Nanocluster-Based Drug Delivery and Theranostic Systems: Towards Cancer Therapy

. 2022 Mar 16 ; 14 (6) : . [epub] 20220316

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35335518

Grantová podpora
22-07164S Czech Science Foundation

Over the last decades, the global life expectancy of the population has increased, and so, consequently, has the risk of cancer development. Despite the improvement in cancer therapies (e.g., drug delivery systems (DDS) and theranostics), in many cases recurrence continues to be a challenging issue. In this matter, the development of nanotechnology has led to an array of possibilities for cancer treatment. One of the most promising therapies focuses on the assembly of hierarchical structures in the form of nanoclusters, as this approach involves preparing individual building blocks while avoiding handling toxic chemicals in the presence of biomolecules. This review aims at presenting an overview of the major advances made in developing nanoclusters based on polymeric nanoparticles (PNPs) and/or inorganic NPs. The preparation methods and the features of the NPs used in the construction of the nanoclusters were described. Afterwards, the design, fabrication and properties of the two main classes of nanoclusters, namely noble-metal nanoclusters and hybrid (i.e., hetero) nanoclusters and their mode of action in cancer therapy, were summarized.

Zobrazit více v PubMed

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Cancer Research UK Worlwide Cancer Incidence Statistics. [(accessed on 27 February 2022)]. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer/incidence.

Misra R., Acharya S., Sahoo S.K. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discov. Today. 2010;15:842–850. doi: 10.1016/j.drudis.2010.08.006. PubMed DOI

Danhier F., Feron O., Preat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release. 2010;148:135–146. doi: 10.1016/j.jconrel.2010.08.027. PubMed DOI

Estanqueiro M., Amaral M.H., Conceicao J., Sousa Lobo J.M. Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids Surf. B. 2015;126:631–648. doi: 10.1016/j.colsurfb.2014.12.041. PubMed DOI

Din F.U., Aman W., Ullah I., Qureshi O.S., Mustapha O., Shafique S., Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 2017;12:7291–7309. doi: 10.2147/IJN.S146315. PubMed DOI PMC

Koo O.M., Rubinstein I., Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomedicine. 2005;1:193–212. doi: 10.1016/j.nano.2005.06.004. PubMed DOI

Anselmo A.C., Mitragotri S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019;4:e10143. doi: 10.1002/btm2.10143. PubMed DOI PMC

Doane T.L., Burda C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 2012;41:2885–2911. doi: 10.1039/c2cs15260f. PubMed DOI

Moxley J.H., III, De Vita V.T., Brace K., Frei E., III. Intensive Combination Chemotherapy and X-irradiation in Hodgkin’s Disease. Cancer Res. 1967;27:1258–1263. PubMed

Sadighian S., Rostamizadeh K., Hosseini-Monfared H., Hamidi M. Doxorubicin-conjugated core-shell magnetite nanoparticles as dual-targeting carriers for anticancer drug delivery. Colloids Surf. B Biointerfaces. 2014;117:406–413. doi: 10.1016/j.colsurfb.2014.03.001. PubMed DOI

Li X., Wang X., Zhang L., Chen H., Shi J. MBG/PLGA composite microspheres with prolonged drug release. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009;89:148–154. doi: 10.1002/jbm.b.31197. PubMed DOI

Zhao C., Song X., Jin W., Wu F., Zhang Q., Zhang M., Zhou N., Shen J. Image-guided cancer therapy using aptamer-functionalized cross-linked magnetic-responsive Fe3O4@carbon nanoparticles. Anal. Chim. Acta. 2019;1056:108–116. doi: 10.1016/j.aca.2018.12.045. PubMed DOI

Greco F., Vicent M.J. Combination therapy: Opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv. Drug Deliv. Rev. 2009;61:1203–1213. doi: 10.1016/j.addr.2009.05.006. PubMed DOI

Lee D.J., Park G.Y., Oh K.T., Oh N.M., Kwag D.S., Youn Y.S., Oh Y.T., Park J.W., Lee E.S. Multifunctional poly (lactide-co-glycolide) nanoparticles for luminescence/magnetic resonance imaging and photodynamic therapy. Int. J. Pharm. 2012;434:257–263. doi: 10.1016/j.ijpharm.2012.05.068. PubMed DOI

Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007;2:751–760. doi: 10.1038/nnano.2007.387. PubMed DOI

Baker J.R., Jr. Dendrimer-based nanoparticles for cancer therapy. Hematol. Am. Soc. Hematol. Educ. Program. 2009;2009:708–719. doi: 10.1182/asheducation-2009.1.708. PubMed DOI

Zhang N., Chen H., Liu A.Y., Shen J.J., Shah V., Zhang C., Hong J., Ding Y. Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy. Biomaterials. 2016;74:280–291. doi: 10.1016/j.biomaterials.2015.10.004. PubMed DOI

Dadwal A., Baldi A., Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol. 2018;46:295–305. doi: 10.1080/21691401.2018.1457039. PubMed DOI

Tang J., Shi H., Ma G., Luo L., Tang Z. Ultrasmall Au and Ag Nanoclusters for Biomedical Applications: A Review. Front. Bioeng. Biotechnol. 2020;8:1019. doi: 10.3389/fbioe.2020.01019. PubMed DOI PMC

Hossen S., Hossain M.K., Basher M.K., Mia M.N.H., Rahman M.T., Uddin M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019;15:1–18. doi: 10.1016/j.jare.2018.06.005. PubMed DOI PMC

Sun C., Zhang H., Li S., Zhang X., Cheng Q., Ding Y., Wang L.H., Wang R. Polymeric Nanomedicine with “Lego” Surface Allowing Modular Functionalization and Drug Encapsulation. ACS Appl. Mater. Interfaces. 2018;10:25090–25098. doi: 10.1021/acsami.8b06598. PubMed DOI

Jain R.K., Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010;7:653–664. doi: 10.1038/nrclinonc.2010.139. PubMed DOI PMC

Duncan R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer. 2006;6:688–701. doi: 10.1038/nrc1958. PubMed DOI

Stroh M., Zimmer J.P., Duda D.G., Levchenko T.S., Cohen K.S., Brown E.B., Scadden D.T., Torchilin V.P., Bawendi M.G., Fukumura D., et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med. 2005;11:678–682. doi: 10.1038/nm1247. PubMed DOI PMC

Wang H., Lu Z., Wang L., Guo T., Wu J., Wan J., Zhou L., Li H., Li Z., Jiang D., et al. New Generation Nanomedicines Constructed from Self-Assembling Small-Molecule Prodrugs Alleviate Cancer Drug Toxicity. Cancer Res. 2017;77:6963–6974. doi: 10.1158/0008-5472.CAN-17-0984. PubMed DOI

Chen J., Ding J., Wang Y., Cheng J., Ji S., Zhuang X., Chen X. Sequentially Responsive Shell-Stacked Nanoparticles for Deep Penetration into Solid Tumors. Adv. Mater. 2017;29:1701170. doi: 10.1002/adma.201701170. PubMed DOI

Yu Z., Yan B., Gao L., Dong C., Zhong J., D’Ortenzio M., Nguyen B., Seong Lee S., Hu X., Liang F. Targeted Delivery of Bleomycin: A Comprehensive Anticancer Review. Curr. Cancer Drug Targets. 2016;16:509–521. doi: 10.2174/1568009616666151130213910. PubMed DOI

Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392. PubMed

Sadat S.M.A., Jahan S.T., Haddadi A. Effects of Size and Surface Charge of Polymeric Nanoparticles on In Vitro and In Vivo Applications. J. Biomater. Nanobiotechnol. 2016;7:91–108. doi: 10.4236/jbnb.2016.72011. DOI

McNeeley K.M., Karathanasis E., Annapragada A.V., Bellamkonda R.V. Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials. 2009;30:3986–3995. doi: 10.1016/j.biomaterials.2009.04.012. PubMed DOI

Torchilin V.P., Rammohan R., Weissig V., Levchenko T.S. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. USA. 2001;98:8786–8791. doi: 10.1073/pnas.151247498. PubMed DOI PMC

Maeda T., Fujimoto K. A reduction-triggered delivery by a liposomal carrier possessing membrane-permeable ligands and a detachable coating. Colloids Surf. B. 2006;49:15–21. doi: 10.1016/j.colsurfb.2006.02.006. PubMed DOI

Patel J.K., Patel A.P. Biointeractions of Nanomaterials. CRC Press; Boca Raton, FL, USA: 2014. Toxicity of Nanomaterials on the Liver, Kidney, and Spleen.

