• This record comes from PubMed

Apollon: a deoxyribozyme that generates a yellow product

. 2024 Aug 27 ; 52 (15) : 9062-9075.

Language English Country England, Great Britain Media print

Document type Journal Article

Grant support
24-11210S GAČR
European Union
337022 GAUK
IOCB

Colorimetric assays in which the color of a solution changes in the presence of an input provide a simple and inexpensive way to monitor experimental readouts. In this study we used in vitro selection to identify a self-phosphorylating kinase deoxyribozyme that produces a colorimetric signal by converting the colorless substrate pNPP into the yellow product pNP. The minimized catalytic core, sequence requirements, secondary structure, and buffer requirements of this deoxyribozyme, which we named Apollon, were characterized using a variety of techniques including reselection experiments, high-throughput sequencing, comparative analysis, biochemical activity assays, and NMR. A bimolecular version of Apollon catalyzed multiple turnover phosphorylation and amplified the colorimetric signal. Engineered versions of Apollon could detect oligonucleotides with specific sequences as well as several different types of nucleases in homogenous assays that can be performed in a single tube without the need for washes or purifications. We anticipate that Apollon will be particularly useful to reduce costs in high-throughput screens and for applications in which specialized equipment is not available.

Comment In

10.1093/nar/gkae467 PubMed

See more in PubMed

Tuerk  C., Gold  L.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990; 249:505–510. PubMed

Robertson  D.L., Joyce  G.F.  Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. 1990; 344:467–468. PubMed

Ellington  A.D., Szostak  J.W.  In vitro selection of RNA molecules that bind specific ligands. Nature. 1990; 346:818–822. PubMed

Bartel  D.P., Unrau  P.J.  Constructing an RNA world. Trends Cell Biol.  1999; 9:M9–M13. PubMed

Breaker  R.R.  Natural and engineered nucleic acids as tools to explore biology. Nature. 2004; 432:838–845. PubMed

Silverman  S.K.  Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 2016; 41:595–609. PubMed PMC

Micura  R., Höbartner  C.  Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem. Soc. Rev.  2020; 49:7331–7353. PubMed

Zhou  J., Rossi  J.  Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov.  2017; 16:181–202. PubMed PMC

Curtis  E.A.  Pushing the limits of nucleic acid function. Chemistry. 2022; 28:e202201737. PubMed PMC

Svehlova  K., Lukšan  O., Jakubec  M., Curtis  E.A.  Supernova: a deoxyribozyme that catalyzes a chemiluminescent reaction. Angew. Chem. Int. Ed.  2022; 61:e202109347. PubMed PMC

Jakubec  M., Pšenáková  K., Svehlova  K., Curtis  E.A.  Optimizing the chemiluminescence of a light-producing deoxyribozyme. ChemBioChem. 2022; 23:e202200026. PubMed

Volek  M., Kurfürst  J., Drexler  M., Svoboda  M., Srb  P., Veverka  V., Curtis  E.A.  Aurora: a fluorescent deoxyribozyme for high-throughput screening. Nucleic Acids Res.  2024; 10.1093/nar/gkae467. PubMed DOI PMC

Fan  F., Wood  K.V.  Bioluminescent assays for high-throughput screening. Assay Drug Dev. Technol.  2007; 5:127–136. PubMed

St John  A., Price  C.P.  Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev.  2014; 35:155–167. PubMed PMC

Chaimayo  C., Kaewnaphan  B., Tanlieng  N., Athipanyasilp  N., Sirijatuphat  R., Chayakulkeeree  M., Angkasekwinai  N., Sutthent  R., Puangpunngam  N., Tharmviboonsri  T.  et al. .  Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol. J.  2020; 17:177. PubMed PMC

Li  Y., Breaker  R.R.  Phosphorylating DNA with DNA. Proc. Natl. Acad. Sci. U.S.A.  1999; 96:2746–2751. PubMed PMC

Tabatabai  M.A., Bremner  J.M.  Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem.  1969; 1:301–307.

Martin  M.  Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011; 17:10–12.

Aronesty  E.  Comparison of sequencing utility programs. Open Bioinform. J.  2013; 7:1–8.

Gutell  R.R., Power  A., Hertz  G.Z., Putz  E.J., Stormo  G.D.  Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res.  1992; 20:5785–5795. PubMed PMC

Gutell  R.R.  Ten lessons with Carl Woese about RNA and comparative analysis. RNA Biol.  2014; 11:254–272. PubMed

Ekland  E.H., Bartel  D.P.  The secondary structure and sequence optimization of an RNA ligase ribozyme. Nucleic Acids Res.  1995; 23:3231–3238. PubMed PMC

Plavec  J.  Dna. NMR of Biomolecules. 2012; John Wiley & Sons, Ltd; 96–116.

