Aurora: a fluorescent deoxyribozyme for high-throughput screening

. 2024 Aug 27 ; 52 (15) : 9049-9061.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38860424

Grantová podpora
24-11210S GAČR
CZ.02.01.01/00/22_008/0004575 OP JAK
337022 GAUK
IOCB

Fluorescence facilitates the detection, visualization, and tracking of molecules with high sensitivity and specificity. A functional DNA molecule that generates a robust fluorescent signal would offer significant advantages for many applications compared to intrinsically fluorescent proteins, which are expensive and labor intensive to synthesize, and fluorescent RNA aptamers, which are unstable under most conditions. Here, we describe a novel deoxyriboyzme that rapidly and efficiently generates a stable fluorescent product using a readily available coumarin substrate. An engineered version can detect picomolar concentrations of ribonucleases in a simple homogenous assay, and was used to rapidly identify novel inhibitors of the SARS-CoV-2 ribonuclease Nsp15 in a high-throughput screen. Our work adds an important new component to the toolkit of functional DNA parts, and also demonstrates how catalytic DNA motifs can be used to solve real-world problems.

Komentář v

10.1093/nar/gkae490 PubMed

Zobrazit více v PubMed

Tsien  R.Y.  The green fluorescent protein. Annu. Rev. Biochem.  1998; 67:509–544. PubMed

Shimomura  O.  The discovery of aequorin and green fluorescent protein. J. Microsc.  2005; 217:1–15. PubMed

Jaffrey  S.R.  RNA-based fluorescent biosensors for detecting metabolites in vitro and in living cells. Adv. Pharmacol.  2018; 82:187–203. PubMed

Lu  X., Kong  K.Y.S., Unrau  P.J.  Harmonizing the growing fluorogenic RNA aptamer toolbox for RNA detection and imaging. Chem. Soc. Rev.  2023; 52:4071–4098. PubMed

Zhou  J., Rossi  J.  Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov.  2017; 16:181–202. PubMed PMC

Silverman  S.K.  Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 2016; 41:595–609. PubMed PMC

Micura  R., Höbartner  C.  Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem. Soc. Rev.  2020; 49:7331–7353. PubMed

Curtis  E.A.  Pushing the limits of nucleic acid function. Chemistry. 2022; 28:e202201737. PubMed PMC

Levy  M., Ellington  A.D.  ATP-dependent allosteric DNA enzymes. Chem. Biol.  2002; 9:417–426. PubMed

Cheglakov  Z., Weizmann  Y., Beissenhirtz  M.K., Willner  I.  Ultrasensitive detection of DNA by the PCR-induced generation of DNAzymes: the DNAzyme primer approach. Chem. Commun.  2006; 30:3205–3207. PubMed

Cho  E.J., Yang  L., Levy  M., Ellington  A.D.  Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J. Am. Chem. Soc.  2005; 127:2022–2023. PubMed

Sando  S., Narita  A., Aoyama  Y.  Light-up Hoechst–DNA aptamer pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye. ChemBioChem. 2007; 8:1795–1803. PubMed

Kato  T., Shimada  I., Kimura  R., Hyuga  M.  Light-up fluorophore–DNA aptamer pair for label-free turn-on aptamer sensors. Chem. Commun.  2016; 52:4041–4044. PubMed

Kolpashchikov  D.M., Spelkov  A.A.  Binary (Split) light-up aptameric sensors. Angew. Chem. Int. Ed.  2021; 60:4988–4999. PubMed

Travascio  P., Li  Y., Sen  D.  DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. Biol.  1998; 5:505–517. PubMed

Kosman  J., Juskowiak  B.  Bioanalytical application of peroxidase-mimicking DNAzymes: status and challenges. Adv. Biochem. Eng. Biotechnol.  2020; 170:59–84. PubMed

Nakayama  S., Sintim  H.O.  Biomolecule detection with peroxidase-mimicking DNAzymes; expanding detection modality with fluorogenic compounds. Mol. BioSyst.  2009; 6:95–97. PubMed

Robinson  D., Willcox  P.  4-Methylumbelliferyl phosphate as a substrate for lysosomal acid phosphatase. Biochim. Biophys. Acta (BBA) - Enzymol.  1969; 191:183–186. PubMed