Fernandez-Fernandez A., Manchanda R., Carvajal D.A., Lei T., Srinivasan S., McGoron A.J. Covalent IR820-PEG-diamine nanoconjugates for theranostic applications in cancer. Int. J. Nanomed. 2014;9:4631–4648. doi: 10.2147/IJN.S69550. PubMed DOI PMC

Duong T., Li X., Yang B., Schumann C., Albarqi H.A., Taratula O., Taratula O. Phototheranostic nanoplatform based on a single cyanine dye for image-guided combinatorial phototherapy. Nanomedicine. 2017;13:955–963. doi: 10.1016/j.nano.2016.11.005. PubMed DOI

Yuan A., Qiu X., Tang X., Liu W., Wu J., Hu Y. Self-assembled PEG-IR-780-C13 micelle as a targeting, safe and highly-effective photothermal agent for in vivo imaging and cancer therapy. Biomaterials. 2015;51:184–193. doi: 10.1016/j.biomaterials.2015.01.069. PubMed DOI

Palao-Suay R., Martin-Saavedra F.M., Rosa Aguilar M., Escudero-Duch C., Martin-Saldana S., Parra-Ruiz F.J., Rohner N.A., Thomas S.N., Vilaboa N., San Roman J. Photothermal and photodynamic activity of polymeric nanoparticles based on alpha-tocopheryl succinate-RAFT block copolymers conjugated to IR-780. Acta Biomater. 2017;57:70–84. doi: 10.1016/j.actbio.2017.05.028. PubMed DOI PMC

Guo F., Yu M., Wang J., Tan F., Li N. Smart IR780 Theranostic Nanocarrier for Tumor-Specific Therapy: Hyperthermia-Mediated Bubble-Generating and Folate-Targeted Liposomes. ACS Appl. Mater. Interfaces. 2015;7:20556–20567. doi: 10.1021/acsami.5b06552. PubMed DOI

Liu Q., Song L., Chen S., Gao J., Zhao P., Du J. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials. 2017;114:23–33. doi: 10.1016/j.biomaterials.2016.10.027. PubMed DOI

Li X., Li H., Yi W., Chen J., Liang B. Acid-triggered core cross-linked nanomicelles for targeted drug delivery and magnetic resonance imaging in liver cancer cells. Int. J. Nanomed. 2013;8:3019–3031. doi: 10.2147/IJN.S45767. PubMed DOI PMC

Yang X., Grailer J.J., Rowland I.J., Javadi A., Hurley S.A., Matson V.Z., Steeber D.A., Gong S. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano. 2010;4:6805–6817. doi: 10.1021/nn101670k. PubMed DOI

Qin J., Liu Q., Zhang J., Chen J., Chen S., Zhao Y., Du J. Rationally Separating the Corona and Membrane Functions of Polymer Vesicles for Enhanced T(2) MRI and Drug Delivery. ACS Appl. Mater. Interfaces. 2015;7:14043–14052. doi: 10.1021/acsami.5b03222. PubMed DOI

Schleich N., Sibret P., Danhier P., Ucakar B., Laurent S., Muller R.N., Jerome C., Gallez B., Preat V., Danhier F. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int. J. Pharm. 2013;447:94–101. doi: 10.1016/j.ijpharm.2013.02.042. PubMed DOI

Oh I.H., Min H.S., Li L., Tran T.H., Lee Y.K., Kwon I.C., Choi K., Kim K., Huh K.M. Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials. 2013;34:6454–6463. doi: 10.1016/j.biomaterials.2013.05.017. PubMed DOI

Wang H., Di J., Sun Y., Fu J., Wei Z., Matsui H., del C. Alonso A., Zhou S. Biocompatible PEG-Chitosan@Carbon Dots Hybrid Nanogels for Two-Photon Fluorescence Imaging, Near-Infrared Light/pH Dual-Responsive Drug Carrier, and Synergistic Therapy. Adv. Funct. Mater. 2015;25:5537–5547. doi: 10.1002/adfm.201501524. DOI

Tan L., Wan A., Li H. Ag2S quantum dots conjugated chitosan nanospheres toward light-triggered nitric oxide release and near-infrared fluorescence imaging. Langmuir. 2013;29:15032–15042. doi: 10.1021/la403028j. PubMed DOI

Avramovic N., Mandic B., Savic-Radojevic A., Simic T. Polymeric Nanocarriers of Drug Delivery Systems in Cancer Therapy. Pharmaceutics. 2020;12:298. doi: 10.3390/pharmaceutics12040298. PubMed DOI PMC

Szczech M., Szczepanowicz K. Polymeric Core-Shell Nanoparticles Prepared by Spontaneous Emulsification Solvent Evaporation and Functionalized by the Layer-by-Layer Method. Nanomaterials. 2020;10:496. doi: 10.3390/nano10030496. PubMed DOI PMC

Bechnak L., Khalil C., Kurdi R.E., Khnayzer R.S., Patra D. Curcumin encapsulated colloidal amphiphilic block co-polymeric nanocapsules: Colloidal nanocapsules enhance photodynamic and anticancer activities of curcumin. Photochem. Photobiol. Sci. 2020;19:1088–1098. doi: 10.1039/D0PP00032A. PubMed DOI

Douglas D. Pharmaceutical Nanotechnology: A Therapeutic Revolution. Int. J. Pharm. Sci. Dev. Res. 2020;6:009–011. doi: 10.17352/ijpsdr.000027. DOI

Zielinska A., Carreiro F., Oliveira A.M., Neves A., Pires B., Venkatesh D.N., Durazzo A., Lucarini M., Eder P., Silva A.M., et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules. 2020;25:3731. doi: 10.3390/molecules25163731. PubMed DOI PMC

Bukchin A., Sanchez-Navarro M., Carrera A., Teixidó M., Carcaboso A.M., Giralt E., Sosnik A. Amphiphilic Polymeric Nanoparticles Modified with a Retro-Enantio Peptide Shuttle Target the Brain of Mice. Chem. Mater. 2020;32:7679–7693. doi: 10.1021/acs.chemmater.0c01696. DOI

Şenel B., Öztürk A.A. New approaches to tumor therapy with siRNA-decorated and chitosan-modified PLGA nanoparticles. Drug Dev. Ind. Pharm. 2019;45:1835–1848. doi: 10.1080/03639045.2019.1665061. PubMed DOI

Chen S.H., Liu T.I., Chuang C.L., Chen H.H., Chiang W.H., Chiu H.C. Alendronate/folic acid-decorated polymeric nanoparticles for hierarchically targetable chemotherapy against bone metastatic breast cancer. J. Mater. Chem. B. 2020;8:3789–3800. doi: 10.1039/D0TB00046A. PubMed DOI

Hao X., Gai W., Wang L., Zhao J., Sun D., Yang F., Jiang H., Feng Y. 5-Boronopicolinic acid-functionalized polymeric nanoparticles for targeting drug delivery and enhanced tumor therapy. Mater. Sci. Eng. C. 2021;119:111553. doi: 10.1016/j.msec.2020.111553. PubMed DOI

Sun C.Y., Shen S., Xu C.F., Li H.J., Liu Y., Cao Z.T., Yang X.Z., Xia J.X., Wang J. Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery. J. Am. Chem. Soc. 2015;137:15217–15224. doi: 10.1021/jacs.5b09602. PubMed DOI

Qiao J.-B., Jang Y., Fan Q.-Q., Chang S.-H., Xing L., Cui P.-F., He Y.-J., Lee S., Hwang S., Cho M.-H., et al. Aerosol delivery of biocompatible dihydroergotamine-loaded PLGA-PSPE polymeric micelles for efficient lung cancer therapy. Polym. Chem. 2017;8:1540–1554. doi: 10.1039/C7PY00024C. DOI

Zhu J.J., Zhang X.X., Miao Y.Q., He S.F., Tian D.M., Yao X.S., Tang J.S., Gan Y. Delivery of acetylthevetin B, an antitumor cardiac glycoside, using polymeric micelles for enhanced therapeutic efficacy against lung cancer cells. Acta Pharmacol. Sin. 2017;38:290–300. doi: 10.1038/aps.2016.113. PubMed DOI PMC

Ma Y., Fan X., Li L. pH-sensitive polymeric micelles formed by doxorubicin conjugated prodrugs for co-delivery of doxorubicin and paclitaxel. Carbohydr. Polym. 2016;137:19–29. doi: 10.1016/j.carbpol.2015.10.050. PubMed DOI

Boateng F., Ngwa W. Delivery of Nanoparticle-Based Radiosensitizers for Radiotherapy Applications. Int. J. Mol. Sci. 2019;21:273. doi: 10.3390/ijms21010273. PubMed DOI PMC

Kim S., Im S., Park E.Y., Lee J., Kim C., Kim T.I., Kim W.J. Drug-loaded titanium dioxide nanoparticle coated with tumor targeting polymer as a sonodynamic chemotherapeutic agent for anti-cancer therapy. Nanomedicine. 2020;24:102110. doi: 10.1016/j.nano.2019.102110. PubMed DOI

Li S., Saw P.E., Lin C., Nie Y., Tao W., Farokhzad O.C., Zhang L., Xu X. Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy. Biomaterials. 2020;234:119760. doi: 10.1016/j.biomaterials.2020.119760. PubMed DOI

