchically targetable chemotherapy against bone metastatic breast cancer. J. Mater. Chem. B. 2020;8:3789–3800. doi: 10.1039/D0TB00046A. PubMed DOI
Hao X., Gai W., Wang L., Zhao J., Sun D., Yang F., Jiang H., Feng Y. 5-Boronopicolinic acid-functionalized polymeric nanoparticles for targeting drug delivery and enhanced tumor therapy. Mater. Sci. Eng. C. 2021;119:111553. doi: 10.1016/j.msec.2020.111553. PubMed DOI
Sun C.Y., Shen S., Xu C.F., Li H.J., Liu Y., Cao Z.T., Yang X.Z., Xia J.X., Wang J. Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery. J. Am. Chem. Soc. 2015;137:15217–15224. doi: 10.1021/jacs.5b09602. PubMed DOI
Qiao J.-B., Jang Y., Fan Q.-Q., Chang S.-H., Xing L., Cui P.-F., He Y.-J., Lee S., Hwang S., Cho M.-H., et al. Aerosol delivery of biocompatible dihydroergotamine-loaded PLGA-PSPE polymeric micelles for efficient lung cancer therapy. Polym. Chem. 2017;8:1540–1554. doi: 10.1039/C7PY00024C. DOI
Zhu J.J., Zhang X.X., Miao Y.Q., He S.F., Tian D.M., Yao X.S., Tang J.S., Gan Y. Delivery of acetylthevetin B, an antitumor cardiac glycoside, using polymeric micelles for enhanced therapeutic efficacy against lung cancer cells. Acta Pharmacol. Sin. 2017;38:290–300. doi: 10.1038/aps.2016.113. PubMed DOI PMC
Ma Y., Fan X., Li L. pH-sensitive polymeric micelles formed by doxorubicin conjugated prodrugs for co-delivery of doxorubicin and paclitaxel. Carbohydr. Polym. 2016;137:19–29. doi: 10.1016/j.carbpol.2015.10.050. PubMed DOI
Boateng F., Ngwa W. Delivery of Nanoparticle-Based Radiosensitizers for Radiotherapy Applications. Int. J. Mol. Sci. 2019;21:273. doi: 10.3390/ijms21010273. PubMed DOI PMC
Kim S., Im S., Park E.Y., Lee J., Kim C., Kim T.I., Kim W.J. Drug-loaded titanium dioxide nanoparticle coated with tumor targeting polymer as a sonodynamic chemotherapeutic agent for anti-cancer therapy. Nanomedicine. 2020;24:102110. doi: 10.1016/j.nano.2019.102110. PubMed DOI
Li S., Saw P.E., Lin C., Nie Y., Tao W., Farokhzad O.C., Zhang L., Xu X. Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy. Biomaterials. 2020;234:119760. doi: 10.1016/j.biomaterials.2020.119760. PubMed DOI
Lee J.-Y., Chung S.-J., Cho H.-J., Kim D.-D. Phenylboronic Acid-Decorated Chondroitin Sulfate A-Based Theranostic Nanoparticles for Enhanced Tumor Targeting and Penetration. Adv. Funct. Mater. 2015;25:3705–3717. doi: 10.1002/adfm.201500680. DOI
Sun W., Fan J., Wang S., Kang Y., Du J., Peng X. Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors. ACS Appl. Mater. Interfaces. 2018;10:7832–7840. doi: 10.1021/acsami.7b19281. PubMed DOI
Hyun H., Park J., Willis K., Park J.E., Lyle L.T., Lee W., Yeo Y. Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors. Biomaterials. 2018;180:206–224. doi: 10.1016/j.biomaterials.2018.07.024. PubMed DOI PMC
Yan J., He W., Yan S., Niu F., Liu T., Ma B., Shao Y., Yan Y., Yang G., Lu W., et al. Self-Assembled Peptide-Lanthanide Nanoclusters for Safe Tumor Therapy: Overcoming and Utilizing Biological Barriers to Peptide Drug Delivery. ACS Nano. 2018;12:2017–2026. doi: 10.1021/acsnano.8b00081. PubMed DOI
Heckert B., Banerjee T., Sulthana S., Naz S., Alnasser R., Thompson D., Normand G., Grimm J., Perez J.M., Santra S. Design and Synthesis of New Sulfur-Containing Hyperbranched Polymer and Theranostic Nanomaterials for Bimodal Imaging and Treatment of Cancer. ACS Macro Lett. 2017;6:235–240. doi: 10.1021/acsmacrolett.7b00008. PubMed DOI PMC
Jin C., Wang K., Oppong-Gyebi A., Hu J. Application of Nanotechnology in Cancer Diagnosis and Therapy—A Mini-Review. Int. J. Med. Sci. 2020;17:2964–2973. doi: 10.7150/ijms.49801. PubMed DOI PMC
Busseron E., Ruff Y., Moulin E., Giuseppone N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale. 2013;5:7098–7140. doi: 10.1039/c3nr02176a. PubMed DOI
Kamaly N., Xiao Z., Valencia P.M., Radovic-Moreno A.F., Farokhzad O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev. 2012;41:2971–3010. doi: 10.1039/c2cs15344k. PubMed DOI PMC
Park T.G., Jeong J.H., Kim S.W. Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev. 2006;58:467–486. doi: 10.1016/j.addr.2006.03.007. PubMed DOI
Dinarvand R., Sepehri N., Manoochehri S., Rouhani H., Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int. J. Nanomed. 2011;6:877–895. doi: 10.2147/IJN.S18905. PubMed DOI PMC
Rasal R.M., Janorkar A.V., Hirt D.E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010;35:338–356. doi: 10.1016/j.progpolymsci.2009.12.003. DOI
Kim S., Yun G., Khan S., Kim J., Murray J., Lee Y.M., Kim W.J., Lee G., Kim S., Shetty D., et al. Cucurbit[6]uril-based polymer nanocapsules as a non-covalent and modular bioimaging platform for multimodal in vivo imaging. Mater. Horiz. 2017;4:450–455. doi: 10.1039/C7MH00038C. DOI
Park K.M., Suh K., Jung H., Lee D.W., Ahn Y., Kim J., Baek K., Kim K. Cucurbituril-based nanoparticles: A new efficient vehicle for targeted intracellular delivery of hydrophobic drugs. Chem. Commun. 2009:71–73. doi: 10.1039/B815009E. PubMed DOI
Park K.M., Lee D.W., Sarkar B., Jung H., Kim J., Ko Y.H., Lee K.E., Jeon H., Kim K. Reduction-sensitive, robust vesicles with a non-covalently modifiable surface as a multifunctional drug-delivery platform. Small. 2010;6:1430–1441. doi: 10.1002/smll.201000293. PubMed DOI
Kim E., Kim D., Jung H., Lee J., Paul S., Selvapalam N., Yang Y., Lim N., Park C.G., Kim K. Inside Cover: Facile, Template-Free Synthesis of Stimuli-Responsive Polymer Nanocapsules for Targeted Drug Delivery (Angew. Chem. Int. Ed. 26/2010) Angew. Chem. Int. Ed. Engl. 2010;49:4316. doi: 10.1002/anie.201002201. PubMed DOI
Huang H.C., Barua S., Sharma G., Dey S.K., Rege K. Inorganic nanoparticles for cancer imaging and therapy. J. Control. Release. 2011;155:344–357. doi: 10.1016/j.jconrel.2011.06.004. PubMed DOI
Daraee H., Eatemadi A., Abbasi E., Fekri Aval S., Kouhi M., Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016;44:410–422. doi: 10.3109/21691401.2014.955107. PubMed DOI
Page Faulk W., Malcolm Taylor G. Communication to the editors. Immunochemistry. 1971;8:1081–1083. doi: 10.1016/0019-2791(71)90496-4. PubMed DOI
Siddique S., Chow J.C.L. Gold Nanoparticles for Drug Delivery and Cancer Therapy. Appl. Sci. 2020;10:3824. doi: 10.3390/app10113824. DOI
Kong F.Y., Zhang J.W., Li R.F., Wang Z.X., Wang W.J., Wang W. Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications. Molecules. 2017;22:1445. doi: 10.3390/molecules22091445. PubMed DOI PMC
Hauser E.A. In: Experiments in Colloid Chemistry. Hauser E.A., Lynn J.E., editors. McGraw-Hill; New York, NY, USA: 1940.
