Additive effects of light and branching on fruit size and chemical fruit quality of greenhouse tomatoes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37941676
PubMed Central
PMC10628543
DOI
10.3389/fpls.2023.1221163
Knihovny.cz E-zdroje
- Klíčová slova
- branching, fruit growth, fruit quality, light-emitting diode, plant hormones, sink-source relationship, tomato,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Greenhouse tomato growers face the challenge of balancing fruit size and chemical quality traits. This study focused on elucidating the interplay between plant branching and light management on these traits, while maintaining consistent shoot density. METHODS: We evaluated one- and two-shoot plants under varying top light intensities using high-pressure sodium lamps and light-emitting diode (LED) inter-lighting. RESULTS: The reduced yield in the two-shoot plants was mainly due to smaller fruit size, but not due to source strength limitations, as evaluated through leaf weight ratio (LWR), chlorophyll index, specific leaf area (SLA), leaf dry matter percentage, and stem soluble carbohydrate accumulation. Enhanced lighting improved fruit weight and various fruit traits, such as dry matter content, total soluble carbohydrate content, and phenolic content, for both one- and two-shoot plant types. Despite lower mean fruit weight, two-shoot plants exhibited higher values for chemical fruit quality traits, indicating that the fruit growth of two-shoot plants is not limited by the available carbohydrates (source strength), but by the fruit sink strength. Diurnal analysis of fruit growth showed that two-shoot plants had reduced expansion during light transitions. This drop in fruit expansion was not related to changes in root pressure (measured as xylem sap exudation from decapitated plants), but might be related to diminished xylem area in the stem joint of the two-shoot plants. The concentration of several hormones, including cytokinins, was lower in two-shoot plants, suggesting a reduced fruit sink capacity. DISCUSSION: The predominant impact of branching to two-shoot plants on sink capacity suggests that the fruit growth is not limited by available carbohydrates (source strength). Alongside the observation that light supplementation and branching exert independent additive effects on fruit size and chemical traits, this illuminates the potential to independently regulate these aspects in greenhouse tomato production.
Department of Food Science Aarhus University Aarhus Denmark
Division of Food Production and Society Norwegian Institute of Bioeconomy Research Ås Norway
Institute of Experimental Botany Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Agius C., Von Tucher S., Poppenberger B., Rozhon W. (2018). Quantification of sugars and organic acids in tomato fruits. MethodsX 5, 537–550. doi: 10.1016/j.mex.2018.05.014 PubMed DOI PMC
Ainsworth E. A., Gillespie K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2, 875–877. doi: 10.1038/nprot.2007.102 PubMed DOI
Alexou M., Peuke A. D. (2001). “Methods for xylem sap collection,” in Plant Mineral Nutrients: Methods and Protocols. Ed. Maathuis F. J. M. (Totowa, NJ: Humana Press; ), 195–207. doi: 10.1007/978-1-62703-152-3_13 PubMed DOI
Araki T., Kitano M., Okano K., Yoshida S., Eguchi T. (2001). Environmental effects on dynamics of fruit growth and photoassimilate translocation in tomato plants. (3) Effect of salt stress. Environ. Control Biol. 39, 53–58. doi: 10.2525/ecb1963.39.53 DOI
Aurand R., Faurobert M., Page D., Maingonnat J.-F., Brunel B., Causse M., et al. . (2012). Anatomical and biochemical trait network underlying genetic variations in tomato fruit texture. Euphytica 187, 99–116. doi: 10.1007/s10681-012-0760-7 DOI