Lee J.-Y., Chung S.-J., Cho H.-J., Kim D.-D. Phenylboronic Acid-Decorated Chondroitin Sulfate A-Based Theranostic Nanoparticles for Enhanced Tumor Targeting and Penetration. Adv. Funct. Mater. 2015;25:3705–3717. doi: 10.1002/adfm.201500680. DOI

Sun W., Fan J., Wang S., Kang Y., Du J., Peng X. Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors. ACS Appl. Mater. Interfaces. 2018;10:7832–7840. doi: 10.1021/acsami.7b19281. PubMed DOI

Hyun H., Park J., Willis K., Park J.E., Lyle L.T., Lee W., Yeo Y. Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors. Biomaterials. 2018;180:206–224. doi: 10.1016/j.biomaterials.2018.07.024. PubMed DOI PMC

Yan J., He W., Yan S., Niu F., Liu T., Ma B., Shao Y., Yan Y., Yang G., Lu W., et al. Self-Assembled Peptide-Lanthanide Nanoclusters for Safe Tumor Therapy: Overcoming and Utilizing Biological Barriers to Peptide Drug Delivery. ACS Nano. 2018;12:2017–2026. doi: 10.1021/acsnano.8b00081. PubMed DOI

Heckert B., Banerjee T., Sulthana S., Naz S., Alnasser R., Thompson D., Normand G., Grimm J., Perez J.M., Santra S. Design and Synthesis of New Sulfur-Containing Hyperbranched Polymer and Theranostic Nanomaterials for Bimodal Imaging and Treatment of Cancer. ACS Macro Lett. 2017;6:235–240. doi: 10.1021/acsmacrolett.7b00008. PubMed DOI PMC

Jin C., Wang K., Oppong-Gyebi A., Hu J. Application of Nanotechnology in Cancer Diagnosis and Therapy—A Mini-Review. Int. J. Med. Sci. 2020;17:2964–2973. doi: 10.7150/ijms.49801. PubMed DOI PMC

Busseron E., Ruff Y., Moulin E., Giuseppone N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale. 2013;5:7098–7140. doi: 10.1039/c3nr02176a. PubMed DOI

Kamaly N., Xiao Z., Valencia P.M., Radovic-Moreno A.F., Farokhzad O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev. 2012;41:2971–3010. doi: 10.1039/c2cs15344k. PubMed DOI PMC

Park T.G., Jeong J.H., Kim S.W. Current status of polymeric gene delivery systems. Adv. Drug Deliv. Rev. 2006;58:467–486. doi: 10.1016/j.addr.2006.03.007. PubMed DOI

Dinarvand R., Sepehri N., Manoochehri S., Rouhani H., Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int. J. Nanomed. 2011;6:877–895. doi: 10.2147/IJN.S18905. PubMed DOI PMC

Rasal R.M., Janorkar A.V., Hirt D.E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010;35:338–356. doi: 10.1016/j.progpolymsci.2009.12.003. DOI

Kim S., Yun G., Khan S., Kim J., Murray J., Lee Y.M., Kim W.J., Lee G., Kim S., Shetty D., et al. Cucurbit[6]uril-based polymer nanocapsules as a non-covalent and modular bioimaging platform for multimodal in vivo imaging. Mater. Horiz. 2017;4:450–455. doi: 10.1039/C7MH00038C. DOI

Park K.M., Suh K., Jung H., Lee D.W., Ahn Y., Kim J., Baek K., Kim K. Cucurbituril-based nanoparticles: A new efficient vehicle for targeted intracellular delivery of hydrophobic drugs. Chem. Commun. 2009:71–73. doi: 10.1039/B815009E. PubMed DOI

Park K.M., Lee D.W., Sarkar B., Jung H., Kim J., Ko Y.H., Lee K.E., Jeon H., Kim K. Reduction-sensitive, robust vesicles with a non-covalently modifiable surface as a multifunctional drug-delivery platform. Small. 2010;6:1430–1441. doi: 10.1002/smll.201000293. PubMed DOI

Kim E., Kim D., Jung H., Lee J., Paul S., Selvapalam N., Yang Y., Lim N., Park C.G., Kim K. Inside Cover: Facile, Template-Free Synthesis of Stimuli-Responsive Polymer Nanocapsules for Targeted Drug Delivery (Angew. Chem. Int. Ed. 26/2010) Angew. Chem. Int. Ed. Engl. 2010;49:4316. doi: 10.1002/anie.201002201. PubMed DOI

Huang H.C., Barua S., Sharma G., Dey S.K., Rege K. Inorganic nanoparticles for cancer imaging and therapy. J. Control. Release. 2011;155:344–357. doi: 10.1016/j.jconrel.2011.06.004. PubMed DOI

Daraee H., Eatemadi A., Abbasi E., Fekri Aval S., Kouhi M., Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016;44:410–422. doi: 10.3109/21691401.2014.955107. PubMed DOI

Page Faulk W., Malcolm Taylor G. Communication to the editors. Immunochemistry. 1971;8:1081–1083. doi: 10.1016/0019-2791(71)90496-4. PubMed DOI

Siddique S., Chow J.C.L. Gold Nanoparticles for Drug Delivery and Cancer Therapy. Appl. Sci. 2020;10:3824. doi: 10.3390/app10113824. DOI

Kong F.Y., Zhang J.W., Li R.F., Wang Z.X., Wang W.J., Wang W. Unique Roles of Gold Nanoparticles in Drug Delivery, Targeting and Imaging Applications. Molecules. 2017;22:1445. doi: 10.3390/molecules22091445. PubMed DOI PMC

Hauser E.A. In: Experiments in Colloid Chemistry. Hauser E.A., Lynn J.E., editors. McGraw-Hill; New York, NY, USA: 1940.

Herizchi R., Abbasi E., Milani M., Akbarzadeh A. Current methods for synthesis of gold nanoparticles. Artif. Cells Nanomed. Biotechnol. 2016;44:596–602. doi: 10.3109/21691401.2014.971807. PubMed DOI

Leff D.V., Brandt L., Heath J.R. Synthesis and Characterization of Hydrophobic, Organically-Soluble Gold Nanocrystals Functionalized with Primary Amines. Langmuir. 1996;12:4723–4730. doi: 10.1021/la960445u. DOI

Brust M., Walker M., Bethell D., Schiffrin D.J., Whyman R. Synthesis of thiol-derivatized gold nanoparticles in a twophase liquid-liquid system. J. Chem. Soc. Chem. Commun. 1994:801–802. doi: 10.1039/C39940000801. DOI

Shao Y., Jin Y., Dong S. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem. Commun. 2004:1104–1105. doi: 10.1039/b315732f. PubMed DOI

Wang Y., Black K.C., Luehmann H., Li W., Zhang Y., Cai X., Wan D., Liu S.Y., Li M., Kim P., et al. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano. 2013;7:2068–2077. doi: 10.1021/nn304332s. PubMed DOI PMC

Vigderman L., Khanal B.P., Zubarev E.R. Functional gold nanorods: Synthesis, self-assembly, and sensing applications. Adv. Mater. 2012;24:4811–4841, 5014. doi: 10.1002/adma.201201690. PubMed DOI

Elahi N., Kamali M., Baghersad M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta. 2018;184:537–556. doi: 10.1016/j.talanta.2018.02.088. PubMed DOI

Xu Z.-C., Shen C.-M., Xiao C.-W., Yang T.-Z., Zhang H.-R., Li J.-Q., Li H.-L., Gao H.-J. Wet chemical synthesis of gold nanoparticles using silver seeds: A shape control from nanorods to hollow spherical nanoparticles. Nanotechnology. 2007;18:115608. doi: 10.1088/0957-4484/18/11/115608. DOI

Pang B., Yang X., Xia Y. Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics. Nanomedicine. 2016;11:1715–1728. doi: 10.2217/nnm-2016-0109. PubMed DOI PMC

Beik J., Khateri M., Khosravi Z., Kamrava S.K., Kooranifar S., Ghaznavi H., Shakeri-Zadeh A. Gold nanoparticles in combinatorial cancer therapy strategies. Coord. Chem. Rev. 2019;387:299–324. doi: 10.1016/j.ccr.2019.02.025. DOI

Lin L., Fan Y., Gao F., Jin L., Li D., Sun W., Li F., Qin P., Shi Q., Shi X., et al. UTMD-Promoted Co-Delivery of Gemcitabine and miR-21 Inhibitor by Dendrimer-Entrapped Gold Nanoparticles for Pancreatic Cancer Therapy. Theranostics. 2018;8:1923–1939. doi: 10.7150/thno.22834. PubMed DOI PMC

Goncalves A.S.C., Rodrigues C.F., Moreira A.F., Correia I.J. Strategies to improve the photothermal capacity of gold-based nanomedicines. Acta Biomater. 2020;116:105–137. doi: 10.1016/j.actbio.2020.09.008. PubMed DOI

