Aurora: a fluorescent deoxyribozyme for high-throughput screening
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
24-11210S
GAČR
CZ.02.01.01/00/22_008/0004575
OP JAK
337022
GAUK
IOCB
PubMed
38860424
PubMed Central
PMC11347150
DOI
10.1093/nar/gkae467
PII: 7690888
Knihovny.cz E-zdroje
- MeSH
- DNA katalytická * chemie metabolismus MeSH
- fluorescence MeSH
- fluorescenční barviva * chemie MeSH
- kumariny chemie MeSH
- lidé MeSH
- rychlé screeningové testy * metody MeSH
- SARS-CoV-2 enzymologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA katalytická * MeSH
- fluorescenční barviva * MeSH
- kumariny MeSH
Fluorescence facilitates the detection, visualization, and tracking of molecules with high sensitivity and specificity. A functional DNA molecule that generates a robust fluorescent signal would offer significant advantages for many applications compared to intrinsically fluorescent proteins, which are expensive and labor intensive to synthesize, and fluorescent RNA aptamers, which are unstable under most conditions. Here, we describe a novel deoxyriboyzme that rapidly and efficiently generates a stable fluorescent product using a readily available coumarin substrate. An engineered version can detect picomolar concentrations of ribonucleases in a simple homogenous assay, and was used to rapidly identify novel inhibitors of the SARS-CoV-2 ribonuclease Nsp15 in a high-throughput screen. Our work adds an important new component to the toolkit of functional DNA parts, and also demonstrates how catalytic DNA motifs can be used to solve real-world problems.
Department of Cell Biology Faculty of Science Charles University Prague Prague 128 44 Czech Republic
10.1093/nar/gkae490 PubMed
Zobrazit více v PubMed
Tsien R.Y. The green fluorescent protein. Annu. Rev. Biochem. 1998; 67:509–544. PubMed
Shimomura O. The discovery of aequorin and green fluorescent protein. J. Microsc. 2005; 217:1–15. PubMed
Jaffrey S.R. RNA-based fluorescent biosensors for detecting metabolites in vitro and in living cells. Adv. Pharmacol. 2018; 82:187–203. PubMed
Lu X., Kong K.Y.S., Unrau P.J. Harmonizing the growing fluorogenic RNA aptamer toolbox for RNA detection and imaging. Chem. Soc. Rev. 2023; 52:4071–4098. PubMed
Zhou J., Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 2017; 16:181–202. PubMed PMC
Silverman S.K. Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 2016; 41:595–609. PubMed PMC
Micura R., Höbartner C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem. Soc. Rev. 2020; 49:7331–7353. PubMed
Curtis E.A. Pushing the limits of nucleic acid function. Chemistry. 2022; 28:e202201737. PubMed PMC
Levy M., Ellington A.D. ATP-dependent allosteric DNA enzymes. Chem. Biol. 2002; 9:417–426. PubMed
Cheglakov Z., Weizmann Y., Beissenhirtz M.K., Willner I. Ultrasensitive detection of DNA by the PCR-induced generation of DNAzymes: the DNAzyme primer approach. Chem. Commun. 2006; 30:3205–3207. PubMed
Cho E.J., Yang L., Levy M., Ellington A.D. Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J. Am. Chem. Soc. 2005; 127:2022–2023. PubMed
Sando S., Narita A., Aoyama Y. Light-up Hoechst–DNA aptamer pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye. ChemBioChem. 2007; 8:1795–1803. PubMed
Kato T., Shimada I., Kimura R., Hyuga M. Light-up fluorophore–DNA aptamer pair for label-free turn-on aptamer sensors. Chem. Commun. 2016; 52:4041–4044. PubMed
Kolpashchikov D.M., Spelkov A.A. Binary (Split) light-up aptameric sensors. Angew. Chem. Int. Ed. 2021; 60:4988–4999. PubMed