Herizchi R., Abbasi E., Milani M., Akbarzadeh A. Current methods for synthesis of gold nanoparticles. Artif. Cells Nanomed. Biotechnol. 2016;44:596–602. doi: 10.3109/21691401.2014.971807. PubMed DOI
Leff D.V., Brandt L., Heath J.R. Synthesis and Characterization of Hydrophobic, Organically-Soluble Gold Nanocrystals Functionalized with Primary Amines. Langmuir. 1996;12:4723–4730. doi: 10.1021/la960445u. DOI
Brust M., Walker M., Bethell D., Schiffrin D.J., Whyman R. Synthesis of thiol-derivatized gold nanoparticles in a twophase liquid-liquid system. J. Chem. Soc. Chem. Commun. 1994:801–802. doi: 10.1039/C39940000801. DOI
Shao Y., Jin Y., Dong S. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem. Commun. 2004:1104–1105. doi: 10.1039/b315732f. PubMed DOI
Wang Y., Black K.C., Luehmann H., Li W., Zhang Y., Cai X., Wan D., Liu S.Y., Li M., Kim P., et al. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano. 2013;7:2068–2077. doi: 10.1021/nn304332s. PubMed DOI PMC
Vigderman L., Khanal B.P., Zubarev E.R. Functional gold nanorods: Synthesis, self-assembly, and sensing applications. Adv. Mater. 2012;24:4811–4841, 5014. doi: 10.1002/adma.201201690. PubMed DOI
Elahi N., Kamali M., Baghersad M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta. 2018;184:537–556. doi: 10.1016/j.talanta.2018.02.088. PubMed DOI
Xu Z.-C., Shen C.-M., Xiao C.-W., Yang T.-Z., Zhang H.-R., Li J.-Q., Li H.-L., Gao H.-J. Wet chemical synthesis of gold nanoparticles using silver seeds: A shape control from nanorods to hollow spherical nanoparticles. Nanotechnology. 2007;18:115608. doi: 10.1088/0957-4484/18/11/115608. DOI
Pang B., Yang X., Xia Y. Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics. Nanomedicine. 2016;11:1715–1728. doi: 10.2217/nnm-2016-0109. PubMed DOI PMC
Beik J., Khateri M., Khosravi Z., Kamrava S.K., Kooranifar S., Ghaznavi H., Shakeri-Zadeh A. Gold nanoparticles in combinatorial cancer therapy strategies. Coord. Chem. Rev. 2019;387:299–324. doi: 10.1016/j.ccr.2019.02.025. DOI
Lin L., Fan Y., Gao F., Jin L., Li D., Sun W., Li F., Qin P., Shi Q., Shi X., et al. UTMD-Promoted Co-Delivery of Gemcitabine and miR-21 Inhibitor by Dendrimer-Entrapped Gold Nanoparticles for Pancreatic Cancer Therapy. Theranostics. 2018;8:1923–1939. doi: 10.7150/thno.22834. PubMed DOI PMC
Goncalves A.S.C., Rodrigues C.F., Moreira A.F., Correia I.J. Strategies to improve the photothermal capacity of gold-based nanomedicines. Acta Biomater. 2020;116:105–137. doi: 10.1016/j.actbio.2020.09.008. PubMed DOI
Okoampah E., Mao Y., Yang S., Sun S., Zhou C. Gold nanoparticles-biomembrane interactions: From fundamental to simulation. Colloids Surf. B. 2020;196:111312. doi: 10.1016/j.colsurfb.2020.111312. PubMed DOI
Khan J.A., Pillai B., Das T.K., Singh Y., Maiti S. Molecular effects of uptake of gold nanoparticles in HeLa cells. Chembiochem Eur. J. Chem. Biol. 2007;8:1237–1240. doi: 10.1002/cbic.200700165. PubMed DOI
Kim D., Park S., Lee J.H., Jeong Y.Y., Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 2007;129:7661–7665. doi: 10.1021/ja071471p. PubMed DOI
Hussain Z., Khan S., Imran M., Sohail M., Shah S.W.A., de Matas M. PEGylation: A promising strategy to overcome challenges to cancer-targeted nanomedicines: A review of challenges to clinical transition and promising resolution. Drug Deliv. Transl. Res. 2019;9:721–734. doi: 10.1007/s13346-019-00631-4. PubMed DOI
Cho W.S., Cho M., Jeong J., Choi M., Cho H.Y., Han B.S., Kim S.H., Kim H.O., Lim Y.T., Chung B.H., et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 2009;236:16–24. doi: 10.1016/j.taap.2008.12.023. PubMed DOI
Khlebtsov N., Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011;40:1647–1671. doi: 10.1039/C0CS00018C. PubMed DOI
Fratoddi I., Venditti I., Cametti C., Russo M.V. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015;8:1771–1799. doi: 10.1007/s12274-014-0697-3. DOI
Lopez-Chaves C., Soto-Alvaredo J., Montes-Bayon M., Bettmer J., Llopis J., Sanchez-Gonzalez C. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine. 2018;14:1–12. doi: 10.1016/j.nano.2017.08.011. PubMed DOI
Jia Y.-P., Ma B.-Y., Wei X.-W., Qian Z.-Y. The in vitro and in vivo toxicity of gold nanoparticles. Chin. Chem. Lett. 2017;28:691–702. doi: 10.1016/j.cclet.2017.01.021. DOI
Murphy C.J., Gole A.M., Stone J.W., Sisco P.N., Alkilany A.M., Goldsmith E.C., Baxter S.C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 2008;41:1721–1730. doi: 10.1021/ar800035u. PubMed DOI
Salmaso S., Caliceti P., Amendola V., Meneghetti M., Magnusson J.P., Pasparakis G., Alexander C. Cell up-take control of gold nanoparticles functionalized with a thermoresponsive polymer. J. Mater. Chem. 2009;19:1608–1615. doi: 10.1039/b816603j. DOI
Zhou M., Wang B., Rozynek Z., Xie Z., Fossum J.O., Yu X., Raaen S. Minute synthesis of extremely stable gold nanoparticles. Nanotechnology. 2009;20:505606. doi: 10.1088/0957-4484/20/50/505606. PubMed DOI
Patel P.C., Giljohann D.A., Daniel W.L., Zheng D., Prigodich A.E., Mirkin C.A. Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug. Chem. 2010;21:2250–2256. doi: 10.1021/bc1002423. PubMed DOI PMC
Zhao J., Babiuch K., Lu H., Dag A., Gottschaldt M., Stenzel M.H. Fructose-coated nanoparticles: A promising drug nanocarrier for triple-negative breast cancer therapy. Chem. Commun. 2014;50:15928–15931. doi: 10.1039/C4CC06651K. PubMed DOI
Li G., Li D., Zhang L., Zhai J., Wang E. One-step synthesis of folic acid protected gold nanoparticles and their receptor-mediated intracellular uptake. Chemistry. 2009;15:9868–9873. doi: 10.1002/chem.200900914. PubMed DOI
