Apollon: a deoxyribozyme that generates a yellow product
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
24-11210S
GAČR
European Union
337022
GAUK
IOCB
PubMed
38869058
PubMed Central
PMC11347176
DOI
10.1093/nar/gkae490
PII: 7692341
Knihovny.cz E-resources
- MeSH
- DNA, Catalytic * chemistry metabolism MeSH
- Phosphorylation MeSH
- Colorimetry * methods MeSH
- Nucleic Acid Conformation MeSH
- Oligonucleotides chemistry MeSH
- Substrate Specificity MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Catalytic * MeSH
- Oligonucleotides MeSH
Colorimetric assays in which the color of a solution changes in the presence of an input provide a simple and inexpensive way to monitor experimental readouts. In this study we used in vitro selection to identify a self-phosphorylating kinase deoxyribozyme that produces a colorimetric signal by converting the colorless substrate pNPP into the yellow product pNP. The minimized catalytic core, sequence requirements, secondary structure, and buffer requirements of this deoxyribozyme, which we named Apollon, were characterized using a variety of techniques including reselection experiments, high-throughput sequencing, comparative analysis, biochemical activity assays, and NMR. A bimolecular version of Apollon catalyzed multiple turnover phosphorylation and amplified the colorimetric signal. Engineered versions of Apollon could detect oligonucleotides with specific sequences as well as several different types of nucleases in homogenous assays that can be performed in a single tube without the need for washes or purifications. We anticipate that Apollon will be particularly useful to reduce costs in high-throughput screens and for applications in which specialized equipment is not available.
Department of Cell Biology Faculty of Science Charles University Prague Prague 128 44 Czech Republic
10.1093/nar/gkae467 PubMed
See more in PubMed
Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990; 249:505–510. PubMed
Robertson D.L., Joyce G.F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. 1990; 344:467–468. PubMed
Ellington A.D., Szostak J.W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990; 346:818–822. PubMed
Bartel D.P., Unrau P.J. Constructing an RNA world. Trends Cell Biol. 1999; 9:M9–M13. PubMed
Breaker R.R. Natural and engineered nucleic acids as tools to explore biology. Nature. 2004; 432:838–845. PubMed
Silverman S.K. Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 2016; 41:595–609. PubMed PMC
Micura R., Höbartner C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem. Soc. Rev. 2020; 49:7331–7353. PubMed
Zhou J., Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 2017; 16:181–202. PubMed PMC
Curtis E.A. Pushing the limits of nucleic acid function. Chemistry. 2022; 28:e202201737. PubMed PMC
Svehlova K., Lukšan O., Jakubec M., Curtis E.A. Supernova: a deoxyribozyme that catalyzes a chemiluminescent reaction. Angew. Chem. Int. Ed. 2022; 61:e202109347. PubMed PMC
Jakubec M., Pšenáková K., Svehlova K., Curtis E.A. Optimizing the chemiluminescence of a light-producing deoxyribozyme. ChemBioChem. 2022; 23:e202200026. PubMed
Volek M., Kurfürst J., Drexler M., Svoboda M., Srb P., Veverka V., Curtis E.A. Aurora: a fluorescent deoxyribozyme for high-throughput screening. Nucleic Acids Res. 2024; 10.1093/nar/gkae467. PubMed DOI PMC
Fan F., Wood K.V. Bioluminescent assays for high-throughput screening. Assay Drug Dev. Technol. 2007; 5:127–136. PubMed
St John A., Price C.P. Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev. 2014; 35:155–167. PubMed PMC
Chaimayo C., Kaewnaphan B., Tanlieng N., Athipanyasilp N., Sirijatuphat R., Chayakulkeeree M., Angkasekwinai N., Sutthent R., Puangpunngam N., Tharmviboonsri T. et al. . Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol. J. 2020; 17:177. PubMed PMC
Li Y., Breaker R.R. Phosphorylating DNA with DNA. Proc. Natl. Acad. Sci. U.S.A. 1999; 96:2746–2751. PubMed PMC
Tabatabai M.A., Bremner J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969; 1:301–307.
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011; 17:10–12.
Aronesty E. Comparison of sequencing utility programs. Open Bioinform. J. 2013; 7:1–8.
Gutell R.R., Power A., Hertz G.Z., Putz E.J., Stormo G.D. Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res. 1992; 20:5785–5795. PubMed PMC
Gutell R.R. Ten lessons with Carl Woese about RNA and comparative analysis. RNA Biol. 2014; 11:254–272. PubMed
Ekland E.H., Bartel D.P. The secondary structure and sequence optimization of an RNA ligase ribozyme. Nucleic Acids Res. 1995; 23:3231–3238. PubMed PMC
Plavec J. Dna. NMR of Biomolecules. 2012; John Wiley & Sons, Ltd; 96–116.