Chandra  M., Sachdeva  A., Silverman  S.K.  DNA-catalyzed sequence-specific hydrolysis of DNA. Nat. Chem. Biol.  2009; 5:718–720. PubMed PMC

Gu  H., Furukawa  K., Weinberg  Z., Berenson  D.F., Breaker  R.R.  Small, highly active DNAs that hydrolyze DNA. J. Am. Chem. Soc.  2013; 135:9121–9129. PubMed PMC

Zhang  C., Li  Q., Xu  T., Li  W., He  Y., Gu  H.  New DNA-hydrolyzing DNAs isolated from an ssDNA library carrying a terminal hybridization stem. Nucleic Acids Res.  2021; 49:6364–6374. PubMed PMC

Yarus  M.  How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J.  1993; 7:31–39. PubMed

Uhlenbeck  O.C.  A small catalytic oligoribonucleotide. Nature. 1987; 328:596–600. PubMed

Lorsch  J.R., Szostak  J.W.  In vitro evolution of new ribozymes with polynucleotide kinase activity. Nature. 1994; 371:31–36. PubMed

Santoro  S.W., Joyce  G.F.  A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. U.S.A.  1997; 94:4262–4266. PubMed PMC

Stojanovic  M.N., de Prada  P., Landry  D.W.  Homogeneous assays based on deoxyribozyme catalysis. Nucleic Acids Res.  2000; 28:2915–2918. PubMed PMC

Koizumi  M., Soukup  G.A., Kerr  J.N.Q., Breaker  R.R.  Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat. Struct. Mol. Biol.  1999; 6:1062–1071. PubMed

Levy  M., Ellington  A.D.  ATP-dependent allosteric DNA enzymes. Chem. Biol.  2002; 9:417–426. PubMed

Streckerová  T., Kurfürst  J., Curtis  E.A.  Single-round deoxyribozyme discovery. Nucleic Acids Res.  2021; 49:6971–6981. PubMed PMC

Furukawa  K., Minakawa  N.  Allosteric control of a DNA-hydrolyzing deoxyribozyme with short oligonucleotides and its application in DNA logic gates. Org. Biomol. Chem.  2014; 12:3344–3348. PubMed

Kertsburg  A., Soukup  G.A.  A versatile communication module for controlling RNA folding and catalysis. Nucleic Acids Res.  2002; 30:4599–4606. PubMed PMC

Sgallová  R., Curtis  E.A.  Secondary structure libraries for artificial evolution experiments. Molecules. 2021; 26:1671. PubMed PMC

Borgelt  L., Wu  P.  Targeting ribonucleases with small molecules and bifunctional molecules. ACS Chem. Biol.  2023; 18:2101–2113. PubMed PMC

Yakovlev  G.I., Mitkevich  V.A., Makarov  A.A.  Ribonuclease inhibitors. Mol. Biol.  2006; 40:867–874.

Walker  M.J., Hollands  A., Sanderson-Smith  M.L., Cole  J.N., Kirk  J.K., Henningham  A., McArthur  J.D., Dinkla  K., Aziz  R.K., Kansal  R.G.  et al. .  DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat. Med.  2007; 13:981–985. PubMed

Yamada  Y., Fujii  T., Ishijima  R., Tachibana  H., Yokoue  N., Takasawa  R., Tanuma  S.  DR396, an apoptotic DNase γ inhibitor, attenuates high mobility group box 1 release from apoptotic cells. Bioorg. Med. Chem.  2011; 19:168–171. PubMed

Kolarevic  A., Yancheva  D., Kocic  G., Smelcerovic  A.  Deoxyribonuclease inhibitors. Eur. J. Med. Chem.  2014; 88:101–111. PubMed

Simopoulos  T.T., Jencks  W.P.  Alkaline phosphatase is an almost perfect enzyme. Biochemistry. 1994; 33:10375–10380. PubMed

Travascio  P., Li  Y., Sen  D.  DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. Biol.  1998; 5:505–517. PubMed

Sen  D., Poon  L.C.H.  RNA and DNA complexes with hemin [Fe(III) heme] are efficient peroxidases and peroxygenases: how do they do it and what does it mean. Crit. Rev. Biochem. Mol. Biol.  2011; 46:478–492. PubMed

Chen  L., Xing  S., Lei  Y., Chen  Q., Zou  Z., Quan  K., Qing  Z., Liu  J., Yang  R.  A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections. Angew. Chem. Int. Ed.  2021; 60:23534–23539. PubMed

Guo  Y., Chen  J., Cheng  M., Monchaud  D., Zhou  J., Ju  H.  A thermophilic tetramolecular G-quadruplex/hemin DNAzyme. Angew. Chem. Int. Ed Engl.  2017; 56:16636–16640. PubMed

Newest 20 citations...

See more in
Medvik | PubMed

Aurora: a fluorescent deoxyribozyme for high-throughput screening

. 2024 Aug 27 ; 52 (15) : 9049-9061.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...