Bangerth F. (1994). Response of cytokinin concentration in the xylem exudate of bean (Phaseolus vulgaris L.) plants to decapitation and auxin treatment, and relationship to apical dominance. Planta 194, 439–442. doi: 10.1007/BF00197546 DOI
Bangerth F., Ho L. C. (1984). Fruit position and fruit-set sequence in a truss as factors determining final size of tomato fruits. Ann. Bot. 53, 315–319. doi: 10.1093/oxfordjournals.aob.a086695 DOI
Bantis F., Smirnakou S., Ouzounis T., Koukounaras A., Ntagkas N., Radoglou K. (2018). Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic. 235, 437–451. doi: 10.1016/j.scienta.2018.02.058 DOI
Bertin N. (1995). Competition for assimilates and fruit position affect fruit set in indeterminate greenhouse tomato. Ann. Bot. 75, 55–65. doi: 10.1016/S0305-7364(05)80009-5 PubMed DOI PMC
Bertin N., Borel C., Brunel B., Cheniclet C., Causse M. (2003). Do genetic make-up and growth manipulation affect tomato fruit size by cell number, or cell size and DNA endoreduplication? Ann. Bot. 92, 415–424. doi: 10.1093/aob/mcg146 PubMed DOI PMC
Bertin N., Genard M. (2018). Tomato quality as influenced by preharvest factors. Sci. Hortic. 233, 264–276. doi: 10.1016/j.scienta.2018.01.056 DOI
Choat B., Gambetta G. A., Shackel K. A., Matthews M. A. (2009). Vascular function in grape berries across development and its relevance to apparent hydraulic isolation. Plant Physiol. 151, 1677–1687. doi: 10.1104/pp.109.143172 PubMed DOI PMC
Cockshull K. E., Graves C. J., Cave C. R. J. (1992). The influence of shading on yield of greenhouse tomatoes. J. Hort Sci. 67, 11–24. doi: 10.1080/00221589.1992.11516215 DOI
Coombe B. G. (1976). The development of fleshy fruits. Annu. Rev. Plant Physiol. 27, 207–228. doi: 10.1146/annurev.pp.27.060176.001231 DOI
Cui J., shao G., lu J., Keabetswe L. (2020). Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Sci. Agric. 77. doi: 10.1590/1678-992x-2018-0390 DOI
Davies J. N., Hobson G. E. (1981). The constituents of tomato fruit - the influence of environment, nutrition, and genotype. Crit. Rev. Food Sci. Nutr. 15, 205–280. doi: 10.1080/10408398109527317 PubMed DOI
Davis P. A., Burns C. (2016). Photobiology in protected horticulture. Food Energy Secur 5, 223–238. doi: 10.1002/fes3.97 DOI
Dorais M., Papadopoulos A., Gosselin A. (2001). “Greenhouse tomato fruit quality,” in Horticultural Reviews. Ed. Janick J. (New York, NY: John Wiley & Sons; ), 239–319.
Dumas Y., Dadomo M., Di Lucca G., Grolier P. (2003). Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agr 83, 369–382. doi: 10.1002/jsfa.1370 DOI
Ehret D. L., Ho L. C. (1986). Translocation of calcium in relation to tomato fruit growth. Ann. Bot. 58, 679–688. doi: 10.1093/oxfordjournals.aob.a087230 DOI
Evans J., Jakobsen I., Ögren E. (1993). Photosynthetic light-response curves. Planta 189, 191–200. doi: 10.1007/BF00195076 DOI
Gautier H., Massot C., Stevens R., Sérino S., Génard M. (2009). Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance. Ann. Bot. 103, 495–504. doi: 10.1093/aob/mcn233 PubMed DOI PMC
Gomez C., Morrow R. C., Bourget C. M., Massa G. D., Mitchell C. A. (2013). Comparison of intracanopy light-emitting diode towers and overhead high-pressure sodium lamps for supplemental lighting of greenhouse-grown tomatoes. HortTechnology 23, 93–98. doi: 10.21273/HORTTECH.23.1.93 DOI
Grierson D., Kader D. D. (1986). “Fruit ripening and quality,” in The tomato Crop (A Scientific Basis for Improvement). Eds. Atherton J. G., Rudich J. (Dordrecht: Springer; ), 1389–1393.