Melancon M.P., Lu W., Yang Z., Zhang R., Cheng Z., Elliot A.M., Stafford J., Olson T., Zhang J.Z., Li C. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther. 2008;7:1730–1739. doi: 10.1158/1535-7163.MCT-08-0016. PubMed DOI PMC
Daniel M.C., Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004;104:293–346. doi: 10.1021/cr030698+. PubMed DOI
Gibson J.D., Khanal B.P., Zubarev E.R. Paclitaxel-functionalized gold nanoparticles. J. Am. Chem. Soc. 2007;129:11653–11661. doi: 10.1021/ja075181k. PubMed DOI
Goel R., Shah N., Visaria R., Paciotti G.F., Bischof J.C. Biodistribution of TNF-alpha-coated gold nanoparticles in an in vivo model system. Nanomedicine. 2009;4:401–410. doi: 10.2217/nnm.09.21. PubMed DOI PMC
Lee C.S., Kim H., Yu J., Yu S.H., Ban S., Oh S., Jeong D., Im J., Baek M.J., Kim T.H. Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy. Eur. J. Med. Chem. 2017;142:416–423. doi: 10.1016/j.ejmech.2017.08.063. PubMed DOI
Chen Y.H., Tsai C.Y., Huang P.Y., Chang M.Y., Cheng P.C., Chou C.H., Chen D.H., Wang C.R., Shiau A.L., Wu C.L. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol. Pharm. 2007;4:713–722. doi: 10.1021/mp060132k. PubMed DOI
Xuan M., Shao J., Dai L., Li J., He Q. Macrophage Cell Membrane Camouflaged Au Nanoshells for in Vivo Prolonged Circulation Life and Enhanced Cancer Photothermal Therapy. ACS Appl. Mater. Interfaces. 2016;8:9610–9618. doi: 10.1021/acsami.6b00853. PubMed DOI
Yang S., You Q., Yang L., Li P., Lu Q., Wang S., Tan F., Ji Y., Li N. Rodlike MSN@Au Nanohybrid-Modified Supermolecular Photosensitizer for NIRF/MSOT/CT/MR Quadmodal Imaging-Guided Photothermal/Photodynamic Cancer Therapy. ACS Appl. Mater. Interfaces. 2019;11:6777–6788. doi: 10.1021/acsami.8b19565. PubMed DOI
Lal S., Clare S.E., Halas N.J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008;41:1842–1851. doi: 10.1021/ar800150g. PubMed DOI
Hirsch L.R., Stafford R.J., Bankson J.A., Sershen S.R., Rivera B., Price R.E., Hazle J.D., Halas N.J., West J.L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA. 2003;100:13549–13554. doi: 10.1073/pnas.2232479100. PubMed DOI PMC
Li W., Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine. 2015;10:299–320. doi: 10.2217/nnm.14.169. PubMed DOI PMC
Fan M., Han Y., Gao S., Yan H., Cao L., Li Z., Liang X.J., Zhang J. Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics. 2020;10:4944–4957. doi: 10.7150/thno.42471. PubMed DOI PMC
El-Sayed I.H., Huang X., El-Sayed M.A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005;5:829–834. doi: 10.1021/nl050074e. PubMed DOI
Sokolov K., Follen M., Aaron J., Pavlova I., Malpica A., Lotan R., Richards-Kortum R. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003;63:1999–2004. PubMed
Dixit V., Van den Bossche J., Sherman D.M., Thompson D.H., Andres R.P. Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug. Chem. 2006;17:603–609. doi: 10.1021/bc050335b. PubMed DOI
Svenson S. Theranostics: Are we there yet? Mol. Pharm. 2013;10:848–856. doi: 10.1021/mp300644n. PubMed DOI
Pitsillides C.M., Joe E.K., Wei X., Anderson R.R., Lin C.P. Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles. Biophys. J. 2003;84:4023–4032. doi: 10.1016/S0006-3495(03)75128-5. PubMed DOI PMC
Kang S., Bhang S.H., Hwang S., Yoon J.K., Song J., Jang H.K., Kim S., Kim B.S. Mesenchymal Stem Cells Aggregate and Deliver Gold Nanoparticles to Tumors for Photothermal Therapy. ACS Nano. 2015;9:9678–9690. doi: 10.1021/acsnano.5b02207. PubMed DOI
Wang Z., Yu N., Yu W., Xu H., Li X., Li M., Peng C., Wang Q., Zhu M., Chen Z. In situ growth of Au nanoparticles on natural melanin as biocompatible and multifunctional nanoagent for efficient tumor theranostics. J. Mater. Chem. B. 2019;7:133–142. doi: 10.1039/C8TB02724B. PubMed DOI
Guo J., Rahme K., He Y., Li L.L., Holmes J.D., O’Driscoll C.M. Gold nanoparticles enlighten the future of cancer theranostics. Int. J. Nanomed. 2017;12:6131–6152. doi: 10.2147/IJN.S140772. PubMed DOI PMC
Huang P., Lin J., Li W., Rong P., Wang Z., Wang S., Wang X., Sun X., Aronova M., Niu G., et al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew. Chem. Int. Ed. Engl. 2013;52:13958–13964. doi: 10.1002/anie.201308986. PubMed DOI PMC
Sztandera K., Gorzkiewicz M., Klajnert-Maculewicz B. Gold Nanoparticles in Cancer Treatment. Mol. Pharm. 2019;16:1–23. doi: 10.1021/acs.molpharmaceut.8b00810. PubMed DOI
Rastinehad A.R., Anastos H., Wajswol E., Winoker J.S., Sfakianos J.P., Doppalapudi S.K., Carrick M.R., Knauer C.J., Taouli B., Lewis S.C., et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. USA. 2019;116:18590–18596. doi: 10.1073/pnas.1906929116. PubMed DOI PMC
Kumthekar P., Rademaker A., Ko C., Dixit K., Schwartz M.A., Sonabend A.M., Sharp L., Lukas R.V., Stupp R., Horbinski C., et al. A phase 0 first-in-human study using NU-0129: A gold base spherical nucleic acid (SNA) nanoconjugate targeting BCL2L12 in recurrent glioblastoma patients. J. Clin. Oncol. 2019;37:3012. doi: 10.1200/JCO.2019.37.15_suppl.3012. DOI
Barillo D.J., Marx D.E. Silver in medicine: A brief history BC 335 to present. Burns. 2014;40((Suppl. S1)):S3–S8. doi: 10.1016/j.burns.2014.09.009. PubMed DOI
Xu L., Wang Y.Y., Huang J., Chen C.Y., Wang Z.X., Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10:8996–9031. doi: 10.7150/thno.45413. PubMed DOI PMC
Ge L., Li Q., Wang M., Ouyang J., Li X., Xing M.M. Nanosilver particles in medical applications: Synthesis, performance, and toxicity. Int. J. Nanomed. 2014;9:2399–2407. doi: 10.2147/IJN.S55015. PubMed DOI PMC
