• This record comes from PubMed

Secondary Structure Libraries for Artificial Evolution Experiments

. 2021 Mar 17 ; 26 (6) : . [epub] 20210317

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
19-20989S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund (OP RDE)

Links

PubMed 33802780
PubMed Central PMC8002575
DOI 10.3390/molecules26061671
PII: molecules26061671
Knihovny.cz E-resources

Methods of artificial evolution such as SELEX and in vitro selection have made it possible to isolate RNA and DNA motifs with a wide range of functions from large random sequence libraries. Once the primary sequence of a functional motif is known, the sequence space around it can be comprehensively explored using a combination of random mutagenesis and selection. However, methods to explore the sequence space of a secondary structure are not as well characterized. Here we address this question by describing a method to construct libraries in a single synthesis which are enriched for sequences with the potential to form a specific secondary structure, such as that of an aptamer, ribozyme, or deoxyribozyme. Although interactions such as base pairs cannot be encoded in a library using conventional DNA synthesizers, it is possible to modulate the probability that two positions will have the potential to pair by biasing the nucleotide composition at these positions. Here we show how to maximize this probability for each of the possible ways to encode a pair (in this study defined as A-U or U-A or C-G or G-C or G.U or U.G). We then use these optimized coding schemes to calculate the number of different variants of model stems and secondary structures expected to occur in a library for a series of structures in which the number of pairs and the extent of conservation of unpaired positions is systematically varied. Our calculations reveal a tradeoff between maximizing the probability of forming a pair and maximizing the number of possible variants of a desired secondary structure that can occur in the library. They also indicate that the optimal coding strategy for a library depends on the complexity of the motif being characterized. Because this approach provides a simple way to generate libraries enriched for sequences with the potential to form a specific secondary structure, we anticipate that it should be useful for the optimization and structural characterization of functional nucleic acid motifs.

See more in PubMed

Wilson D.S., Szostak J.W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 1999;68:611–647. doi: 10.1146/annurev.biochem.68.1.611. PubMed DOI

Bartel D.P., Unrau P.J. Constructing an RNA world. Trends Cell Biol. 1999;9:M9–M13. doi: 10.1016/S0962-8924(99)01669-4. PubMed DOI

Breaker R.R. Natural and engineered nucleic acids as tools to explore biology. Nature. 2004;432:838–845. doi: 10.1038/nature03195. PubMed DOI

Joyce G.F. Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem. 2004;73:791–836. doi: 10.1146/annurev.biochem.73.011303.073717. PubMed DOI

Silverman S.K. Catalytic DNA: Scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 2016;41:595–609. doi: 10.1016/j.tibs.2016.04.010. PubMed DOI PMC

Gold L., Polisky B., Uhlenbeck O., Yarus M. Diversity of oligonucleotide functions. Ann. Rev. Biochem. 1995;64:763–797. doi: 10.1146/annurev.bi.64.070195.003555. PubMed DOI

Chandrasekar J., Silverman S.K. Catalytic DNA with phosphatase activity. Proc. Natl. Acad. Sci. USA. 2013;110:5315–5320. doi: 10.1073/pnas.1221946110. PubMed DOI PMC

Zhou J., Rossi J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov. 2017;16:181–202. doi: 10.1038/nrd.2016.199. PubMed DOI PMC

Tang J., Breaker R.R. Rational design of allosteric ribozymes. Chem. Biol. 1997;4:453–459. doi: 10.1016/S1074-5521(97)90197-6. PubMed DOI

Koizumi M., Soukup G.A., Kerr J.N., Breaker R.R. Allosteric selection of ribozymes that respond to the secondary messengers cGMP and cAMP. Nat. Struct. Biol. 1999;6:1062–1071. PubMed

Babendure J.R., Adams S.R., Tsien R.Y. Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 2003;125:14716–14717. doi: 10.1021/ja037994o. PubMed DOI

Paige J.S., Wu K.Y., Jaffrey S.R. RNA mimics of green fluorescent protein. Science. 2011;333:642–646. doi: 10.1126/science.1207339. PubMed DOI PMC

Dolgosheina E.V., Jeng S.C., Panchapakesan S.S., Cojocaru R., Chen P.S., Wilson P.D., Hawkins N., Wiggins P.A., Unrau P.J. RNA mango aptamer-fluorophore: A bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 2014;9:2412–2420. doi: 10.1021/cb500499x. PubMed DOI

Liu M., Chang D., Li Y. Discovery and biosensing applications of diverse RNA-cleaving DNAzymes. Acc. Chem. Res. 2017;50:2273–2283. doi: 10.1021/acs.accounts.7b00262. PubMed DOI

Ellington A.D., Szostak J.W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–822. doi: 10.1038/346818a0. PubMed DOI

Ekland E.H., Bartel D.P. The secondary structure and sequence optimization of an RNA ligase ribozyme. Nucleic Acids Res. 1995;23:3231–3238. doi: 10.1093/nar/23.16.3231. PubMed DOI PMC

Knight R., Yarus M. Analyzing partially randomized nucleic acid pools: Straight dope on doping. Nucleic Acids Res. 2003;31:e30. doi: 10.1093/nar/gng030. PubMed DOI PMC