Gruda N. (2005). Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit. Rev. Plant Sci. 24, 227–247. doi: 10.1080/07352680591008628 DOI
Guichard S., Bertin N., Leonardi C., Gary C. (2001). Tomato fruit quality in relation to water and carbon fluxes. Agronomie 21, 385–392. doi: 10.1051/agro:2001131 DOI
Gujjar R. S., Supaibulwatana K. (2019). The mode of cytokinin functions assisting plant adaptations to osmotic stresses. Plants 8, 542. doi: 10.3390/plants8120542 PubMed DOI PMC
Han J., Kamber M., Pei J. (2012). Data mining: Concepts and techniques (Waltham, MA: Morgan Kaufmann; ).
Hanson P., Yang R.-Y., Wu J., Chen J.-T., Ledesma D., Tsou S., et al. . (2004). Variation for antioxidant activity and antioxidants in tomato. J. Am. Soc. Hort Sci. 129, 704–711. doi: 10.21273/JASHS.129.5.0704 DOI
Hanssens J., De Swaef T., Steppe K. (2015). High light decreases xylem contribution to fruit growth in tomato. Plant Cell Environ. 38, 487–498. doi: 10.1111/pce.12411 PubMed DOI
Herms D. A., Mattson W. J. (1992). The dilemma of plants - to grow or defend. Q Rev. Biol. 67, 283–335. doi: 10.1086/417659 DOI
Hernandez V., Hellin P., Fenoll J., Flores P. (2019). Interaction of nitrogen and shading on tomato yield and quality. Sci. Hortic. 255, 255–259. doi: 10.1016/j.scienta.2019.05.040 DOI
Hertog M., Ben-Arie R., Róth E., Nicolaıï B. M. (2004). Humidity and temperature effects on invasive and non-invasive firmness measures. Postharvest Biol. Technol. 33, 79–91. doi: 10.1016/j.postharvbio.2004.01.005 DOI
Ho L. C. (1996). The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation Ito the quality and yield of tomato. J. Exp. Bot. 47, 1239–1243. doi: 10.1093/jxb/47.Special_Issue.1239 PubMed DOI
Ho L. C., Hewitt J. D. (1986). “Fruit development,” in The tomato crop. Eds. Atherton J. G., Rudich J. (London: Chapman and Hall; ), 201–240.
Hocking P. J., Steer B. T. (1994). The distribution and identity of assimilates in tomato with special reference to stem reserves. Ann. Bot. 73, 315–325. doi: 10.1006/anbo.1994.1037 DOI
Kanayama Y. (2017). Sugar metabolism and fruit development in the tomato. Hort J. 86, 417–425. doi: 10.2503/hortj.OKD-IR01 DOI
Khan A. A., Sagar G. R. (1966). Distribution of 14C-labelled products of photosynthesis during the commercial life of the tomato crop. Ann. Bot. 30, 727–743. doi: 10.1093/oxfordjournals.aob.a084109 DOI
Kotov A. A., Kotova L. M. (2018). Auxin cytokinin interactions in the regulation of correlative inhibition in two-branched pea seedlings. J. Exp. Bot. 69, 2967–2978. doi: 10.1093/jxb/ery117 PubMed DOI PMC
Kudoyarova G. R., Vysotskaya L. B., Cherkozyanova A., Dodd I. C. (2006). Effect of partial rootzone drying on the concentration of zeatin-type cytokinins in tomato (Solanum lycopersicum L.) xylem sap and leaves. J. Exp. Bot. 58, 161–168. doi: 10.1093/jxb/erl116 PubMed DOI
Lang A., Ryan K. G. (1994). Vascular development and sap flow in apple pedicels. Ann. Bot. 74, 381–388. doi: 10.1006/anbo.1994.1131 DOI
Lemoine R., La Camera S., Atanassova R., Dedaldechamp F., Allario T., Pourtau N., et al. . (2013). Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4. doi: 10.3389/fpls.2013.00272 PubMed DOI PMC
Li C., Bangerth F. K. (1999). Autoinhibition of indoleacetic acid transport in the shoots of two branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol. Plant 106, 415–420. doi: 10.1034/j.1399-3054.1999.106409.x DOI
Li C., Bangerth F. (2003). Stimulatory effect of cytokinins and interaction with IAA on the release of lateral buds of pea plants from apical dominance. J. Plant Physiol. 160, 1059–1063. doi: 10.1078/0176-1617-01042 PubMed DOI