Zhang X.F., Liu Z.G., Shen W., Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016;17:1534. doi: 10.3390/ijms17091534. PubMed DOI PMC
Syafiuddin A., Salmiati, Salim M.R., Beng Hong Kueh A., Hadibarata T., Nur H. A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. J. Chin. Chem. Soc. 2017;64:732–756. doi: 10.1002/jccs.201700067. DOI
Zhang Q., Li N., Goebl J., Lu Z., Yin Y. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? J. Am. Chem. Soc. 2011;133:18931–18939. doi: 10.1021/ja2080345. PubMed DOI
Roldán M.V., Pellegri N., de Sanctis O. Electrochemical Method for Ag-PEG Nanoparticles Synthesis. J. Nanopar. 2013;2013:524150. doi: 10.1155/2013/524150. DOI
Shirtcliffe N., Nickel U., Schneider S. Reproducible Preparation of Silver Sols with Small Particle Size Using Borohydride Reduction: For Use as Nuclei for Preparation of Larger Particles. J. Colloid Interface Sci. 1999;211:122–129. doi: 10.1006/jcis.1998.5980. PubMed DOI
Pinto V.V., Ferreira M.J., Silva R., Santos H.A., Silva F., Pereira C.M. Long time effect on the stability of silver nanoparticles in aqueous medium: Effect of the synthesis and storage conditions. Colloids Surf. A Physicochem. Eng. Asp. 2010;364:19–25. doi: 10.1016/j.colsurfa.2010.04.015. DOI
Dong X., Ji X., Wu H., Zhao L., Li J., Yang W. Shape Control of Silver Nanoparticles by Stepwise Citrate Reduction. J. Phys. Chem. C. 2009;113:6573–6576. doi: 10.1021/jp900775b. DOI
Zhang Y., Peng H., Huang W., Zhou Y., Yan D. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Colloid Interface Sci. 2008;325:371–376. doi: 10.1016/j.jcis.2008.05.063. PubMed DOI
He B., Tan J.J., Liew K.Y., Liu H. Synthesis of size controlled Ag nanoparticles. J. Mol. Catal. A Chem. 2004;221:121–126. doi: 10.1016/j.molcata.2004.06.025. DOI
Chakraborty B., Pal R., Ali M., Singh L.M., Shahidur Rahman D., Kumar Ghosh S., Sengupta M. Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma. Cell. Mol. Immunol. 2016;13:191–205. doi: 10.1038/cmi.2015.05. PubMed DOI PMC
Asanithi P., Chaiyakun S., Limsuwan P. Growth of Silver Nanoparticles by DC Magnetron Sputtering. J. Nanomater. 2012;2012:963609. doi: 10.1155/2012/963609. DOI
Tien D.-C., Tseng K.-H., Liao C.-Y., Huang J.-C., Tsung T.-T. Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J. Alloys Compd. 2008;463:408–411. doi: 10.1016/j.jallcom.2007.09.048. DOI
Lee S.H., Jun B.H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019;20:865. doi: 10.3390/ijms20040865. PubMed DOI PMC
Patra S., Mukherjee S., Barui A.K., Ganguly A., Sreedhar B., Patra C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C. 2015;53:298–309. doi: 10.1016/j.msec.2015.04.048. PubMed DOI
Li G., He D., Qian Y., Guan B., Gao S., Cui Y., Yokoyama K., Wang L. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int. J. Mol. Sci. 2012;13:466–476. doi: 10.3390/ijms13010466. PubMed DOI PMC
Mourato A., Gadanho M., Lino A.R., Tenreiro R. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg. Chem. Appl. 2011;2011:546074. doi: 10.1155/2011/546074. PubMed DOI PMC
Gurunathan S., Kalishwaralal K., Vaidyanathan R., Venkataraman D., Pandian S.R., Muniyandi J., Hariharan N., Eom S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B. 2009;74:328–335. doi: 10.1016/j.colsurfb.2009.07.048. PubMed DOI
Khodashenas B., Ghorbani H.R. Synthesis of silver nanoparticles with different shapes. Arab. J. Chem. 2019;12:1823–1838. doi: 10.1016/j.arabjc.2014.12.014. DOI
Lengke M.F., Fleet M.E., Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir. 2007;23:2694–2699. doi: 10.1021/la0613124. PubMed DOI
Kalimuthu K., Suresh Babu R., Venkataraman D., Bilal M., Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B. 2008;65:150–153. doi: 10.1016/j.colsurfb.2008.02.018. PubMed DOI
Gurunathan S., Han J.W., Eppakayala V., Jeyaraj M., Kim J.H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed. Res. Int. 2013;2013:535796. doi: 10.1155/2013/535796. PubMed DOI PMC
Guo D., Zhu L., Huang Z., Zhou H., Ge Y., Ma W., Wu J., Zhang X., Zhou X., Zhang Y., et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials. 2013;34:7884–7894. doi: 10.1016/j.biomaterials.2013.07.015. PubMed DOI
Asharani P., Sethu S., Lim H.K., Balaji G., Valiyaveettil S., Hande M.P. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr. 2012;3:2. doi: 10.1186/2041-9414-3-2. PubMed DOI PMC
Carlson C., Hussain S.M., Schrand A.M., Braydich-Stolle L.K., Hess K.L., Jones R.L., Schlager J.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 2008;112:13608–13619. doi: 10.1021/jp712087m. PubMed DOI
Zuberek M., Wojciechowska D., Krzyzanowski D., Meczynska-Wielgosz S., Kruszewski M., Grzelak A. Glucose availability determines silver nanoparticles toxicity in HepG2. J. Nanobiotechnol. 2015;13:72. doi: 10.1186/s12951-015-0132-2. PubMed DOI PMC
Gurunathan S., Park J.H., Han J.W., Kim J.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. Int. J. Nanomed. 2015;10:4203–4222. doi: 10.2147/IJN.S83953. PubMed DOI PMC
Tran Q.H., Nguyen V.Q., Le A.-T. Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013;4:033001. doi: 10.1088/2043-6262/4/3/033001. DOI
Locatelli E., Broggi F., Ponti J., Marmorato P., Franchini F., Lena S., Franchini M.C. Lipophilic silver nanoparticles and their polymeric entrapment into targeted-PEG-based micelles for the treatment of glioblastoma. Adv. Healthc. Mater. 2012;1:342–347. doi: 10.1002/adhm.201100047. PubMed DOI
Mukherjee S., Chowdhury D., Kotcherlakota R., Patra S., B V., Bhadra M.P., Sreedhar B., Patra C.R. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system) Theranostics. 2014;4:316–335. doi: 10.7150/thno.7819. PubMed DOI PMC