Okoampah E., Mao Y., Yang S., Sun S., Zhou C. Gold nanoparticles-biomembrane interactions: From fundamental to simulation. Colloids Surf. B. 2020;196:111312. doi: 10.1016/j.colsurfb.2020.111312. PubMed DOI

Khan J.A., Pillai B., Das T.K., Singh Y., Maiti S. Molecular effects of uptake of gold nanoparticles in HeLa cells. Chembiochem Eur. J. Chem. Biol. 2007;8:1237–1240. doi: 10.1002/cbic.200700165. PubMed DOI

Kim D., Park S., Lee J.H., Jeong Y.Y., Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 2007;129:7661–7665. doi: 10.1021/ja071471p. PubMed DOI

Hussain Z., Khan S., Imran M., Sohail M., Shah S.W.A., de Matas M. PEGylation: A promising strategy to overcome challenges to cancer-targeted nanomedicines: A review of challenges to clinical transition and promising resolution. Drug Deliv. Transl. Res. 2019;9:721–734. doi: 10.1007/s13346-019-00631-4. PubMed DOI

Cho W.S., Cho M., Jeong J., Choi M., Cho H.Y., Han B.S., Kim S.H., Kim H.O., Lim Y.T., Chung B.H., et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 2009;236:16–24. doi: 10.1016/j.taap.2008.12.023. PubMed DOI

Khlebtsov N., Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011;40:1647–1671. doi: 10.1039/C0CS00018C. PubMed DOI

Fratoddi I., Venditti I., Cametti C., Russo M.V. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015;8:1771–1799. doi: 10.1007/s12274-014-0697-3. DOI

Lopez-Chaves C., Soto-Alvaredo J., Montes-Bayon M., Bettmer J., Llopis J., Sanchez-Gonzalez C. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine. 2018;14:1–12. doi: 10.1016/j.nano.2017.08.011. PubMed DOI

Jia Y.-P., Ma B.-Y., Wei X.-W., Qian Z.-Y. The in vitro and in vivo toxicity of gold nanoparticles. Chin. Chem. Lett. 2017;28:691–702. doi: 10.1016/j.cclet.2017.01.021. DOI

Murphy C.J., Gole A.M., Stone J.W., Sisco P.N., Alkilany A.M., Goldsmith E.C., Baxter S.C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 2008;41:1721–1730. doi: 10.1021/ar800035u. PubMed DOI

Salmaso S., Caliceti P., Amendola V., Meneghetti M., Magnusson J.P., Pasparakis G., Alexander C. Cell up-take control of gold nanoparticles functionalized with a thermoresponsive polymer. J. Mater. Chem. 2009;19:1608–1615. doi: 10.1039/b816603j. DOI

Zhou M., Wang B., Rozynek Z., Xie Z., Fossum J.O., Yu X., Raaen S. Minute synthesis of extremely stable gold nanoparticles. Nanotechnology. 2009;20:505606. doi: 10.1088/0957-4484/20/50/505606. PubMed DOI

Patel P.C., Giljohann D.A., Daniel W.L., Zheng D., Prigodich A.E., Mirkin C.A. Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug. Chem. 2010;21:2250–2256. doi: 10.1021/bc1002423. PubMed DOI PMC

Zhao J., Babiuch K., Lu H., Dag A., Gottschaldt M., Stenzel M.H. Fructose-coated nanoparticles: A promising drug nanocarrier for triple-negative breast cancer therapy. Chem. Commun. 2014;50:15928–15931. doi: 10.1039/C4CC06651K. PubMed DOI

Li G., Li D., Zhang L., Zhai J., Wang E. One-step synthesis of folic acid protected gold nanoparticles and their receptor-mediated intracellular uptake. Chemistry. 2009;15:9868–9873. doi: 10.1002/chem.200900914. PubMed DOI

Melancon M.P., Lu W., Yang Z., Zhang R., Cheng Z., Elliot A.M., Stafford J., Olson T., Zhang J.Z., Li C. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol. Cancer Ther. 2008;7:1730–1739. doi: 10.1158/1535-7163.MCT-08-0016. PubMed DOI PMC

Daniel M.C., Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004;104:293–346. doi: 10.1021/cr030698+. PubMed DOI

Gibson J.D., Khanal B.P., Zubarev E.R. Paclitaxel-functionalized gold nanoparticles. J. Am. Chem. Soc. 2007;129:11653–11661. doi: 10.1021/ja075181k. PubMed DOI

Goel R., Shah N., Visaria R., Paciotti G.F., Bischof J.C. Biodistribution of TNF-alpha-coated gold nanoparticles in an in vivo model system. Nanomedicine. 2009;4:401–410. doi: 10.2217/nnm.09.21. PubMed DOI PMC

Lee C.S., Kim H., Yu J., Yu S.H., Ban S., Oh S., Jeong D., Im J., Baek M.J., Kim T.H. Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy. Eur. J. Med. Chem. 2017;142:416–423. doi: 10.1016/j.ejmech.2017.08.063. PubMed DOI

Chen Y.H., Tsai C.Y., Huang P.Y., Chang M.Y., Cheng P.C., Chou C.H., Chen D.H., Wang C.R., Shiau A.L., Wu C.L. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol. Pharm. 2007;4:713–722. doi: 10.1021/mp060132k. PubMed DOI

Xuan M., Shao J., Dai L., Li J., He Q. Macrophage Cell Membrane Camouflaged Au Nanoshells for in Vivo Prolonged Circulation Life and Enhanced Cancer Photothermal Therapy. ACS Appl. Mater. Interfaces. 2016;8:9610–9618. doi: 10.1021/acsami.6b00853. PubMed DOI

Yang S., You Q., Yang L., Li P., Lu Q., Wang S., Tan F., Ji Y., Li N. Rodlike MSN@Au Nanohybrid-Modified Supermolecular Photosensitizer for NIRF/MSOT/CT/MR Quadmodal Imaging-Guided Photothermal/Photodynamic Cancer Therapy. ACS Appl. Mater. Interfaces. 2019;11:6777–6788. doi: 10.1021/acsami.8b19565. PubMed DOI

Lal S., Clare S.E., Halas N.J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008;41:1842–1851. doi: 10.1021/ar800150g. PubMed DOI

Hirsch L.R., Stafford R.J., Bankson J.A., Sershen S.R., Rivera B., Price R.E., Hazle J.D., Halas N.J., West J.L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA. 2003;100:13549–13554. doi: 10.1073/pnas.2232479100. PubMed DOI PMC

Li W., Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine. 2015;10:299–320. doi: 10.2217/nnm.14.169. PubMed DOI PMC

Fan M., Han Y., Gao S., Yan H., Cao L., Li Z., Liang X.J., Zhang J. Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics. 2020;10:4944–4957. doi: 10.7150/thno.42471. PubMed DOI PMC

El-Sayed I.H., Huang X., El-Sayed M.A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005;5:829–834. doi: 10.1021/nl050074e. PubMed DOI

Sokolov K., Follen M., Aaron J., Pavlova I., Malpica A., Lotan R., Richards-Kortum R. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003;63:1999–2004. PubMed

Dixit V., Van den Bossche J., Sherman D.M., Thompson D.H., Andres R.P. Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug. Chem. 2006;17:603–609. doi: 10.1021/bc050335b. PubMed DOI

Svenson S. Theranostics: Are we there yet? Mol. Pharm. 2013;10:848–856. doi: 10.1021/mp300644n. PubMed DOI

Pitsillides C.M., Joe E.K., Wei X., Anderson R.R., Lin C.P. Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles. Biophys. J. 2003;84:4023–4032. doi: 10.1016/S0006-3495(03)75128-5. PubMed DOI PMC

Kang S., Bhang S.H., Hwang S., Yoon J.K., Song J., Jang H.K., Kim S., Kim B.S. Mesenchymal Stem Cells Aggregate and Deliver Gold Nanoparticles to Tumors for Photothermal Therapy. ACS Nano. 2015;9:9678–9690. doi: 10.1021/acsnano.5b02207. PubMed DOI

Wang Z., Yu N., Yu W., Xu H., Li X., Li M., Peng C., Wang Q., Zhu M., Chen Z. In situ growth of Au nanoparticles on natural melanin as biocompatible and multifunctional nanoagent for efficient tumor theranostics. J. Mater. Chem. B. 2019;7:133–142. doi: 10.1039/C8TB02724B. PubMed DOI

Guo J., Rahme K., He Y., Li L.L., Holmes J.D., O’Driscoll C.M. Gold nanoparticles enlighten the future of cancer theranostics. Int. J. Nanomed. 2017;12:6131–6152. doi: 10.2147/IJN.S140772. PubMed DOI PMC

Huang P., Lin J., Li W., Rong P., Wang Z., Wang S., Wang X., Sun X., Aronova M., Niu G., et al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew. Chem. Int. Ed. Engl. 2013;52:13958–13964. doi: 10.1002/anie.201308986. PubMed DOI PMC

