Supernova: A Deoxyribozyme that Catalyzes a Chemiluminescent Reaction
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19-20989S
grantová agentura české republiky
102216
Wellcome Trust - United Kingdom
LM2018131
meys
102216
Wellcome Trust - United Kingdom
PubMed
34559935
PubMed Central
PMC9298802
DOI
10.1002/anie.202109347
Knihovny.cz E-zdroje
- Klíčová slova
- aptazyme, catalytic DNA, chemiluminescence, deoxyribozyme, in vitro selection, luminescence, sensor,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Functional DNA molecules are useful components in nanotechnology and synthetic biology. To expand the toolkit of functional DNA parts, in this study we used artificial evolution to identify a glowing deoxyribozyme called Supernova. This deoxyribozyme transfers a phosphate from a 1,2-dioxetane substrate to its 5' hydroxyl group, which triggers a chemiluminescent reaction and a flash of blue light. An engineered version of Supernova is only catalytically active in the presence of an oligonucleotide complementary to its 3' end, demonstrating that light production can be coupled to ligand binding. We anticipate that Supernova will be useful in a wide variety of applications, including as a signaling component in allosterically regulated sensors and in logic gates of molecular computers.
Faculty of Science Charles University Prague Prague Czech Republic
Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
Zobrazit více v PubMed
Kruger K., Grabowski P. J., Zaug A. J., Sands J., Gottschling D. E., Cech T. R., Cell 1982, 31, 147–157. PubMed
Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S., Cell 1983, 35, 849–857. PubMed
Tuerk C., Gold L., Science 1990, 249, 505–510. PubMed
Robertson D. L., Joyce G. F., Nature 1990, 344, 467–468. PubMed
Ellington A. D., Szostak J. W., Nature 1990, 346, 818–822. PubMed
Bartel D. P., Unrau P. J., Trends Cell Biol. 1999, 9, M9–M13. PubMed
Breaker R. R., Nature 2004, 432, 838–845. PubMed
Silverman S. K., Trends Biochem. Sci. 2016, 41, 595–609. PubMed PMC
Kumar R. M., Joyce G. F., Proc. Natl. Acad. Sci. USA 2003, 100, 9738–9743. PubMed PMC
Tang J., Breaker R. R., Chem. Biol. 1997, 4, 453–459. PubMed
Baskerville S., Bartel D. P., Proc. Natl. Acad. Sci. USA 2002, 99, 9154–9159. PubMed PMC
Magalhães M. L. B., Byrom M., Yan A., Kelly L., Li N., Furtado R., Palliser D., Ellington A. D., Levy M., Mol. Ther. 2012, 20, 616–624. PubMed PMC
Babendure J. R., Adams S. R., Tsien R. Y., J. Am. Chem. Soc. 2003, 125, 14716–14717. PubMed
Paige J. S., Wu K. Y., Jaffrey S. R., Science 2011, 333, 642–646. PubMed PMC
Dolgosheina E. V., Jeng S. C. Y., Panchapakesan S. S. S., Cojocaru R., Chen P. S. K., Wilson P. D., Hawkins N., Wiggins P. A., Unrau P. J., ACS Chem. Biol. 2014, 9, 2412–2420. PubMed
Fan F., Wood K. V., Assay Drug Dev. Technol. 2007, 5, 127–136. PubMed
Bronstein I., Edwards B., Voyta J. C., J. Biolumin. Chemilumin. 1989, 4, 99–111. PubMed
Trayhurn P., Thomas M. E. A., Duncan J. S., Black D., Beattie J. H., Rayner D. V., Biochem. Soc. Trans. 1995, 23, 494S. PubMed
Hananya N., Shabat D., Angew. Chem. Int. Ed. 2017, 56, 16454–16463; PubMed
Angew. Chem. 2017, 129, 16674–16683.
Xiao Y., Pavlov V., Gill R., Bourenko T., Willner I., ChemBioChem 2004, 5, 374–379. PubMed
Kosman J., Juskowiak B., Anal. Chim. Acta 2011, 707, 7–17. PubMed
Li Y., Breaker R. R., Proc. Natl. Acad. Sci. USA 1999, 96, 2746–2751. PubMed PMC
Lorsch J. R., Szostak J. W., Nature 1994, 371, 31–36. PubMed
Curtis E. A., Bartel D. P., Nat. Struct. Mol. Biol. 2005, 12, 994–1000. PubMed
Chandrasekar J., Silverman S. K., Proc. Natl. Acad. Sci. USA 2013, 110, 5315–5320. PubMed PMC
Curtis E. A., Bartel D. P., RNA 2013, 19, 1116–1128. PubMed PMC
Camden A. J., Walsh S. M., Suk S. H., Silverman S. K., Biochemistry 2016, 55, 2671–2676. PubMed PMC
Walsh S. M., Sachdeva A., Silverman S. K., J. Am. Chem. Soc. 2013, 135, 14928–14931. PubMed PMC
Pitt J. N., Ferré-D′Amare A. R., Science 2010, 330, 376–379. PubMed PMC
Gutell R. R., Power A., Hertz G. Z., Putz E. J., Stormo G. D., Nucleic Acids Res. 1992, 20, 5785–5795. PubMed PMC
Ekland E. H., Bartel D. P., Nucleic Acids Res. 1995, 23, 3231–3238. PubMed PMC
Thuong N. T., Hélène C., Angew. Chem. Int. Ed. Engl. 1993, 32, 666–690;
Angew. Chem. 1993, 105, 697–723.
Lexa M., Martínek T., Burgetová I., Kopeček D., Brázdová M., Bioinformatics 2011, 27, 2510–2517. PubMed
Holtz K. M., Stec B., Kantrowitz E. R., J. Biol. Chem. 1999, 274, 8351–8354. PubMed
Holtz K. M., Kantrowitz E. R., FEBS Lett. 1999, 462, 7–11. PubMed
Frøystein N. A., Davis J. T., Reid B. R., Sletten E., Acta Chem. Scand. 1993, 47, 649–657. PubMed
Travascio P., Li Y., Sen D., Chem. Biol. 1998, 5, 505–517. PubMed
Cheng X., Liu X., Bing T., Cao Z., Shangguan D., Biochemistry 2009, 48, 7817–7823. PubMed
Li X., Mo L., Litke J. L., Dey S. K., Suter S. R., Jaffrey S. R., J. Am. Chem. Soc. 2020, 142, 14117–14124. PubMed PMC
Autour A., Jeng S. C. Y., Cawte A. D., Abdolahzadeh A., Galli A., Panchapakesan S. S. S., Rueda D., Ryckelynck M., Unrau P. J., Nat. Commun. 2018, 9, 656. PubMed PMC
Koizumi M., Soukup G. A., Kerr J. N. Q., Breaker R. R., Nat. Struct. Biol. 1999, 6, 1062–1071. PubMed
Robertson M. P., Ellington A. D., Nucleic Acids Res. 2000, 28, 1751–1759. PubMed PMC
Thompson K. M., Syrett H. A., Knudsen S. M., Ellington A. D., BMC Biotechnol. 2002, 2, 21. PubMed PMC
Soukup G. A., Breaker R. R., Proc. Natl. Acad. Sci. USA 1999, 96, 3584–3589. PubMed PMC
Cho E. J., Lee J. W., Ellington A. D., Annu. Rev. Anal. Chem. 2009, 2, 241–264. PubMed
Apollon: a deoxyribozyme that generates a yellow product
Aurora: a fluorescent deoxyribozyme for high-throughput screening
Pushing the Limits of Nucleic Acid Function