Farrag N.S., El-Sabagh H.A., Al-Mahallawi A.M., Amin A.M., AbdEl-Bary A., Mamdouh W. Comparative study on radiolabeling and biodistribution of core-shell silver/polymeric nanoparticles-based theranostics for tumor targeting. Int. J. Pharm. 2017;529:123–133. doi: 10.1016/j.ijpharm.2017.06.044. PubMed DOI
De Matteis V., Cascione M., Toma C.C., Leporatti S. Silver Nanoparticles: Synthetic Routes, In Vitro Toxicity and Theranostic Applications for Cancer Disease. Nanomaterials. 2018;8:319. doi: 10.3390/nano8050319. PubMed DOI PMC
Wei L., Lu J., Xu H., Patel A., Chen Z.S., Chen G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today. 2015;20:595–601. doi: 10.1016/j.drudis.2014.11.014. PubMed DOI PMC
Franco-Molina M.A., Mendoza-Gamboa E., Sierra-Rivera C.A., Gomez-Flores R.A., Zapata-Benavides P., Castillo-Tello P., Alcocer-Gonzalez J.M., Miranda-Hernandez D.F., Tamez-Guerra R.S., Rodriguez-Padilla C. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J. Exp. Clin. Cancer Res. 2010;29:148. doi: 10.1186/1756-9966-29-148. PubMed DOI PMC
Appadurai P., Rathinasamy K. Plumbagin-silver nanoparticle formulations enhance the cellular uptake of plumbagin and its antiproliferative activities. IET Nanobiotechnol. 2015;9:264–272. doi: 10.1049/iet-nbt.2015.0008. PubMed DOI
Mahmood M., Casciano D.A., Mocan T., Iancu C., Xu Y., Mocan L., Iancu D.T., Dervishi E., Li Z., Abdalmuhsen M., et al. Cytotoxicity and biological effects of functional nanomaterials delivered to various cell lines. J. Appl. Toxicol. JAT. 2010;30:74–83. doi: 10.1002/jat.1475. PubMed DOI
Sadat Shandiz S.A., Shafiee Ardestani M., Shahbazzadeh D., Assadi A., Ahangari Cohan R., Asgary V., Salehi S. Novel imatinib-loaded silver nanoparticles for enhanced apoptosis of human breast cancer MCF-7 cells. Artif. Cells Nanomed. Biotechnol. 2017;45:1–10. doi: 10.1080/21691401.2016.1202257. PubMed DOI
Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers. Int. J. Nanomed. 2012;7:3445–3471. doi: 10.2147/IJN.S30320. PubMed DOI PMC
Demirer G.S., Okur A.C., Kizilel S. Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J. Mater. Chem. B. 2015;3:7831–7849. doi: 10.1039/C5TB00931F. PubMed DOI
Bayda S., Hadla M., Palazzolo S., Riello P., Corona G., Toffoli G., Rizzolio F. Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic. Curr. Med. Chem. 2018;25:4269–4303. doi: 10.2174/0929867325666171229141156. PubMed DOI
Ling D., Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small. 2013;9:1450–1466. doi: 10.1002/smll.201202111. PubMed DOI
Veiseh O., Gunn J.W., Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 2010;62:284–304. doi: 10.1016/j.addr.2009.11.002. PubMed DOI PMC
Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008;108:2064–2110. doi: 10.1021/cr068445e. PubMed DOI
LaMer V.K., Dinegar R.H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc. 2002;72:4847–4854. doi: 10.1021/ja01167a001. DOI
Inouye K., Endo R., Otsuka Y., Miyashiro K., Kaneko K., Ishikawa T. Oxygenation of ferrous ions in reversed micelle and reversed microemulsion. J. Phys. Chem. 2002;86:1465–1469. doi: 10.1021/j100397a051. DOI
Lee Y., Lee J., Bae C.J., Park J.G., Noh H.J., Park J.H., Hyeon T. Large-Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles Using Reverse Micelles as Nanoreactors under Reflux Conditions. Adv. Funct. Mater. 2005;15:503–509. doi: 10.1002/adfm.200400187. DOI
Zhi J., Wang Y., Lu Y., Ma J., Luo G. In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React. Funct. Polym. 2006;66:1552–1558. doi: 10.1016/j.reactfunctpolym.2006.05.006. DOI
Chen D., Xu R. Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. MRS Bull. 1998;33:1015–1021. doi: 10.1016/S0025-5408(98)00073-7. DOI
Sun S., Zeng H., Robinson D.B., Raoux S., Rice P.M., Wang S.X., Li G. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004;126:273–279. doi: 10.1021/ja0380852. PubMed DOI
Mahmoudi M., Simchi A., Imani M., Shokrgozar M.A., Milani A.S., Hafeli U.O., Stroeve P. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf. B Biointerfaces. 2010;75:300–309. doi: 10.1016/j.colsurfb.2009.08.044. PubMed DOI
Mahmoudi M., Simchi A., Imani M., Milani A.S., Stroeve P. An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: A new toxicity identification procedure. Nanotechnology. 2009;20:225104. doi: 10.1088/0957-4484/20/22/225104. PubMed DOI
Singh N., Jenkins G.J., Asadi R., Doak S.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION) Nano Rev. 2010;1:5358. doi: 10.3402/nano.v1i0.5358. PubMed DOI PMC
Stroh A., Zimmer C., Gutzeit C., Jakstadt M., Marschinke F., Jung T., Pilgrimm H., Grune T. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic. Biol. Med. 2004;36:976–984. doi: 10.1016/j.freeradbiomed.2004.01.016. PubMed DOI
Sadeghiani N., Barbosa L.S., Silva L.P., Azevedo R.B., Morais P.C., Lacava Z.G.M. Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J. Magn. Magn. Mater. 2005;289:466–468. doi: 10.1016/j.jmmm.2004.11.131. DOI
Hafeli U.O., Riffle J.S., Harris-Shekhawat L., Carmichael-Baranauskas A., Mark F., Dailey J.P., Bardenstein D. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol. Pharm. 2009;6:1417–1428. doi: 10.1021/mp900083m. PubMed DOI
Hola K., Markova Z., Zoppellaro G., Tucek J., Zboril R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 2015;33:1162–1176. doi: 10.1016/j.biotechadv.2015.02.003. PubMed DOI
Lin J., Zhou W., Kumbhar A., Wiemann J., Fang J., Carpenter E.E., O’Connor C.J. Gold-Coated Iron (Fe@Au) Nanoparticles: Synthesis, Characterization, and Magnetic Field-Induced Self-Assembly. J. Solid State Chem. 2001;159:26–31. doi: 10.1006/jssc.2001.9117. DOI