Sztandera K., Gorzkiewicz M., Klajnert-Maculewicz B. Gold Nanoparticles in Cancer Treatment. Mol. Pharm. 2019;16:1–23. doi: 10.1021/acs.molpharmaceut.8b00810. PubMed DOI

Rastinehad A.R., Anastos H., Wajswol E., Winoker J.S., Sfakianos J.P., Doppalapudi S.K., Carrick M.R., Knauer C.J., Taouli B., Lewis S.C., et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. USA. 2019;116:18590–18596. doi: 10.1073/pnas.1906929116. PubMed DOI PMC

Kumthekar P., Rademaker A., Ko C., Dixit K., Schwartz M.A., Sonabend A.M., Sharp L., Lukas R.V., Stupp R., Horbinski C., et al. A phase 0 first-in-human study using NU-0129: A gold base spherical nucleic acid (SNA) nanoconjugate targeting BCL2L12 in recurrent glioblastoma patients. J. Clin. Oncol. 2019;37:3012. doi: 10.1200/JCO.2019.37.15_suppl.3012. DOI

Barillo D.J., Marx D.E. Silver in medicine: A brief history BC 335 to present. Burns. 2014;40((Suppl. S1)):S3–S8. doi: 10.1016/j.burns.2014.09.009. PubMed DOI

Xu L., Wang Y.Y., Huang J., Chen C.Y., Wang Z.X., Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10:8996–9031. doi: 10.7150/thno.45413. PubMed DOI PMC

Ge L., Li Q., Wang M., Ouyang J., Li X., Xing M.M. Nanosilver particles in medical applications: Synthesis, performance, and toxicity. Int. J. Nanomed. 2014;9:2399–2407. doi: 10.2147/IJN.S55015. PubMed DOI PMC

Zhang X.F., Liu Z.G., Shen W., Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016;17:1534. doi: 10.3390/ijms17091534. PubMed DOI PMC

Syafiuddin A., Salmiati, Salim M.R., Beng Hong Kueh A., Hadibarata T., Nur H. A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. J. Chin. Chem. Soc. 2017;64:732–756. doi: 10.1002/jccs.201700067. DOI

Zhang Q., Li N., Goebl J., Lu Z., Yin Y. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? J. Am. Chem. Soc. 2011;133:18931–18939. doi: 10.1021/ja2080345. PubMed DOI

Roldán M.V., Pellegri N., de Sanctis O. Electrochemical Method for Ag-PEG Nanoparticles Synthesis. J. Nanopar. 2013;2013:524150. doi: 10.1155/2013/524150. DOI

Shirtcliffe N., Nickel U., Schneider S. Reproducible Preparation of Silver Sols with Small Particle Size Using Borohydride Reduction: For Use as Nuclei for Preparation of Larger Particles. J. Colloid Interface Sci. 1999;211:122–129. doi: 10.1006/jcis.1998.5980. PubMed DOI

Pinto V.V., Ferreira M.J., Silva R., Santos H.A., Silva F., Pereira C.M. Long time effect on the stability of silver nanoparticles in aqueous medium: Effect of the synthesis and storage conditions. Colloids Surf. A Physicochem. Eng. Asp. 2010;364:19–25. doi: 10.1016/j.colsurfa.2010.04.015. DOI

Dong X., Ji X., Wu H., Zhao L., Li J., Yang W. Shape Control of Silver Nanoparticles by Stepwise Citrate Reduction. J. Phys. Chem. C. 2009;113:6573–6576. doi: 10.1021/jp900775b. DOI

Zhang Y., Peng H., Huang W., Zhou Y., Yan D. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Colloid Interface Sci. 2008;325:371–376. doi: 10.1016/j.jcis.2008.05.063. PubMed DOI

He B., Tan J.J., Liew K.Y., Liu H. Synthesis of size controlled Ag nanoparticles. J. Mol. Catal. A Chem. 2004;221:121–126. doi: 10.1016/j.molcata.2004.06.025. DOI

Chakraborty B., Pal R., Ali M., Singh L.M., Shahidur Rahman D., Kumar Ghosh S., Sengupta M. Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma. Cell. Mol. Immunol. 2016;13:191–205. doi: 10.1038/cmi.2015.05. PubMed DOI PMC

Asanithi P., Chaiyakun S., Limsuwan P. Growth of Silver Nanoparticles by DC Magnetron Sputtering. J. Nanomater. 2012;2012:963609. doi: 10.1155/2012/963609. DOI

Tien D.-C., Tseng K.-H., Liao C.-Y., Huang J.-C., Tsung T.-T. Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J. Alloys Compd. 2008;463:408–411. doi: 10.1016/j.jallcom.2007.09.048. DOI

Lee S.H., Jun B.H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019;20:865. doi: 10.3390/ijms20040865. PubMed DOI PMC

Patra S., Mukherjee S., Barui A.K., Ganguly A., Sreedhar B., Patra C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C. 2015;53:298–309. doi: 10.1016/j.msec.2015.04.048. PubMed DOI

Li G., He D., Qian Y., Guan B., Gao S., Cui Y., Yokoyama K., Wang L. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int. J. Mol. Sci. 2012;13:466–476. doi: 10.3390/ijms13010466. PubMed DOI PMC

Mourato A., Gadanho M., Lino A.R., Tenreiro R. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg. Chem. Appl. 2011;2011:546074. doi: 10.1155/2011/546074. PubMed DOI PMC

Gurunathan S., Kalishwaralal K., Vaidyanathan R., Venkataraman D., Pandian S.R., Muniyandi J., Hariharan N., Eom S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B. 2009;74:328–335. doi: 10.1016/j.colsurfb.2009.07.048. PubMed DOI

Khodashenas B., Ghorbani H.R. Synthesis of silver nanoparticles with different shapes. Arab. J. Chem. 2019;12:1823–1838. doi: 10.1016/j.arabjc.2014.12.014. DOI

Lengke M.F., Fleet M.E., Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir. 2007;23:2694–2699. doi: 10.1021/la0613124. PubMed DOI

Kalimuthu K., Suresh Babu R., Venkataraman D., Bilal M., Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B. 2008;65:150–153. doi: 10.1016/j.colsurfb.2008.02.018. PubMed DOI

Gurunathan S., Han J.W., Eppakayala V., Jeyaraj M., Kim J.H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed. Res. Int. 2013;2013:535796. doi: 10.1155/2013/535796. PubMed DOI PMC

Guo D., Zhu L., Huang Z., Zhou H., Ge Y., Ma W., Wu J., Zhang X., Zhou X., Zhang Y., et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials. 2013;34:7884–7894. doi: 10.1016/j.biomaterials.2013.07.015. PubMed DOI

Asharani P., Sethu S., Lim H.K., Balaji G., Valiyaveettil S., Hande M.P. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr. 2012;3:2. doi: 10.1186/2041-9414-3-2. PubMed DOI PMC

Carlson C., Hussain S.M., Schrand A.M., Braydich-Stolle L.K., Hess K.L., Jones R.L., Schlager J.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J. Phys. Chem. B. 2008;112:13608–13619. doi: 10.1021/jp712087m. PubMed DOI

Zuberek M., Wojciechowska D., Krzyzanowski D., Meczynska-Wielgosz S., Kruszewski M., Grzelak A. Glucose availability determines silver nanoparticles toxicity in HepG2. J. Nanobiotechnol. 2015;13:72. doi: 10.1186/s12951-015-0132-2. PubMed DOI PMC

Gurunathan S., Park J.H., Han J.W., Kim J.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. Int. J. Nanomed. 2015;10:4203–4222. doi: 10.2147/IJN.S83953. PubMed DOI PMC

Tran Q.H., Nguyen V.Q., Le A.-T. Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013;4:033001. doi: 10.1088/2043-6262/4/3/033001. DOI

Locatelli E., Broggi F., Ponti J., Marmorato P., Franchini F., Lena S., Franchini M.C. Lipophilic silver nanoparticles and their polymeric entrapment into targeted-PEG-based micelles for the treatment of glioblastoma. Adv. Healthc. Mater. 2012;1:342–347. doi: 10.1002/adhm.201100047. PubMed DOI

Mukherjee S., Chowdhury D., Kotcherlakota R., Patra S., B V., Bhadra M.P., Sreedhar B., Patra C.R. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system) Theranostics. 2014;4:316–335. doi: 10.7150/thno.7819. PubMed DOI PMC

Farrag N.S., El-Sabagh H.A., Al-Mahallawi A.M., Amin A.M., AbdEl-Bary A., Mamdouh W. Comparative study on radiolabeling and biodistribution of core-shell silver/polymeric nanoparticles-based theranostics for tumor targeting. Int. J. Pharm. 2017;529:123–133. doi: 10.1016/j.ijpharm.2017.06.044. PubMed DOI

De Matteis V., Cascione M., Toma C.C., Leporatti S. Silver Nanoparticles: Synthetic Routes, In Vitro Toxicity and Theranostic Applications for Cancer Disease. Nanomaterials. 2018;8:319. doi: 10.3390/nano8050319. PubMed DOI PMC