Gutell R.R., Power A., Hertz G.Z., Putz E.J., Stormo G.D. Identifying constraints on the higher-order structure of RNA: Continued development and application of comparative sequence analysis methods. Nucleic Acids Res. 1992;20:5785–5795. doi: 10.1093/nar/20.21.5785. PubMed DOI PMC

Curtis E.A., Bartel D.P. New catalytic structures from an existing ribozyme. Nat. Struct. Mol. Biol. 2005;12:994–1000. doi: 10.1038/nsmb1003. PubMed DOI

Curtis E.A., Bartel D.P. Synthetic shuffling and in vitro selection reveal the rugged adaptive fitness landscape of a kinase ribozyme. RNA. 2013;19:1116–1128. doi: 10.1261/rna.037572.112. PubMed DOI PMC

Ruff K.M., Snyder T.M., Liu D.R. Enhanced functional potential of nucleic acid aptamer libraries patterned to increase secondary structure. J. Am. Chem. Soc. 2010;132:9453–9464. doi: 10.1021/ja103023m. PubMed DOI PMC

Bing T., Yang X., Mei H., Cao Z., Shangguan D. Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories. Bioorg. Med. Chem. 2010;18:1798–1805. doi: 10.1016/j.bmc.2010.01.054. PubMed DOI

Sassanfar M., Szostak J.W. An RNA motif that binds ATP. Nature. 1993;364:550–553. doi: 10.1038/364550a0. PubMed DOI

Jiang F., Kumar R.A., Jones R.A., Patel D.J. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature. 1996;382:183–186. doi: 10.1038/382183a0. PubMed DOI

Dieckmann T., Suzuki E., Nakamura G.K., Feigon J. Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA. 1996;2:628–640. PubMed PMC

Cadwell R.C., Joyce G.F. Randomization of genes by PCR mutagenesis. PCR Methods Appl. 1992;2:28–33. doi: 10.1101/gr.2.1.28. PubMed DOI

Wang Q.S., Unrau P.J. Ribozyme motif structure mapped using random recombination and selection. RNA. 2005;11:404–411. doi: 10.1261/rna.7238705. PubMed DOI PMC

Arriola J.T., Muller U.F. A combinatorial method to isolate short ribozymes from complex ribozyme libraries. Nucleic Acids Res. 2020;48:e116. doi: 10.1093/nar/gkaa834. PubMed DOI PMC

Johnston W.K., Unrau P.J., Lawrence M.S., Glasner M.E., Bartel D.P. RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension. Science. 2001;292:1319–1325. doi: 10.1126/science.1060786. PubMed DOI

Wochner A., Attwater J., Coulson A., Holliger P. Ribozyme-catalyzed transcription of an active ribozyme. Science. 2011;332:209–212. doi: 10.1126/science.1200752. PubMed DOI

Batey R.T., Rambo R.P., Doudna J.A. Tertiary motifs in RNA structure and folding. Angew. Chem. Int. Ed. Engl. 1999;38:2326–2343. doi: 10.1002/(SICI)1521-3773(19990816)38:16<2326::AID-ANIE2326>3.0.CO;2-3. PubMed DOI

Duca M., Vekhoff P., Oussedik K., Halby L., Arimondo P.B. The triple helix: 50 years later, the outcome. Nucleic Acids Res. 2008;36:5123–5138. doi: 10.1093/nar/gkn493. PubMed DOI PMC

Brown J.A. Unraveling the structure and biological function of RNA triple helices. Wiley Interdiscip. Rev. RNA. 2020;11:e1598. doi: 10.1002/wrna.1598. PubMed DOI PMC

Kinghorn A.B., Fraser L.A., Liang S., Shiu S.C.C., Tanner J.A. Aptamer bioinformatics. Int. J. Mol. Sci. 2017;18:2516 PubMed PMC

Vorobyeva M.A., Davydova A.S., Vorobjev P.E., Pyshnyi D.V., Venyaminova A.G. Key aspects of nucleic acid library design for in vitro selection. Int. J. Mol. Sci. 2018;19:470. doi: 10.3390/ijms19020470. PubMed DOI PMC

Kinghorn A.B., Dirkzwager R.M., Liang S., Cheung Y.W., Fraser L.A., Shiu S.C.C., Tang M.S.L., Tanner J.A. Aptamer affinity maturation by resampling and microarray selection. Anal. Chem. 2016;88:6981–6985. doi: 10.1021/acs.analchem.6b01635. PubMed DOI

Kim N., Gan H.H., Schlick T. A computational proposal for designing structured RNA pools for in vitro selection of RNAs. RNA. 2007;13:478–492. doi: 10.1261/rna.374907. PubMed DOI PMC

Kim N., Shin J.S., Elmetwaly S., Gan H.H., Schlick T. RagPools: RNA-as-graph-pools—A web server for assisting the design of structured RNA pools for in vitro selection. Bioinformatics. 2007;23:2959–2960. doi: 10.1093/bioinformatics/btm439. PubMed DOI

Kim N., Izzo J.A., Elmetwaly S., Gan H.H., Schlick T. Computational generation and screening of RNA motifs in large nucleotide sequence pools. Nucleic Acids Res. 2010;38:e139. doi: 10.1093/nar/gkq282. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...