Caro C., Gamez F., Quaresma P., Paez-Munoz J.M., Dominguez A., Pearson J.R., Pernia Leal M., Beltran A.M., Fernandez-Afonso Y., De la Fuente J.M., et al. Fe3O4-Au Core-Shell Nanoparticles as a Multimodal Platform for In Vivo Imaging and Focused Photothermal Therapy. Pharmaceutics. 2021;13:416. doi: 10.3390/pharmaceutics13030416. PubMed DOI PMC
Schellenberger E.A., Weissleder R., Josephson L. Optimal modification of annexin V with fluorescent dyes. Chembiochem Eur. J. Chem. Biol. 2004;5:271–274. doi: 10.1002/cbic.200300741. PubMed DOI
von Maltzahn G., Ren Y., Park J.H., Min D.H., Kotamraju V.R., Jayakumar J., Fogal V., Sailor M.J., Ruoslahti E., Bhatia S.N. In vivo tumor cell targeting with “click” nanoparticles. Bioconjug. Chem. 2008;19:1570–1578. doi: 10.1021/bc800077y. PubMed DOI PMC
Hein C.D., Liu X.M., Wang D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res. 2008;25:2216–2230. doi: 10.1007/s11095-008-9616-1. PubMed DOI PMC
Steitz B., Hofmann H., Kamau S.W., Hassa P.O., Hottiger M.O., von Rechenberg B., Hofmann-Amtenbrink M., Petri-Fink A. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction. J. Magn. Magn. Mater. 2007;311:300–305. doi: 10.1016/j.jmmm.2006.10.1194. DOI
McBain S.C., Yiu H.H.P., El Haj A., Dobson J. Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J. Mater. Chem. 2007;17:2561. doi: 10.1039/b617402g. DOI
Gunn J., Wallen H., Veiseh O., Sun C., Fang C., Cao J., Yee C., Zhang M. A multimodal targeting nanoparticle for selectively labeling T cells. Small. 2008;4:712–715. doi: 10.1002/smll.200701103. PubMed DOI PMC
Lübbe A.S., Bergemann C., Huhnt W., Fricke T., Riess H., Brock J.W., Huhn D. Preclinical experiences with magnetic drug targeting: Tolerance and efficacy. Cancer Res. 1996;56:4694–4701. PubMed
Johannsen M., Thiesen B., Wust P., Jordan A. Magnetic nanoparticle hyperthermia for prostate cancer. Int. J. Hyperth. 2010;26:790–795. doi: 10.3109/02656731003745740. PubMed DOI
Ulbrich K., Hola K., Subr V., Bakandritsos A., Tucek J., Zboril R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI
Maier-Hauff K., Ulrich F., Nestler D., Niehoff H., Wust P., Thiesen B., Orawa H., Budach V., Jordan A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol. 2011;103:317–324. doi: 10.1007/s11060-010-0389-0. PubMed DOI PMC
Zhang Q., Yang M., Zhu Y., Mao C. Metallic Nanoclusters for Cancer Imaging and Therapy. Curr. Med. Chem. 2018;25:1379–1396. doi: 10.2174/0929867324666170331122757. PubMed DOI PMC
Tao Y., Li M., Ren J., Qu X. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015;44:8636–8663. doi: 10.1039/C5CS00607D. PubMed DOI
Santiago-Gonzalez B., Monguzzi A., Caputo M., Villa C., Prato M., Santambrogio C., Torrente Y., Meinardi F., Brovelli S. Metal Nanoclusters with Synergistically Engineered Optical and Buffering Activity of Intracellular Reactive Oxygen Species by Compositional and Supramolecular Design. Sci. Rep. 2017;7:5976. doi: 10.1038/s41598-017-05156-9. PubMed DOI PMC
Li H., Li H., Wan A. Luminescent gold nanoclusters for in vivo tumor imaging. Analyst. 2020;145:348–363. doi: 10.1039/C9AN01598A. PubMed DOI
Pan M., Liang M., Sun J., Liu X., Wang F. Lighting Up Fluorescent Silver Clusters via Target-Catalyzed Hairpin Assembly for Amplified Biosensing. Langmuir. 2018;34:14851–14857. doi: 10.1021/acs.langmuir.8b01576. PubMed DOI
Romeo M.V., López-Martínez E., Berganza-Granda J., Goñi-de-Cerio F., Cortajarena A.L. Biomarker sensing platforms based on fluorescent metal nanoclusters. Nanoscale Adv. 2021;3:1331–1341. doi: 10.1039/D0NA00796J. PubMed DOI PMC
Lu Y., Chen W. Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012;41:3594–3623. doi: 10.1039/c2cs15325d. PubMed DOI
Shang L., Dong S., Nienhaus G.U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today. 2011;6:401–418. doi: 10.1016/j.nantod.2011.06.004. DOI
Higaki T., Zeng C., Chen Y., Hussain E., Jin R. Controlling the crystalline phases (FCC, HCP and BCC) of thiolate-protected gold nanoclusters by ligand-based strategies. CrystEngComm. 2016;18:6979–6986. doi: 10.1039/C6CE01325B. DOI
Adhikari B., Banerjee A. Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and HgIISensing. Chem. Mater. 2010;22:4364–4371. doi: 10.1021/cm1001253. DOI
Negishi Y., Nobusada K., Tsukuda T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005;127:5261–5270. doi: 10.1021/ja042218h. PubMed DOI
Han B., Wang E. DNA-templated fluorescent silver nanoclusters. Anal. Bioanal. Chem. 2012;402:129–138. doi: 10.1007/s00216-011-5307-6. PubMed DOI
Liu J. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. TrAC Trends Anal. Chem. 2014;58:99–111. doi: 10.1016/j.trac.2013.12.014. DOI
Wang Y., Chen J., Irudayaraj J. Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS Nano. 2011;5:9718–9725. doi: 10.1021/nn2032177. PubMed DOI
Zhang X.D., Chen J., Luo Z., Wu D., Shen X., Song S.S., Sun Y.M., Liu P.X., Zhao J., Huo S., et al. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthc. Mater. 2014;3:133–141. doi: 10.1002/adhm.201300189. PubMed DOI
Yu Y., Geng J., Ong E.Y., Chellappan V., Tan Y.N. Bovine Serum Albulmin Protein-Templated Silver Nanocluster (BSA-Ag13): An Effective Singlet Oxygen Generator for Photodynamic Cancer Therapy. Adv. Healthc. Mater. 2016;5:2528–2535. doi: 10.1002/adhm.201600312. PubMed DOI
Goswami N., Luo Z., Yuan X., Leong D.T., Xie J. Engineering gold-based radiosensitizers for cancer radiotherapy. Mater. Horiz. 2017;4:817–831. doi: 10.1039/C7MH00451F. DOI