Wei L., Lu J., Xu H., Patel A., Chen Z.S., Chen G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today. 2015;20:595–601. doi: 10.1016/j.drudis.2014.11.014. PubMed DOI PMC

Franco-Molina M.A., Mendoza-Gamboa E., Sierra-Rivera C.A., Gomez-Flores R.A., Zapata-Benavides P., Castillo-Tello P., Alcocer-Gonzalez J.M., Miranda-Hernandez D.F., Tamez-Guerra R.S., Rodriguez-Padilla C. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J. Exp. Clin. Cancer Res. 2010;29:148. doi: 10.1186/1756-9966-29-148. PubMed DOI PMC

Appadurai P., Rathinasamy K. Plumbagin-silver nanoparticle formulations enhance the cellular uptake of plumbagin and its antiproliferative activities. IET Nanobiotechnol. 2015;9:264–272. doi: 10.1049/iet-nbt.2015.0008. PubMed DOI

Mahmood M., Casciano D.A., Mocan T., Iancu C., Xu Y., Mocan L., Iancu D.T., Dervishi E., Li Z., Abdalmuhsen M., et al. Cytotoxicity and biological effects of functional nanomaterials delivered to various cell lines. J. Appl. Toxicol. JAT. 2010;30:74–83. doi: 10.1002/jat.1475. PubMed DOI

Sadat Shandiz S.A., Shafiee Ardestani M., Shahbazzadeh D., Assadi A., Ahangari Cohan R., Asgary V., Salehi S. Novel imatinib-loaded silver nanoparticles for enhanced apoptosis of human breast cancer MCF-7 cells. Artif. Cells Nanomed. Biotechnol. 2017;45:1–10. doi: 10.1080/21691401.2016.1202257. PubMed DOI

Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers. Int. J. Nanomed. 2012;7:3445–3471. doi: 10.2147/IJN.S30320. PubMed DOI PMC

Demirer G.S., Okur A.C., Kizilel S. Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J. Mater. Chem. B. 2015;3:7831–7849. doi: 10.1039/C5TB00931F. PubMed DOI

Bayda S., Hadla M., Palazzolo S., Riello P., Corona G., Toffoli G., Rizzolio F. Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic. Curr. Med. Chem. 2018;25:4269–4303. doi: 10.2174/0929867325666171229141156. PubMed DOI

Ling D., Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small. 2013;9:1450–1466. doi: 10.1002/smll.201202111. PubMed DOI

Veiseh O., Gunn J.W., Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 2010;62:284–304. doi: 10.1016/j.addr.2009.11.002. PubMed DOI PMC

Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008;108:2064–2110. doi: 10.1021/cr068445e. PubMed DOI

LaMer V.K., Dinegar R.H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc. 2002;72:4847–4854. doi: 10.1021/ja01167a001. DOI

Inouye K., Endo R., Otsuka Y., Miyashiro K., Kaneko K., Ishikawa T. Oxygenation of ferrous ions in reversed micelle and reversed microemulsion. J. Phys. Chem. 2002;86:1465–1469. doi: 10.1021/j100397a051. DOI

Lee Y., Lee J., Bae C.J., Park J.G., Noh H.J., Park J.H., Hyeon T. Large-Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles Using Reverse Micelles as Nanoreactors under Reflux Conditions. Adv. Funct. Mater. 2005;15:503–509. doi: 10.1002/adfm.200400187. DOI

Zhi J., Wang Y., Lu Y., Ma J., Luo G. In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React. Funct. Polym. 2006;66:1552–1558. doi: 10.1016/j.reactfunctpolym.2006.05.006. DOI

Chen D., Xu R. Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. MRS Bull. 1998;33:1015–1021. doi: 10.1016/S0025-5408(98)00073-7. DOI

Sun S., Zeng H., Robinson D.B., Raoux S., Rice P.M., Wang S.X., Li G. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004;126:273–279. doi: 10.1021/ja0380852. PubMed DOI

Mahmoudi M., Simchi A., Imani M., Shokrgozar M.A., Milani A.S., Hafeli U.O., Stroeve P. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf. B Biointerfaces. 2010;75:300–309. doi: 10.1016/j.colsurfb.2009.08.044. PubMed DOI

Mahmoudi M., Simchi A., Imani M., Milani A.S., Stroeve P. An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: A new toxicity identification procedure. Nanotechnology. 2009;20:225104. doi: 10.1088/0957-4484/20/22/225104. PubMed DOI

Singh N., Jenkins G.J., Asadi R., Doak S.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION) Nano Rev. 2010;1:5358. doi: 10.3402/nano.v1i0.5358. PubMed DOI PMC

Stroh A., Zimmer C., Gutzeit C., Jakstadt M., Marschinke F., Jung T., Pilgrimm H., Grune T. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic. Biol. Med. 2004;36:976–984. doi: 10.1016/j.freeradbiomed.2004.01.016. PubMed DOI

Sadeghiani N., Barbosa L.S., Silva L.P., Azevedo R.B., Morais P.C., Lacava Z.G.M. Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J. Magn. Magn. Mater. 2005;289:466–468. doi: 10.1016/j.jmmm.2004.11.131. DOI

Hafeli U.O., Riffle J.S., Harris-Shekhawat L., Carmichael-Baranauskas A., Mark F., Dailey J.P., Bardenstein D. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol. Pharm. 2009;6:1417–1428. doi: 10.1021/mp900083m. PubMed DOI

Hola K., Markova Z., Zoppellaro G., Tucek J., Zboril R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 2015;33:1162–1176. doi: 10.1016/j.biotechadv.2015.02.003. PubMed DOI

Lin J., Zhou W., Kumbhar A., Wiemann J., Fang J., Carpenter E.E., O’Connor C.J. Gold-Coated Iron (Fe@Au) Nanoparticles: Synthesis, Characterization, and Magnetic Field-Induced Self-Assembly. J. Solid State Chem. 2001;159:26–31. doi: 10.1006/jssc.2001.9117. DOI

Caro C., Gamez F., Quaresma P., Paez-Munoz J.M., Dominguez A., Pearson J.R., Pernia Leal M., Beltran A.M., Fernandez-Afonso Y., De la Fuente J.M., et al. Fe3O4-Au Core-Shell Nanoparticles as a Multimodal Platform for In Vivo Imaging and Focused Photothermal Therapy. Pharmaceutics. 2021;13:416. doi: 10.3390/pharmaceutics13030416. PubMed DOI PMC

Schellenberger E.A., Weissleder R., Josephson L. Optimal modification of annexin V with fluorescent dyes. Chembiochem Eur. J. Chem. Biol. 2004;5:271–274. doi: 10.1002/cbic.200300741. PubMed DOI

von Maltzahn G., Ren Y., Park J.H., Min D.H., Kotamraju V.R., Jayakumar J., Fogal V., Sailor M.J., Ruoslahti E., Bhatia S.N. In vivo tumor cell targeting with “click” nanoparticles. Bioconjug. Chem. 2008;19:1570–1578. doi: 10.1021/bc800077y. PubMed DOI PMC

Hein C.D., Liu X.M., Wang D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res. 2008;25:2216–2230. doi: 10.1007/s11095-008-9616-1. PubMed DOI PMC

Steitz B., Hofmann H., Kamau S.W., Hassa P.O., Hottiger M.O., von Rechenberg B., Hofmann-Amtenbrink M., Petri-Fink A. Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction. J. Magn. Magn. Mater. 2007;311:300–305. doi: 10.1016/j.jmmm.2006.10.1194. DOI

McBain S.C., Yiu H.H.P., El Haj A., Dobson J. Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J. Mater. Chem. 2007;17:2561. doi: 10.1039/b617402g. DOI

Gunn J., Wallen H., Veiseh O., Sun C., Fang C., Cao J., Yee C., Zhang M. A multimodal targeting nanoparticle for selectively labeling T cells. Small. 2008;4:712–715. doi: 10.1002/smll.200701103. PubMed DOI PMC

Lübbe A.S., Bergemann C., Huhnt W., Fricke T., Riess H., Brock J.W., Huhn D. Preclinical experiences with magnetic drug targeting: Tolerance and efficacy. Cancer Res. 1996;56:4694–4701. PubMed

Johannsen M., Thiesen B., Wust P., Jordan A. Magnetic nanoparticle hyperthermia for prostate cancer. Int. J. Hyperth. 2010;26:790–795. doi: 10.3109/02656731003745740. PubMed DOI

Ulbrich K., Hola K., Subr V., Bakandritsos A., Tucek J., Zboril R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI

Maier-Hauff K., Ulrich F., Nestler D., Niehoff H., Wust P., Thiesen B., Orawa H., Budach V., Jordan A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol. 2011;103:317–324. doi: 10.1007/s11060-010-0389-0. PubMed DOI PMC

