Supernova: A Deoxyribozyme that Catalyzes a Chemiluminescent Reaction

. 2022 Jan 17 ; 61 (3) : e202109347. [epub] 20211125

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34559935

Grantová podpora
19-20989S grantová agentura české republiky
102216 Wellcome Trust - United Kingdom
LM2018131 meys
102216 Wellcome Trust - United Kingdom

Functional DNA molecules are useful components in nanotechnology and synthetic biology. To expand the toolkit of functional DNA parts, in this study we used artificial evolution to identify a glowing deoxyribozyme called Supernova. This deoxyribozyme transfers a phosphate from a 1,2-dioxetane substrate to its 5' hydroxyl group, which triggers a chemiluminescent reaction and a flash of blue light. An engineered version of Supernova is only catalytically active in the presence of an oligonucleotide complementary to its 3' end, demonstrating that light production can be coupled to ligand binding. We anticipate that Supernova will be useful in a wide variety of applications, including as a signaling component in allosterically regulated sensors and in logic gates of molecular computers.

Zobrazit více v PubMed

Kruger K., Grabowski P. J., Zaug A. J., Sands J., Gottschling D. E., Cech T. R., Cell 1982, 31, 147–157. PubMed

Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S., Cell 1983, 35, 849–857. PubMed

Tuerk C., Gold L., Science 1990, 249, 505–510. PubMed

Robertson D. L., Joyce G. F., Nature 1990, 344, 467–468. PubMed

Ellington A. D., Szostak J. W., Nature 1990, 346, 818–822. PubMed

Bartel D. P., Unrau P. J., Trends Cell Biol. 1999, 9, M9–M13. PubMed

Breaker R. R., Nature 2004, 432, 838–845. PubMed

Silverman S. K., Trends Biochem. Sci. 2016, 41, 595–609. PubMed PMC

Kumar R. M., Joyce G. F., Proc. Natl. Acad. Sci. USA 2003, 100, 9738–9743. PubMed PMC

Tang J., Breaker R. R., Chem. Biol. 1997, 4, 453–459. PubMed

Baskerville S., Bartel D. P., Proc. Natl. Acad. Sci. USA 2002, 99, 9154–9159. PubMed PMC

Magalhães M. L. B., Byrom M., Yan A., Kelly L., Li N., Furtado R., Palliser D., Ellington A. D., Levy M., Mol. Ther. 2012, 20, 616–624. PubMed PMC

Babendure J. R., Adams S. R., Tsien R. Y., J. Am. Chem. Soc. 2003, 125, 14716–14717. PubMed

Paige J. S., Wu K. Y., Jaffrey S. R., Science 2011, 333, 642–646. PubMed PMC

Dolgosheina E. V., Jeng S. C. Y., Panchapakesan S. S. S., Cojocaru R., Chen P. S. K., Wilson P. D., Hawkins N., Wiggins P. A., Unrau P. J., ACS Chem. Biol. 2014, 9, 2412–2420. PubMed

Fan F., Wood K. V., Assay Drug Dev. Technol. 2007, 5, 127–136. PubMed

Bronstein I., Edwards B., Voyta J. C., J. Biolumin. Chemilumin. 1989, 4, 99–111. PubMed

Trayhurn P., Thomas M. E. A., Duncan J. S., Black D., Beattie J. H., Rayner D. V., Biochem. Soc. Trans. 1995, 23, 494S. PubMed

Hananya N., Shabat D., Angew. Chem. Int. Ed. 2017, 56, 16454–16463; PubMed

Angew. Chem. 2017, 129, 16674–16683.

Xiao Y., Pavlov V., Gill R., Bourenko T., Willner I., ChemBioChem 2004, 5, 374–379. PubMed

Kosman J., Juskowiak B., Anal. Chim. Acta 2011, 707, 7–17. PubMed

Li Y., Breaker R. R., Proc. Natl. Acad. Sci. USA 1999, 96, 2746–2751. PubMed PMC

Lorsch J. R., Szostak J. W., Nature 1994, 371, 31–36. PubMed

Curtis E. A., Bartel D. P., Nat. Struct. Mol. Biol. 2005, 12, 994–1000. PubMed

Chandrasekar J., Silverman S. K., Proc. Natl. Acad. Sci. USA 2013, 110, 5315–5320. PubMed PMC

Curtis E. A., Bartel D. P., RNA 2013, 19, 1116–1128. PubMed PMC

Camden A. J., Walsh S. M., Suk S. H., Silverman S. K., Biochemistry 2016, 55, 2671–2676. PubMed PMC

Walsh S. M., Sachdeva A., Silverman S. K., J. Am. Chem. Soc. 2013, 135, 14928–14931. PubMed PMC

Pitt J. N., Ferré-D′Amare A. R., Science 2010, 330, 376–379. PubMed PMC

Gutell R. R., Power A., Hertz G. Z., Putz E. J., Stormo G. D., Nucleic Acids Res. 1992, 20, 5785–5795. PubMed PMC

Ekland E. H., Bartel D. P., Nucleic Acids Res. 1995, 23, 3231–3238. PubMed PMC

Thuong N. T., Hélène C., Angew. Chem. Int. Ed. Engl. 1993, 32, 666–690;

Angew. Chem. 1993, 105, 697–723.

Lexa M., Martínek T., Burgetová I., Kopeček D., Brázdová M., Bioinformatics 2011, 27, 2510–2517. PubMed

Holtz K. M., Stec B., Kantrowitz E. R., J. Biol. Chem. 1999, 274, 8351–8354. PubMed

Holtz K. M., Kantrowitz E. R., FEBS Lett. 1999, 462, 7–11. PubMed

Frøystein N. A., Davis J. T., Reid B. R., Sletten E., Acta Chem. Scand. 1993, 47, 649–657. PubMed

Travascio P., Li Y., Sen D., Chem. Biol. 1998, 5, 505–517. PubMed

Cheng X., Liu X., Bing T., Cao Z., Shangguan D., Biochemistry 2009, 48, 7817–7823. PubMed

Li X., Mo L., Litke J. L., Dey S. K., Suter S. R., Jaffrey S. R., J. Am. Chem. Soc. 2020, 142, 14117–14124. PubMed PMC

Autour A., Jeng S. C. Y., Cawte A. D., Abdolahzadeh A., Galli A., Panchapakesan S. S. S., Rueda D., Ryckelynck M., Unrau P. J., Nat. Commun. 2018, 9, 656. PubMed PMC

Koizumi M., Soukup G. A., Kerr J. N. Q., Breaker R. R., Nat. Struct. Biol. 1999, 6, 1062–1071. PubMed

Robertson M. P., Ellington A. D., Nucleic Acids Res. 2000, 28, 1751–1759. PubMed PMC

Thompson K. M., Syrett H. A., Knudsen S. M., Ellington A. D., BMC Biotechnol. 2002, 2, 21. PubMed PMC

Soukup G. A., Breaker R. R., Proc. Natl. Acad. Sci. USA 1999, 96, 3584–3589. PubMed PMC

Cho E. J., Lee J. W., Ellington A. D., Annu. Rev. Anal. Chem. 2009, 2, 241–264. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...