Song X.R., Goswami N., Yang H.H., Xie J. Functionalization of metal nanoclusters for biomedical applications. Analyst. 2016;141:3126–3140. doi: 10.1039/C6AN00773B. PubMed DOI
Zhang X.D., Luo Z., Chen J., Shen X., Song S., Sun Y., Fan S., Fan F., Leong D.T., Xie J. Ultrasmall Au10-12(SG)10-12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 2014;26:4565–4568. doi: 10.1002/adma.201400866. PubMed DOI
Zhang X.D., Luo Z., Chen J., Song S., Yuan X., Shen X., Wang H., Sun Y., Gao K., Zhang L., et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep. 2015;5:8669. doi: 10.1038/srep08669. PubMed DOI PMC
Cifuentes-Rius A., Ivask A., Das S., Penya-Auladell N., Fabregas L., Fletcher N.L., Houston Z.H., Thurecht K.J., Voelcker N.H. Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation. ACS Appl. Mater. Interfaces. 2017;9:41159–41167. doi: 10.1021/acsami.7b13100. PubMed DOI
Kim T.H., Kim M., Park H.S., Shin U.S., Gong M.S., Kim H.W. Size-dependent cellular toxicity of silver nanoparticles. J. Biomed. Mater. Res. A. 2012;100:1033–1043. doi: 10.1002/jbm.a.34053. PubMed DOI
Mironava T., Hadjiargyrou M., Simon M., Jurukovski V., Rafailovich M.H. Gold nanoparticles cellular toxicity and recovery: Effect of size, concentration and exposure time. Nanotoxicology. 2010;4:120–137. doi: 10.3109/17435390903471463. PubMed DOI
Fernandez T.D., Pearson J.R., Leal M.P., Torres M.J., Blanca M., Mayorga C., Le Guevel X. Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials. 2015;43:1–12. doi: 10.1016/j.biomaterials.2014.11.045. PubMed DOI
Ivleva E.A., Obraztsova E.A., Pavlova E.R., Morozova O.V., Ivanov D.G., Kononikhin A.S., Klinov D.V. Albumin-stabilized fluorescent metal nanoclusters: Fabrication, physico-chemical properties and cytotoxicity. Mater. Des. 2020;192:108771. doi: 10.1016/j.matdes.2020.108771. DOI
Cui L., Li C., Chen B., Huang H., Xia Q., Li X., Shen Z., Ge Z., Wang Y. Surface functionalized red fluorescent dual-metallic Au/Ag nanoclusters for endoplasmic reticulum imaging. Mikrochim. Acta. 2020;187:606. doi: 10.1007/s00604-020-04585-0. PubMed DOI
Zohrabi T., Hosseinkhani S. Ternary Nanocomplexes of Metallic Nanoclusters and Recombinant Peptides for Fluorescence Imaging and Enhanced Gene Delivery. Mol. Biotechnol. 2020;62:495–507. doi: 10.1007/s12033-020-00260-0. PubMed DOI
Zhao H., Chen M., Zhao Z., Zhu L., Yuan S. A multicomponent-based microemulsion for boosting ovarian cancer therapy through dual modification with transferrin and SA-R6H4. Drug Deliv. Transl. Res. 2021;11:1969–1982. doi: 10.1007/s13346-020-00859-5. PubMed DOI
Key J., Park K. Multicomponent, Tumor-Homing Chitosan Nanoparticles for Cancer Imaging and Therapy. Int. J. Mol. Sci. 2017;18:594. doi: 10.3390/ijms18030594. PubMed DOI PMC
Conte C., Monteiro P.F., Gurnani P., Stolnik S., Ungaro F., Quaglia F., Clarke P., Grabowska A., Kavallaris M., Alexander C. Multi-component bioresponsive nanoparticles for synchronous delivery of docetaxel and TUBB3 siRNA to lung cancer cells. Nanoscale. 2021;13:11414–11426. doi: 10.1039/D1NR02179F. PubMed DOI
Kutsevol N., Kuziv Y., Bezugla T., Virych P., Marynin A., Borikun T., Lukianova N., Virych P., Chekhun V. Application of new multicomponent nanosystems for overcoming doxorubicin resistance in breast cancer therapy. Appl. Nanosci. 2021;12:427–437. doi: 10.1007/s13204-020-01653-y. DOI
Peiris P.M., Toy R., Abramowski A., Vicente P., Tucci S., Bauer L., Mayer A., Tam M., Doolittle E., Pansky J., et al. Treatment of cancer micrometastasis using a multicomponent chain-like nanoparticle. J. Control. Release. 2014;173:51–58. doi: 10.1016/j.jconrel.2013.10.031. PubMed DOI PMC
Bothun G.D., Lelis A., Chen Y., Scully K., Anderson L.E., Stoner M.A. Multicomponent folate-targeted magnetoliposomes: Design, characterization, and cellular uptake. Nanomedicine. 2011;7:797–805. doi: 10.1016/j.nano.2011.02.007. PubMed DOI PMC
Matai I., Sachdev A., Gopinath P. Multicomponent 5-fluorouracil loaded PAMAM stabilized-silver nanocomposites synergistically induce apoptosis in human cancer cells. Biomater. Sci. 2015;3:457–468. doi: 10.1039/C4BM00360H. PubMed DOI
Zhang Y., Wang B., Zhao R., Zhang Q., Kong X. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;115:111099. doi: 10.1016/j.msec.2020.111099. PubMed DOI
Nan X., Zhang X., Liu Y., Zhou M., Chen X., Zhang X. Dual-Targeted Multifunctional Nanoparticles for Magnetic Resonance Imaging Guided Cancer Diagnosis and Therapy. ACS Appl. Mater. Interfaces. 2017;9:9986–9995. doi: 10.1021/acsami.6b16486. PubMed DOI
Chen T., Xu S., Zhao T., Zhu L., Wei D., Li Y., Zhang H., Zhao C. Gold nanocluster-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. ACS Appl. Mater. Interfaces. 2012;4:5766–5774. doi: 10.1021/am301223n. PubMed DOI
Ai J., Li J., Ga L., Yun G., Xu L., Wang E. Multifunctional near-infrared fluorescent nanoclusters for simultaneous targeted cancer imaging and photodynamic therapy. Sens. Actuators B. 2016;222:918–922. doi: 10.1016/j.snb.2015.09.026. DOI
Chen D., Luo Z., Li N., Lee J.Y., Xie J., Lu J. Amphiphilic Polymeric Nanocarriers with Luminescent Gold Nanoclusters for Concurrent Bioimaging and Controlled Drug Release. Adv. Funct. Mater. 2013;23:4324–4331. doi: 10.1002/adfm.201300411. DOI
Khandelia R., Bhandari S., Pan U.N., Ghosh S.S., Chattopadhyay A. Gold Nanocluster Embedded Albumin Nanoparticles for Two-Photon Imaging of Cancer Cells Accompanying Drug Delivery. Small. 2015;11:4075–4081. doi: 10.1002/smll.201500216. PubMed DOI