Zhang Q., Yang M., Zhu Y., Mao C. Metallic Nanoclusters for Cancer Imaging and Therapy. Curr. Med. Chem. 2018;25:1379–1396. doi: 10.2174/0929867324666170331122757. PubMed DOI PMC

Tao Y., Li M., Ren J., Qu X. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015;44:8636–8663. doi: 10.1039/C5CS00607D. PubMed DOI

Santiago-Gonzalez B., Monguzzi A., Caputo M., Villa C., Prato M., Santambrogio C., Torrente Y., Meinardi F., Brovelli S. Metal Nanoclusters with Synergistically Engineered Optical and Buffering Activity of Intracellular Reactive Oxygen Species by Compositional and Supramolecular Design. Sci. Rep. 2017;7:5976. doi: 10.1038/s41598-017-05156-9. PubMed DOI PMC

Li H., Li H., Wan A. Luminescent gold nanoclusters for in vivo tumor imaging. Analyst. 2020;145:348–363. doi: 10.1039/C9AN01598A. PubMed DOI

Pan M., Liang M., Sun J., Liu X., Wang F. Lighting Up Fluorescent Silver Clusters via Target-Catalyzed Hairpin Assembly for Amplified Biosensing. Langmuir. 2018;34:14851–14857. doi: 10.1021/acs.langmuir.8b01576. PubMed DOI

Romeo M.V., López-Martínez E., Berganza-Granda J., Goñi-de-Cerio F., Cortajarena A.L. Biomarker sensing platforms based on fluorescent metal nanoclusters. Nanoscale Adv. 2021;3:1331–1341. doi: 10.1039/D0NA00796J. PubMed DOI PMC

Lu Y., Chen W. Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012;41:3594–3623. doi: 10.1039/c2cs15325d. PubMed DOI

Shang L., Dong S., Nienhaus G.U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today. 2011;6:401–418. doi: 10.1016/j.nantod.2011.06.004. DOI

Higaki T., Zeng C., Chen Y., Hussain E., Jin R. Controlling the crystalline phases (FCC, HCP and BCC) of thiolate-protected gold nanoclusters by ligand-based strategies. CrystEngComm. 2016;18:6979–6986. doi: 10.1039/C6CE01325B. DOI

Adhikari B., Banerjee A. Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and HgIISensing. Chem. Mater. 2010;22:4364–4371. doi: 10.1021/cm1001253. DOI

Negishi Y., Nobusada K., Tsukuda T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005;127:5261–5270. doi: 10.1021/ja042218h. PubMed DOI

Han B., Wang E. DNA-templated fluorescent silver nanoclusters. Anal. Bioanal. Chem. 2012;402:129–138. doi: 10.1007/s00216-011-5307-6. PubMed DOI

Liu J. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. TrAC Trends Anal. Chem. 2014;58:99–111. doi: 10.1016/j.trac.2013.12.014. DOI

Wang Y., Chen J., Irudayaraj J. Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer. ACS Nano. 2011;5:9718–9725. doi: 10.1021/nn2032177. PubMed DOI

Zhang X.D., Chen J., Luo Z., Wu D., Shen X., Song S.S., Sun Y.M., Liu P.X., Zhao J., Huo S., et al. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthc. Mater. 2014;3:133–141. doi: 10.1002/adhm.201300189. PubMed DOI

Yu Y., Geng J., Ong E.Y., Chellappan V., Tan Y.N. Bovine Serum Albulmin Protein-Templated Silver Nanocluster (BSA-Ag13): An Effective Singlet Oxygen Generator for Photodynamic Cancer Therapy. Adv. Healthc. Mater. 2016;5:2528–2535. doi: 10.1002/adhm.201600312. PubMed DOI

Goswami N., Luo Z., Yuan X., Leong D.T., Xie J. Engineering gold-based radiosensitizers for cancer radiotherapy. Mater. Horiz. 2017;4:817–831. doi: 10.1039/C7MH00451F. DOI

Song X.R., Goswami N., Yang H.H., Xie J. Functionalization of metal nanoclusters for biomedical applications. Analyst. 2016;141:3126–3140. doi: 10.1039/C6AN00773B. PubMed DOI

Zhang X.D., Luo Z., Chen J., Shen X., Song S., Sun Y., Fan S., Fan F., Leong D.T., Xie J. Ultrasmall Au10-12(SG)10-12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 2014;26:4565–4568. doi: 10.1002/adma.201400866. PubMed DOI

Zhang X.D., Luo Z., Chen J., Song S., Yuan X., Shen X., Wang H., Sun Y., Gao K., Zhang L., et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep. 2015;5:8669. doi: 10.1038/srep08669. PubMed DOI PMC

Cifuentes-Rius A., Ivask A., Das S., Penya-Auladell N., Fabregas L., Fletcher N.L., Houston Z.H., Thurecht K.J., Voelcker N.H. Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation. ACS Appl. Mater. Interfaces. 2017;9:41159–41167. doi: 10.1021/acsami.7b13100. PubMed DOI

Kim T.H., Kim M., Park H.S., Shin U.S., Gong M.S., Kim H.W. Size-dependent cellular toxicity of silver nanoparticles. J. Biomed. Mater. Res. A. 2012;100:1033–1043. doi: 10.1002/jbm.a.34053. PubMed DOI

Mironava T., Hadjiargyrou M., Simon M., Jurukovski V., Rafailovich M.H. Gold nanoparticles cellular toxicity and recovery: Effect of size, concentration and exposure time. Nanotoxicology. 2010;4:120–137. doi: 10.3109/17435390903471463. PubMed DOI

Fernandez T.D., Pearson J.R., Leal M.P., Torres M.J., Blanca M., Mayorga C., Le Guevel X. Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials. 2015;43:1–12. doi: 10.1016/j.biomaterials.2014.11.045. PubMed DOI

Ivleva E.A., Obraztsova E.A., Pavlova E.R., Morozova O.V., Ivanov D.G., Kononikhin A.S., Klinov D.V. Albumin-stabilized fluorescent metal nanoclusters: Fabrication, physico-chemical properties and cytotoxicity. Mater. Des. 2020;192:108771. doi: 10.1016/j.matdes.2020.108771. DOI

Cui L., Li C., Chen B., Huang H., Xia Q., Li X., Shen Z., Ge Z., Wang Y. Surface functionalized red fluorescent dual-metallic Au/Ag nanoclusters for endoplasmic reticulum imaging. Mikrochim. Acta. 2020;187:606. doi: 10.1007/s00604-020-04585-0. PubMed DOI

Zohrabi T., Hosseinkhani S. Ternary Nanocomplexes of Metallic Nanoclusters and Recombinant Peptides for Fluorescence Imaging and Enhanced Gene Delivery. Mol. Biotechnol. 2020;62:495–507. doi: 10.1007/s12033-020-00260-0. PubMed DOI

Zhao H., Chen M., Zhao Z., Zhu L., Yuan S. A multicomponent-based microemulsion for boosting ovarian cancer therapy through dual modification with transferrin and SA-R6H4. Drug Deliv. Transl. Res. 2021;11:1969–1982. doi: 10.1007/s13346-020-00859-5. PubMed DOI

Key J., Park K. Multicomponent, Tumor-Homing Chitosan Nanoparticles for Cancer Imaging and Therapy. Int. J. Mol. Sci. 2017;18:594. doi: 10.3390/ijms18030594. PubMed DOI PMC

Conte C., Monteiro P.F., Gurnani P., Stolnik S., Ungaro F., Quaglia F., Clarke P., Grabowska A., Kavallaris M., Alexander C. Multi-component bioresponsive nanoparticles for synchronous delivery of docetaxel and TUBB3 siRNA to lung cancer cells. Nanoscale. 2021;13:11414–11426. doi: 10.1039/D1NR02179F. PubMed DOI

Kutsevol N., Kuziv Y., Bezugla T., Virych P., Marynin A., Borikun T., Lukianova N., Virych P., Chekhun V. Application of new multicomponent nanosystems for overcoming doxorubicin resistance in breast cancer therapy. Appl. Nanosci. 2021;12:427–437. doi: 10.1007/s13204-020-01653-y. DOI

Peiris P.M., Toy R., Abramowski A., Vicente P., Tucci S., Bauer L., Mayer A., Tam M., Doolittle E., Pansky J., et al. Treatment of cancer micrometastasis using a multicomponent chain-like nanoparticle. J. Control. Release. 2014;173:51–58. doi: 10.1016/j.jconrel.2013.10.031. PubMed DOI PMC

Bothun G.D., Lelis A., Chen Y., Scully K., Anderson L.E., Stoner M.A. Multicomponent folate-targeted magnetoliposomes: Design, characterization, and cellular uptake. Nanomedicine. 2011;7:797–805. doi: 10.1016/j.nano.2011.02.007. PubMed DOI PMC

Matai I., Sachdev A., Gopinath P. Multicomponent 5-fluorouracil loaded PAMAM stabilized-silver nanocomposites synergistically induce apoptosis in human cancer cells. Biomater. Sci. 2015;3:457–468. doi: 10.1039/C4BM00360H. PubMed DOI