Li C. J., Guevara E., Herrera J., Bangerth F. (1995). Effect of apex excision and replacement by 1-naphthylacetic acid on cytokinin concentration and apical dominance in pea plant. Physiol. Plant 94, 465–469. doi: 10.1034/j.1399-3054.1995.940314.x DOI
Li T., Heuvelink E., Marcelis L. F. M. (2015). Quantifying the source-sink balance and carbohydrate content in three tomato cultivars. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00416 PubMed DOI PMC
Lopez M., Bousser A. S., Sissoeff I., Gaspar M., Lachaise B., Hoarau J., et al. . (2003). Diurnal regulation of water transport and aquaporin gene expression in maize roots: Contribution of PIP2 proteins. Plant Cell Physiol. 44, 1384–1395. doi: 10.1093/pcp/pcg168 PubMed DOI
Løvdal T., Olsen K. M., Slimestad R., Verheul M., Lillo C. (2010). Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71, 605–613. doi: 10.1016/j.phytochem.2009.12.014 PubMed DOI
Marcelis L. F. M., Broekhuijsen A. G. M., Meinen E., Nijs E., Raaphorst M. G. M. (2006). Quantification of the growth response to light quantity of greenhouse grown crops. Acta Hortic. 711, 97–103. doi: 10.17660/ActaHortic.2006.711.9 DOI
Matsuo S., Kikuchi K., Fukuda M., Honda I., Imanishi S. (2012). Roles and regulation of cytokinins in tomato fruit development. J. Exp. Bot. 63, 5569–5579. doi: 10.1093/jxb/ers207 PubMed DOI PMC
Max J., Schmidt L., Mutwiwa U., Kahlen K. (2016). Effects of shoot pruning and inflorescence thinning on plant growth, yield and fruit quality of greenhouse tomatoes in a tropical climate. J. Agric. Rural Dev. Trop. Subtrop 117, 45–56. doi: 10.15488/589 DOI
Mireille N., Jeannequin B., Sebillotte M. (1997). Vigour of greenhouse tomato plants (Lycopersicon esculentum Mill.): Analysis of the criteria used by growers and search for objective criteria. J. Hort Sci. 72, 821–829. doi: 10.1080/14620316.1997.11515576 DOI
Moco S., Capanoglu E., Tikunov Y., Bino R. J., Boyacioglu D., Hall R. D., et al. . (2007). Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J. Exp. Bot. 58, 4131–4146. doi: 10.1093/jxb/erm271 PubMed DOI
Nardozza S., Gamble J., Axten L. G., Wohlers M. W., Clearwater M. J., Feng J., et al. . (2011). Dry matter content and fruit size affect flavour and texture of novel Actinidia deliciosa genotypes. J. Sci. Food Agric. 91, 742–748. doi: 10.1002/jsfa.4245 PubMed DOI
Ntagkas N., De Vos R. C. H., Woltering E. J., Nicole C. C. S., Labrie C., Marcelis L. F. M. (2020). Modulation of the tomato fruit metabolome by LED light. Metabolites 10, 266. doi: 10.3390/metabo10060266 PubMed DOI PMC
Palmer W. M., Ru L., Jin Y., Patrick J. W., Ruan Y. L. (2015). Tomato ovary-to-fruit transition is characterized by a spatial shift of mRNAs for cell wall invertase and its inhibitor with the encoded proteins localized to sieve elements. Mol. Plant 8, 315–328. doi: 10.1016/j.molp.2014.12.019 PubMed DOI
Paponov M., Arakelyan A., Dobrev P. I., Verheul M. J., Paponov I. A. (2021). Nitrogen deficiency and synergism between continuous light and root ammonium supply modulate distinct but overlapping patterns of phytohormone composition in xylem sap of tomato plants. Plants 10, 573. doi: 10.3390/plants10030573 PubMed DOI PMC
Paponov M., Kechasov D., Lacek J., Verheul M. J., Paponov I. A. (2020). Supplemental light-emitting diode inter-lighting increases tomato fruit growth through enhanced photosynthetic light use efficiency and modulated root activity. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.01656 PubMed DOI PMC
Peeters A. J. M., Welles G. W. H. (2005). “Greenhouse tomato production,” in Tomatoes. Ed. Heuvelink E. (UK: CABI Publishing; ), 257–304.