Zhou F., Feng B., Yu H., Wang D., Wang T., Liu J., Meng Q., Wang S., Zhang P., Zhang Z., et al. Cisplatin Prodrug-Conjugated Gold Nanocluster for Fluorescence Imaging and Targeted Therapy of the Breast Cancer. Theranostics. 2016;6:679–687. doi: 10.7150/thno.14556. PubMed DOI PMC
Yahia-Ammar A., Sierra D., Merola F., Hildebrandt N., Le Guevel X. Self-Assembled Gold Nanoclusters for Bright Fluorescence Imaging and Enhanced Drug Delivery. ACS Nano. 2016;10:2591–2599. doi: 10.1021/acsnano.5b07596. PubMed DOI
Li M., Huang L., Wang X., Song Z., Zhao W., Wang Y., Liu J. Direct generation of Ag nanoclusters on reduced graphene oxide nanosheets for efficient catalysis, antibacteria and photothermal anticancer applications. J. Colloid Interface Sci. 2018;529:444–451. doi: 10.1016/j.jcis.2018.06.028. PubMed DOI
Xu C., Shi S., Feng L., Chen F., Graves S.A., Ehlerding E.B., Goel S., Sun H., England C.G., Nickles R.J., et al. Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging. Nanoscale. 2016;8:12683–12692. doi: 10.1039/C5NR09193D. PubMed DOI PMC
Compton O.C., Nguyen S.T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small. 2010;6:711–723. doi: 10.1002/smll.200901934. PubMed DOI
Dash B.S., Jose G., Lu Y.J., Chen J.P. Functionalized Reduced Graphene Oxide as a Versatile Tool for Cancer Therapy. Int. J. Mol. Sci. 2021;22:2989. doi: 10.3390/ijms22062989. PubMed DOI PMC
Zhang Z., Guo C., Zhang S., He L., Wang M., Peng D., Tian J., Fang S. Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor. Biosens. Bioelectron. 2017;89:735–742. doi: 10.1016/j.bios.2016.11.019. PubMed DOI
Wong X.Y., Quesada-Gonzalez D., Manickam S., Muthoosamy K. Fluorescence “turn-off/turn-on” biosensing of metal ions by gold nanoclusters, folic acid and reduced graphene oxide. Anal. Chim. Acta. 2021;1175:338745. doi: 10.1016/j.aca.2021.338745. PubMed DOI
Bharti C., Nagaich U., Pal A.K., Gulati N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig. 2015;5:124–133. doi: 10.4103/2230-973X.160844. PubMed DOI PMC
Xu C., Lei C., Yu C. Mesoporous Silica Nanoparticles for Protein Protection and Delivery. Front. Chem. 2019;7:290. doi: 10.3389/fchem.2019.00290. PubMed DOI PMC
Mulikova T., Abduraimova A., Molkenova A., Em S., Duisenbayeva B., Han D.-W., Atabaev T.S. Mesoporous silica decorated with gold nanoparticles as a promising nanoprobe for effective CT X-ray attenuation and potential drug delivery. Nano-Struct. Nano-Objects. 2021;26:100712. doi: 10.1016/j.nanoso.2021.100712. DOI
Guo D., Bao Y., Zhang Y., Yang H., Chen L. Reduction-responsive Au decorated mesoporous silica-based nanoplatform for photodynamic-chemotherapy. Microporous Mesoporous Mater. 2020;292:109729. doi: 10.1016/j.micromeso.2019.109729. DOI
Ong C., Cha B.G., Kim J. Mesoporous Silica Nanoparticles Doped with Gold Nanoparticles for Combined Cancer Immunotherapy and Photothermal Therapy. ACS Appl. Bio Mater. 2019;2:3630–3638. doi: 10.1021/acsabm.9b00483. PubMed DOI
Croissant J.G., Qi C., Maynadier M., Cattoen X., Wong Chi Man M., Raehm L., Mongin O., Blanchard-Desce M., Garcia M., Gary-Bobo M., et al. Multifunctional Gold-Mesoporous Silica Nanocomposites for Enhanced Two-Photon Imaging and Therapy of Cancer Cells. Front. Mol. Biosci. 2016;3:1. doi: 10.3389/fmolb.2016.00001. PubMed DOI PMC
Huang P., Lin J., Wang S., Zhou Z., Li Z., Wang Z., Zhang C., Yue X., Niu G., Yang M., et al. Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials. 2013;34:4643–4654. doi: 10.1016/j.biomaterials.2013.02.063. PubMed DOI PMC
Zumaya A.L.V., Martynek D., Bautkinová T., Šoóš M., Ulbrich P., Raquez J.-M., Dendisová M., Merna J., Vilčáková J., Kopecký D., et al. Self-assembly of poly(L-lactide-co-glycolide) and magnetic nanoparticles into nanoclusters for controlled drug delivery. Eur. Polym. J. 2020;133:109795. doi: 10.1016/j.eurpolymj.2020.109795. DOI
Zumaya A.L.V., Ulbrich P., Vilčáková J., Dendisová M., Fulem M., Šoóš M., Hassouna F. Comparison between two multicomponent drug delivery systems based on PEGylated-poly (l-lactide-co-glycolide) and superparamagnetic nanoparticles: Nanoparticulate versus nanocluster systems. J. Drug Deliv. Sci. Technol. 2021;64:102643. doi: 10.1016/j.jddst.2021.102643. DOI
Hasa J., Hanus J., Stepanek F. Magnetically Controlled Liposome Aggregates for On-Demand Release of Reactive Payloads. ACS Appl. Mater. Interfaces. 2018;10:20306–20314. doi: 10.1021/acsami.8b03891. PubMed DOI
Codari F., Moscatelli D., Furlan M., Lattuada M., Morbidelli M., Soos M. Synthesis of hetero-nanoclusters: The case of polymer-magnetite systems. Langmuir. 2014;30:2266–2273. doi: 10.1021/la5001039. PubMed DOI
Xu S., Sun C., Guo J., Xu K., Wang C. Biopolymer-directed synthesis of high-surface-area magnetite colloidal nanocrystal clusters for dual drug delivery in prostate cancer. J. Mater. Chem. 2012;22:19067–19075. doi: 10.1039/c2jm34877b. DOI
Liu J., Sun Z., Deng Y., Zou Y., Li C., Guo X., Xiong L., Gao Y., Li F., Zhao D. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem. Int. Ed. Engl. 2009;48:5875–5879. doi: 10.1002/anie.200901566. PubMed DOI
Li D., Tang J., Wei C., Guo J., Wang S., Chaudhary D., Wang C. Doxorubicin-conjugated mesoporous magnetic colloidal nanocrystal clusters stabilized by polysaccharide as a smart anticancer drug vehicle. Small. 2012;8:2690–2697. doi: 10.1002/smll.201200272. PubMed DOI
Dong F., Guo W., Bae J.H., Kim S.H., Ha C.S. Highly porous, water-soluble, superparamagnetic, and biocompatible magnetite nanocrystal clusters for targeted drug delivery. Chemistry. 2011;17:12802–12808. doi: 10.1002/chem.201101110. PubMed DOI