Zhang Y., Wang B., Zhao R., Zhang Q., Kong X. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;115:111099. doi: 10.1016/j.msec.2020.111099. PubMed DOI

Nan X., Zhang X., Liu Y., Zhou M., Chen X., Zhang X. Dual-Targeted Multifunctional Nanoparticles for Magnetic Resonance Imaging Guided Cancer Diagnosis and Therapy. ACS Appl. Mater. Interfaces. 2017;9:9986–9995. doi: 10.1021/acsami.6b16486. PubMed DOI

Chen T., Xu S., Zhao T., Zhu L., Wei D., Li Y., Zhang H., Zhao C. Gold nanocluster-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. ACS Appl. Mater. Interfaces. 2012;4:5766–5774. doi: 10.1021/am301223n. PubMed DOI

Ai J., Li J., Ga L., Yun G., Xu L., Wang E. Multifunctional near-infrared fluorescent nanoclusters for simultaneous targeted cancer imaging and photodynamic therapy. Sens. Actuators B. 2016;222:918–922. doi: 10.1016/j.snb.2015.09.026. DOI

Chen D., Luo Z., Li N., Lee J.Y., Xie J., Lu J. Amphiphilic Polymeric Nanocarriers with Luminescent Gold Nanoclusters for Concurrent Bioimaging and Controlled Drug Release. Adv. Funct. Mater. 2013;23:4324–4331. doi: 10.1002/adfm.201300411. DOI

Khandelia R., Bhandari S., Pan U.N., Ghosh S.S., Chattopadhyay A. Gold Nanocluster Embedded Albumin Nanoparticles for Two-Photon Imaging of Cancer Cells Accompanying Drug Delivery. Small. 2015;11:4075–4081. doi: 10.1002/smll.201500216. PubMed DOI

Zhou F., Feng B., Yu H., Wang D., Wang T., Liu J., Meng Q., Wang S., Zhang P., Zhang Z., et al. Cisplatin Prodrug-Conjugated Gold Nanocluster for Fluorescence Imaging and Targeted Therapy of the Breast Cancer. Theranostics. 2016;6:679–687. doi: 10.7150/thno.14556. PubMed DOI PMC

Yahia-Ammar A., Sierra D., Merola F., Hildebrandt N., Le Guevel X. Self-Assembled Gold Nanoclusters for Bright Fluorescence Imaging and Enhanced Drug Delivery. ACS Nano. 2016;10:2591–2599. doi: 10.1021/acsnano.5b07596. PubMed DOI

Li M., Huang L., Wang X., Song Z., Zhao W., Wang Y., Liu J. Direct generation of Ag nanoclusters on reduced graphene oxide nanosheets for efficient catalysis, antibacteria and photothermal anticancer applications. J. Colloid Interface Sci. 2018;529:444–451. doi: 10.1016/j.jcis.2018.06.028. PubMed DOI

Xu C., Shi S., Feng L., Chen F., Graves S.A., Ehlerding E.B., Goel S., Sun H., England C.G., Nickles R.J., et al. Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging. Nanoscale. 2016;8:12683–12692. doi: 10.1039/C5NR09193D. PubMed DOI PMC

Compton O.C., Nguyen S.T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small. 2010;6:711–723. doi: 10.1002/smll.200901934. PubMed DOI

Dash B.S., Jose G., Lu Y.J., Chen J.P. Functionalized Reduced Graphene Oxide as a Versatile Tool for Cancer Therapy. Int. J. Mol. Sci. 2021;22:2989. doi: 10.3390/ijms22062989. PubMed DOI PMC

Zhang Z., Guo C., Zhang S., He L., Wang M., Peng D., Tian J., Fang S. Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor. Biosens. Bioelectron. 2017;89:735–742. doi: 10.1016/j.bios.2016.11.019. PubMed DOI

Wong X.Y., Quesada-Gonzalez D., Manickam S., Muthoosamy K. Fluorescence “turn-off/turn-on” biosensing of metal ions by gold nanoclusters, folic acid and reduced graphene oxide. Anal. Chim. Acta. 2021;1175:338745. doi: 10.1016/j.aca.2021.338745. PubMed DOI

Bharti C., Nagaich U., Pal A.K., Gulati N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig. 2015;5:124–133. doi: 10.4103/2230-973X.160844. PubMed DOI PMC

Xu C., Lei C., Yu C. Mesoporous Silica Nanoparticles for Protein Protection and Delivery. Front. Chem. 2019;7:290. doi: 10.3389/fchem.2019.00290. PubMed DOI PMC

Mulikova T., Abduraimova A., Molkenova A., Em S., Duisenbayeva B., Han D.-W., Atabaev T.S. Mesoporous silica decorated with gold nanoparticles as a promising nanoprobe for effective CT X-ray attenuation and potential drug delivery. Nano-Struct. Nano-Objects. 2021;26:100712. doi: 10.1016/j.nanoso.2021.100712. DOI

Guo D., Bao Y., Zhang Y., Yang H., Chen L. Reduction-responsive Au decorated mesoporous silica-based nanoplatform for photodynamic-chemotherapy. Microporous Mesoporous Mater. 2020;292:109729. doi: 10.1016/j.micromeso.2019.109729. DOI

Ong C., Cha B.G., Kim J. Mesoporous Silica Nanoparticles Doped with Gold Nanoparticles for Combined Cancer Immunotherapy and Photothermal Therapy. ACS Appl. Bio Mater. 2019;2:3630–3638. doi: 10.1021/acsabm.9b00483. PubMed DOI

Croissant J.G., Qi C., Maynadier M., Cattoen X., Wong Chi Man M., Raehm L., Mongin O., Blanchard-Desce M., Garcia M., Gary-Bobo M., et al. Multifunctional Gold-Mesoporous Silica Nanocomposites for Enhanced Two-Photon Imaging and Therapy of Cancer Cells. Front. Mol. Biosci. 2016;3:1. doi: 10.3389/fmolb.2016.00001. PubMed DOI PMC

Huang P., Lin J., Wang S., Zhou Z., Li Z., Wang Z., Zhang C., Yue X., Niu G., Yang M., et al. Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials. 2013;34:4643–4654. doi: 10.1016/j.biomaterials.2013.02.063. PubMed DOI PMC

Zumaya A.L.V., Martynek D., Bautkinová T., Šoóš M., Ulbrich P., Raquez J.-M., Dendisová M., Merna J., Vilčáková J., Kopecký D., et al. Self-assembly of poly(L-lactide-co-glycolide) and magnetic nanoparticles into nanoclusters for controlled drug delivery. Eur. Polym. J. 2020;133:109795. doi: 10.1016/j.eurpolymj.2020.109795. DOI

Zumaya A.L.V., Ulbrich P., Vilčáková J., Dendisová M., Fulem M., Šoóš M., Hassouna F. Comparison between two multicomponent drug delivery systems based on PEGylated-poly (l-lactide-co-glycolide) and superparamagnetic nanoparticles: Nanoparticulate versus nanocluster systems. J. Drug Deliv. Sci. Technol. 2021;64:102643. doi: 10.1016/j.jddst.2021.102643. DOI

Hasa J., Hanus J., Stepanek F. Magnetically Controlled Liposome Aggregates for On-Demand Release of Reactive Payloads. ACS Appl. Mater. Interfaces. 2018;10:20306–20314. doi: 10.1021/acsami.8b03891. PubMed DOI

Codari F., Moscatelli D., Furlan M., Lattuada M., Morbidelli M., Soos M. Synthesis of hetero-nanoclusters: The case of polymer-magnetite systems. Langmuir. 2014;30:2266–2273. doi: 10.1021/la5001039. PubMed DOI

Xu S., Sun C., Guo J., Xu K., Wang C. Biopolymer-directed synthesis of high-surface-area magnetite colloidal nanocrystal clusters for dual drug delivery in prostate cancer. J. Mater. Chem. 2012;22:19067–19075. doi: 10.1039/c2jm34877b. DOI

Liu J., Sun Z., Deng Y., Zou Y., Li C., Guo X., Xiong L., Gao Y., Li F., Zhao D. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem. Int. Ed. Engl. 2009;48:5875–5879. doi: 10.1002/anie.200901566. PubMed DOI

Li D., Tang J., Wei C., Guo J., Wang S., Chaudhary D., Wang C. Doxorubicin-conjugated mesoporous magnetic colloidal nanocrystal clusters stabilized by polysaccharide as a smart anticancer drug vehicle. Small. 2012;8:2690–2697. doi: 10.1002/smll.201200272. PubMed DOI

Dong F., Guo W., Bae J.H., Kim S.H., Ha C.S. Highly porous, water-soluble, superparamagnetic, and biocompatible magnetite nanocrystal clusters for targeted drug delivery. Chemistry. 2011;17:12802–12808. doi: 10.1002/chem.201101110. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...