Chandra M., Sachdeva A., Silverman S.K. DNA-catalyzed sequence-specific hydrolysis of DNA. Nat. Chem. Biol. 2009; 5:718–720. PubMed PMC
Gu H., Furukawa K., Weinberg Z., Berenson D.F., Breaker R.R. Small, highly active DNAs that hydrolyze DNA. J. Am. Chem. Soc. 2013; 135:9121–9129. PubMed PMC
Zhang C., Li Q., Xu T., Li W., He Y., Gu H. New DNA-hydrolyzing DNAs isolated from an ssDNA library carrying a terminal hybridization stem. Nucleic Acids Res. 2021; 49:6364–6374. PubMed PMC
Yarus M. How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J. 1993; 7:31–39. PubMed
Uhlenbeck O.C. A small catalytic oligoribonucleotide. Nature. 1987; 328:596–600. PubMed
Lorsch J.R., Szostak J.W. In vitro evolution of new ribozymes with polynucleotide kinase activity. Nature. 1994; 371:31–36. PubMed
Santoro S.W., Joyce G.F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:4262–4266. PubMed PMC
Stojanovic M.N., de Prada P., Landry D.W. Homogeneous assays based on deoxyribozyme catalysis. Nucleic Acids Res. 2000; 28:2915–2918. PubMed PMC
Koizumi M., Soukup G.A., Kerr J.N.Q., Breaker R.R. Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat. Struct. Mol. Biol. 1999; 6:1062–1071. PubMed
Levy M., Ellington A.D. ATP-dependent allosteric DNA enzymes. Chem. Biol. 2002; 9:417–426. PubMed
Streckerová T., Kurfürst J., Curtis E.A. Single-round deoxyribozyme discovery. Nucleic Acids Res. 2021; 49:6971–6981. PubMed PMC
Furukawa K., Minakawa N. Allosteric control of a DNA-hydrolyzing deoxyribozyme with short oligonucleotides and its application in DNA logic gates. Org. Biomol. Chem. 2014; 12:3344–3348. PubMed
Kertsburg A., Soukup G.A. A versatile communication module for controlling RNA folding and catalysis. Nucleic Acids Res. 2002; 30:4599–4606. PubMed PMC
Sgallová R., Curtis E.A. Secondary structure libraries for artificial evolution experiments. Molecules. 2021; 26:1671. PubMed PMC
Borgelt L., Wu P. Targeting ribonucleases with small molecules and bifunctional molecules. ACS Chem. Biol. 2023; 18:2101–2113. PubMed PMC
Yakovlev G.I., Mitkevich V.A., Makarov A.A. Ribonuclease inhibitors. Mol. Biol. 2006; 40:867–874.
Walker M.J., Hollands A., Sanderson-Smith M.L., Cole J.N., Kirk J.K., Henningham A., McArthur J.D., Dinkla K., Aziz R.K., Kansal R.G. et al. . DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat. Med. 2007; 13:981–985. PubMed
Yamada Y., Fujii T., Ishijima R., Tachibana H., Yokoue N., Takasawa R., Tanuma S. DR396, an apoptotic DNase γ inhibitor, attenuates high mobility group box 1 release from apoptotic cells. Bioorg. Med. Chem. 2011; 19:168–171. PubMed
Kolarevic A., Yancheva D., Kocic G., Smelcerovic A. Deoxyribonuclease inhibitors. Eur. J. Med. Chem. 2014; 88:101–111. PubMed
Simopoulos T.T., Jencks W.P. Alkaline phosphatase is an almost perfect enzyme. Biochemistry. 1994; 33:10375–10380. PubMed
Travascio P., Li Y., Sen D. DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. Biol. 1998; 5:505–517. PubMed
Sen D., Poon L.C.H. RNA and DNA complexes with hemin [Fe(III) heme] are efficient peroxidases and peroxygenases: how do they do it and what does it mean. Crit. Rev. Biochem. Mol. Biol. 2011; 46:478–492. PubMed
Chen L., Xing S., Lei Y., Chen Q., Zou Z., Quan K., Qing Z., Liu J., Yang R. A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections. Angew. Chem. Int. Ed. 2021; 60:23534–23539. PubMed
Guo Y., Chen J., Cheng M., Monchaud D., Zhou J., Ju H. A thermophilic tetramolecular G-quadruplex/hemin DNAzyme. Angew. Chem. Int. Ed Engl. 2017; 56:16636–16640. PubMed
Aurora: a fluorescent deoxyribozyme for high-throughput screening