Volek  M., Kurfürst  J., Kožíšek  M., Srb  P., Veverka  V., Curtis  E.A.  Apollon: a deoxyribozyme that generates a yellow product. Nucleic Acids Res.  2024; 10.1093/nar/gkae490. PubMed DOI PMC

Svehlova  K., Lukšan  O., Jakubec  M., Curtis  E.A.  Supernova: a deoxyribozyme that catalyzes a chemiluminescent reaction. Angew. Chem. Int. Ed.  2022; 61:e202109347. PubMed PMC

Kim  Y., Jedrzejczak  R., Maltseva  N.I., Wilamowski  M., Endres  M., Godzik  A., Michalska  K., Joachimiak  A.  Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci.  2020; 29:1596–1605. PubMed PMC

Zhang  J.-H., Chung  T.D.Y., Oldenburg  K.R.  A simple statistical parameter for use in evaluation and validation of high throughput screening assays. SLAS Discov.  1999; 4:67–73. PubMed

Lee  W., Tonelli  M., Markley  J.L.  NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015; 31:1325–1327. PubMed PMC

Bronstein  I., Edwards  B., Voyta  J.C.  1,2-dioxetanes: novel chemiluminescent enzyme substrates. Applications to immunoassays. J. Biolumin. Chemilumin.  1989; 4:99–111. PubMed

Trayhurn  P., Thomas  M.E.A., Duncan  J.S., Black  D., Beattie  J.H., Rayner  D.V.  Ultra-rapid detection of mRNAs on Northern blots with digoxigenin-labelled oligonucleotides and ‘CDP-Star’, a new chemiluminescent reagent. Biochem. Soc. Trans.  1995; 23:494S. PubMed

Hananya  N., Shabat  D.  A glowing trajectory between bio- and chemiluminescence: from luciferin-based probes to triggerable dioxetanes. Angew. Chem. Int. Ed Engl.  2017; 56:16454–16463. PubMed

Sun  W.C., Gee  K.R., Haugland  R.P.  Synthesis of novel fluorinated coumarins: excellent UV-light excitable fluorescent dyes. Bioorg. Med. Chem. Lett.  1998; 8:3107–3110. PubMed

Lavis  L.D., Raines  R.T.  Bright ideas for chemical biology. ACS Chem. Biol.  2008; 3:142–155. PubMed PMC

Curtis  E.A., Bartel  D.P.  New catalytic structures from an existing ribozyme. Nat. Struct. Mol. Biol.  2005; 12:994–1000. PubMed

Ellington  A.D., Szostak  J.W.  In vitro selection of RNA molecules that bind specific ligands. Nature. 1990; 346:818–822. PubMed

Ekland  E.H., Bartel  D.P.  The secondary structure and sequence optimization of an RNA ligase ribozyme. Nucleic Acids Res.  1995; 23:3231–3238. PubMed PMC

Knight  R., Yarus  M.  Analyzing partially randomized nucleic acid pools: straight dope on doping. Nucleic Acids Res.  2003; 31:e30. PubMed PMC

Gutell  R.R., Power  A., Hertz  G.Z., Putz  E.J., Stormo  G.D.  Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res.  1992; 20:5785–5795. PubMed PMC

Gutell  R.R.  Ten lessons with Carl Woese about RNA and comparative analysis. RNA Biol. 2014; 11:254–272. PubMed

Mead  J.A., Smith  J.N., Williams  R.T.  Studies in detoxication. 67. The biosynthesis of the glucuronides of umbelliferone and 4-methylumbelliferone and their use in fluorimetric determination of beta-glucuronidase. Biochem. J.  1955; 61:569–574. PubMed PMC

Sigel  R.K.O., Pyle  A.M.  Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. Chem. Rev.  2007; 107:97–113. PubMed

Zhou  W., Saran  R., Liu  J.  Metal sensing by DNA. Chem. Rev.  2017; 117:8272–8325. PubMed

Jakubec  M., Pšenáková  K., Svehlova  K., Curtis  E.A.  Optimizing the chemiluminescence of a light-producing deoxyribozyme. ChemBioChem. 2022; 23:e202200026. PubMed

Holtz  K.M., Kantrowitz  E.R.  The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis. FEBS Lett.  1999; 462:7–11. PubMed

McCall  K.A., Huang  C., Fierke  C.A.  Function and mechanism of Zinc Metalloenzymes. J. Nutr.  2000; 130:1437S–1446S. PubMed