Pek Z., Szuvandzsiev P., Nemenyi A., Helyes L., Lugasi A. (2011). The effect of natural light on changes in antioxidant content and color parameters of vine-ripened tomato (Solanum lycopersicum L.) fruits. Hortscience 46, 583–585. doi: 10.21273/hortsci.46.4.583 DOI
Rana N., Kumar M., Walia A., Sharma S. (2014). Tomato fruit quality under protected environment and open field conditions. Int. J. Bio-Resour Stress Manag 5, 422. doi: 10.5958/0976-4038.2014.00592.2 DOI
Ryle G. J. A., Powell C. E., Gorddon A. J. (1981). Patterns of 14C-labelled assimilate partitioning in red and white clover during vegetative growth. Ann. Bot. 47, 505–514. doi: 10.1093/oxfordjournals.aob.a086046 DOI
Saha P., Das N. R., Deb P., Suresh C. P. (2009). Effect of NAA and GA3 on yield and quality of tomato (Lycopersicon esculentum Mill.). Environ. Ecol. 27, 1048–1050. doi: 10.1016/j.jafr.2022.100450 DOI
Serio F., Gara L. D., Caretto S., Leo L., Santamaria P. (2004). Influence of an increased NaCl concentration on yield and quality of cherry tomato grown in posidonia (Posidonia oceanica (L) Delile). J. Sci. Food Agric. 84, 1885–1890. doi: 10.1002/jsfa.1883 DOI
Slimestad R., Verheul M. (2009). Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J. Sci. Food Agric. 89, 1255–1270. doi: 10.1002/jsfa.3605 DOI
Stewart A. J., Bozonnet S., Mullen W., Jenkins G. I., Lean M. E. J., Crozier A. (2000). Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem. 48, 2663–2669. doi: 10.1021/jf000070p PubMed DOI
Van De Wal B., Van De Put H., Hanssens J., Steppe K. (2017). Modelling the effects of osmotic stress on tomato fruit development. Acta Hortic. 1154, 201–206. doi: 10.17660/ActaHortic.2017.1154.26 DOI
Vargas P., Duarte L., Silva E., Zecchini A., Soares R., Grava De Godoy L. (2017). Performance of mini-tomato hybrids in different training systems with different number of stems. Hortic. Bras. 35, 428–433. doi: 10.1590/s0102-053620170319 DOI
Verheul M. J., Maessen H. F. R., Paponov M., Panosyan A., Kechasov D., Naseer M., et al. . (2022). Artificial top-light is more efficient for tomato production than inter-light. Sci. Hortic. 291, 110537. doi: 10.1016/j.scienta.2021.110537 DOI
Zhang C. X., Whiting M. D. (2011). Improving 'Bing' sweet cherry fruit quality with plant growth regulators. Sci. Hortic. 127, 341–346. doi: 10.1016/j.scienta.2010.11.006 DOI
Zhao D., Mackown C. T., Starks P. J., Kindiger B. K. (2010). Rapid analysis of nonstructural carbohydrate components in grass forage using microplate enzymatic assays. Crop Sci. 50, 1537–1545. doi: 10.2135/cropsci2009.09.0521 DOI
Zhou R., Cutler A. J., Ambrose S. J., Galka M. M., Nelson K. M., Squires T. M., et al. . (2004). A new abscisic acid catabolic pathway. Plant Physiol. 134, 361–369. doi: 10.1104/pp.103.030734 PubMed DOI PMC