Travascio P., Li Y., Sen D. DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. Biol. 1998; 5:505–517. PubMed
Kosman J., Juskowiak B. Bioanalytical application of peroxidase-mimicking DNAzymes: status and challenges. Adv. Biochem. Eng. Biotechnol. 2020; 170:59–84. PubMed
Nakayama S., Sintim H.O. Biomolecule detection with peroxidase-mimicking DNAzymes; expanding detection modality with fluorogenic compounds. Mol. BioSyst. 2009; 6:95–97. PubMed
Robinson D., Willcox P. 4-Methylumbelliferyl phosphate as a substrate for lysosomal acid phosphatase. Biochim. Biophys. Acta (BBA) - Enzymol. 1969; 191:183–186. PubMed
Volek M., Kurfürst J., Kožíšek M., Srb P., Veverka V., Curtis E.A. Apollon: a deoxyribozyme that generates a yellow product. Nucleic Acids Res. 2024; 10.1093/nar/gkae490. PubMed DOI PMC
Svehlova K., Lukšan O., Jakubec M., Curtis E.A. Supernova: a deoxyribozyme that catalyzes a chemiluminescent reaction. Angew. Chem. Int. Ed. 2022; 61:e202109347. PubMed PMC
Kim Y., Jedrzejczak R., Maltseva N.I., Wilamowski M., Endres M., Godzik A., Michalska K., Joachimiak A. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci. 2020; 29:1596–1605. PubMed PMC
Zhang J.-H., Chung T.D.Y., Oldenburg K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. SLAS Discov. 1999; 4:67–73. PubMed
Lee W., Tonelli M., Markley J.L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015; 31:1325–1327. PubMed PMC
Bronstein I., Edwards B., Voyta J.C. 1,2-dioxetanes: novel chemiluminescent enzyme substrates. Applications to immunoassays. J. Biolumin. Chemilumin. 1989; 4:99–111. PubMed
Trayhurn P., Thomas M.E.A., Duncan J.S., Black D., Beattie J.H., Rayner D.V. Ultra-rapid detection of mRNAs on Northern blots with digoxigenin-labelled oligonucleotides and ‘CDP-Star’, a new chemiluminescent reagent. Biochem. Soc. Trans. 1995; 23:494S. PubMed
Hananya N., Shabat D. A glowing trajectory between bio- and chemiluminescence: from luciferin-based probes to triggerable dioxetanes. Angew. Chem. Int. Ed Engl. 2017; 56:16454–16463. PubMed
Sun W.C., Gee K.R., Haugland R.P. Synthesis of novel fluorinated coumarins: excellent UV-light excitable fluorescent dyes. Bioorg. Med. Chem. Lett. 1998; 8:3107–3110. PubMed
Lavis L.D., Raines R.T. Bright ideas for chemical biology. ACS Chem. Biol. 2008; 3:142–155. PubMed PMC
Curtis E.A., Bartel D.P. New catalytic structures from an existing ribozyme. Nat. Struct. Mol. Biol. 2005; 12:994–1000. PubMed
Ellington A.D., Szostak J.W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990; 346:818–822. PubMed
Ekland E.H., Bartel D.P. The secondary structure and sequence optimization of an RNA ligase ribozyme. Nucleic Acids Res. 1995; 23:3231–3238. PubMed PMC
Knight R., Yarus M. Analyzing partially randomized nucleic acid pools: straight dope on doping. Nucleic Acids Res. 2003; 31:e30. PubMed PMC
Gutell R.R., Power A., Hertz G.Z., Putz E.J., Stormo G.D. Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res. 1992; 20:5785–5795. PubMed PMC
Gutell R.R. Ten lessons with Carl Woese about RNA and comparative analysis. RNA Biol. 2014; 11:254–272. PubMed
Mead J.A., Smith J.N., Williams R.T. Studies in detoxication. 67. The biosynthesis of the glucuronides of umbelliferone and 4-methylumbelliferone and their use in fluorimetric determination of beta-glucuronidase. Biochem. J. 1955; 61:569–574. PubMed PMC
Sigel R.K.O., Pyle A.M. Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. Chem. Rev. 2007; 107:97–113. PubMed
Zhou W., Saran R., Liu J. Metal sensing by DNA. Chem. Rev. 2017; 117:8272–8325. PubMed