Chandra  M., Sachdeva  A., Silverman  S.K.  DNA-catalyzed sequence-specific hydrolysis of DNA. Nat. Chem. Biol.  2009; 5:718–720. PubMed PMC

Gu  H., Furukawa  K., Weinberg  Z., Berenson  D.F., Breaker  R.R.  Small, highly active DNAs that hydrolyze DNA. J. Am. Chem. Soc.  2013; 135:9121–9129. PubMed PMC

Zhang  C., Li  Q., Xu  T., Li  W., He  Y., Gu  H.  New DNA-hydrolyzing DNAs isolated from an ssDNA library carrying a terminal hybridization stem. Nucleic Acids Res.  2021; 49:6364–6374. PubMed PMC

Yarus  M.  How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J.  1993; 7:31–39. PubMed

Deng  X., Baker  S.C.  An ‘old’ protein with a new story: coronavirus endoribonuclease is important for evading host antiviral defenses. Virology. 2018; 517:157–163. PubMed PMC

Faheem  n., Kumar  B.K., Sekhar  K.V.G.C., Kunjiappan  S., Jamalis  J., Balaña-Fouce  R., Tekwani  B.L., Sankaranarayanan  M  Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorg. Chem.  2020; 104:104269. PubMed PMC

Cho  E.J., Lee  J.-W., Ellington  A.D.  Applications of aptamers as sensors. Annu. Rev. Anal. Chem. (Palo Alto Calif). 2009; 2:241–264. PubMed

Sassolas  A., Blum  L.J., Leca-Bouvier  B.D.  Homogeneous assays using aptamers. Analyst. 2010; 136:257–274. PubMed

Elowe  N.H., Nutiu  R., Allali-Hassani  A., Cechetto  J.D., Hughes  D.W., Li  Y., Brown  E.D.  Small-molecule screening made simple for a difficult target with a signaling nucleic acid aptamer that reports on deaminase activity. Angew. Chem. Int. Ed.  2006; 45:5648–5652. PubMed

Hafner  M., Vianini  E., Albertoni  B., Marchetti  L., Grüne  I., Gloeckner  C., Famulok  M.  Displacement of protein-bound aptamers with small molecules screened by fluorescence polarization. Nat. Protoc.  2008; 3:579–587. PubMed

Koizumi  M., Soukup  G.A., Kerr  J.N.Q., Breaker  R.R.  Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat. Struct. Mol. Biol.  1999; 6:1062–1071. PubMed

Robertson  M.P., Ellington  A.D.  In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat. Biotechnol.  1999; 17:62–66. PubMed

Piganeau  N., Jenne  A., Thuillier  V., Famulok  M.  An allosteric ribozyme regulated by doxycyline. Angew. Chem. Int. Ed Engl.  2000; 39:4369–4373. PubMed

Canal  B., Fujisawa  R., McClure  A.W., Deegan  T.D., Wu  M., Ulferts  R., Weissmann  F., Drury  L.S., Bertolin  A.P., Zeng  J.  et al. .  Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp15 endoribonuclease. Biochem. J.  2021; 478:2465–2479. PubMed PMC

Choi  R., Zhou  M., Shek  R., Wilson  J.W., Tillery  L., Craig  J.K., Salukhe  I.A., Hickson  S.E., Kumar  N., James  R.M.  et al. .  High-throughput screening of the ReFRAME, Pandemic Box, and COVID Box drug repurposing libraries against SARS-CoV-2 nsp15 endoribonuclease to identify small-molecule inhibitors of viral activity. PLoS One. 2021; 16:e0250019. PubMed PMC

Curtis  E.A., Bartel  D.P.  Synthetic shuffling and in vitro selection reveal the rugged adaptive fitness landscape of a kinase ribozyme. RNA. 2013; 19:1116–1128. PubMed PMC

Sgallová  R., Curtis  E.A.  Secondary structure libraries for artificial evolution experiments. Molecules. 2021; 26:1671. PubMed PMC

Streckerová  T., Kurfürst  J., Curtis  E.A.  Single-round deoxyribozyme discovery. Nucleic Acids Res.  2021; 49:6971–6981. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Apollon: a deoxyribozyme that generates a yellow product

. 2024 Aug 27 ; 52 (15) : 9062-9075.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...