Jakubec M., Pšenáková K., Svehlova K., Curtis E.A. Optimizing the chemiluminescence of a light-producing deoxyribozyme. ChemBioChem. 2022; 23:e202200026. PubMed
Holtz K.M., Kantrowitz E.R. The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis. FEBS Lett. 1999; 462:7–11. PubMed
McCall K.A., Huang C., Fierke C.A. Function and mechanism of Zinc Metalloenzymes. J. Nutr. 2000; 130:1437S–1446S. PubMed
Chandra M., Sachdeva A., Silverman S.K. DNA-catalyzed sequence-specific hydrolysis of DNA. Nat. Chem. Biol. 2009; 5:718–720. PubMed PMC
Gu H., Furukawa K., Weinberg Z., Berenson D.F., Breaker R.R. Small, highly active DNAs that hydrolyze DNA. J. Am. Chem. Soc. 2013; 135:9121–9129. PubMed PMC
Zhang C., Li Q., Xu T., Li W., He Y., Gu H. New DNA-hydrolyzing DNAs isolated from an ssDNA library carrying a terminal hybridization stem. Nucleic Acids Res. 2021; 49:6364–6374. PubMed PMC
Yarus M. How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J. 1993; 7:31–39. PubMed
Deng X., Baker S.C. An ‘old’ protein with a new story: coronavirus endoribonuclease is important for evading host antiviral defenses. Virology. 2018; 517:157–163. PubMed PMC
Faheem n., Kumar B.K., Sekhar K.V.G.C., Kunjiappan S., Jamalis J., Balaña-Fouce R., Tekwani B.L., Sankaranarayanan M Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorg. Chem. 2020; 104:104269. PubMed PMC
Cho E.J., Lee J.-W., Ellington A.D. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. (Palo Alto Calif). 2009; 2:241–264. PubMed
Sassolas A., Blum L.J., Leca-Bouvier B.D. Homogeneous assays using aptamers. Analyst. 2010; 136:257–274. PubMed
Elowe N.H., Nutiu R., Allali-Hassani A., Cechetto J.D., Hughes D.W., Li Y., Brown E.D. Small-molecule screening made simple for a difficult target with a signaling nucleic acid aptamer that reports on deaminase activity. Angew. Chem. Int. Ed. 2006; 45:5648–5652. PubMed
Hafner M., Vianini E., Albertoni B., Marchetti L., Grüne I., Gloeckner C., Famulok M. Displacement of protein-bound aptamers with small molecules screened by fluorescence polarization. Nat. Protoc. 2008; 3:579–587. PubMed
Koizumi M., Soukup G.A., Kerr J.N.Q., Breaker R.R. Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat. Struct. Mol. Biol. 1999; 6:1062–1071. PubMed
Robertson M.P., Ellington A.D. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat. Biotechnol. 1999; 17:62–66. PubMed
Piganeau N., Jenne A., Thuillier V., Famulok M. An allosteric ribozyme regulated by doxycyline. Angew. Chem. Int. Ed Engl. 2000; 39:4369–4373. PubMed
Canal B., Fujisawa R., McClure A.W., Deegan T.D., Wu M., Ulferts R., Weissmann F., Drury L.S., Bertolin A.P., Zeng J. et al. . Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp15 endoribonuclease. Biochem. J. 2021; 478:2465–2479. PubMed PMC
Choi R., Zhou M., Shek R., Wilson J.W., Tillery L., Craig J.K., Salukhe I.A., Hickson S.E., Kumar N., James R.M. et al. . High-throughput screening of the ReFRAME, Pandemic Box, and COVID Box drug repurposing libraries against SARS-CoV-2 nsp15 endoribonuclease to identify small-molecule inhibitors of viral activity. PLoS One. 2021; 16:e0250019. PubMed PMC
Curtis E.A., Bartel D.P. Synthetic shuffling and in vitro selection reveal the rugged adaptive fitness landscape of a kinase ribozyme. RNA. 2013; 19:1116–1128. PubMed PMC
Sgallová R., Curtis E.A. Secondary structure libraries for artificial evolution experiments. Molecules. 2021; 26:1671. PubMed PMC
Streckerová T., Kurfürst J., Curtis E.A. Single-round deoxyribozyme discovery. Nucleic Acids Res. 2021; 49:6971–6981. PubMed PMC
Apollon: a deoxyribozyme that generates a yellow product