Single-round deoxyribozyme discovery

. 2021 Jul 09 ; 49 (12) : 6971-6981.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34133739

Artificial evolution experiments typically use libraries of ∼1015 sequences and require multiple rounds of selection to identify rare variants with a desired activity. Based on the simple structures of some aptamers and nucleic acid enzymes, we hypothesized that functional motifs could be isolated from significantly smaller libraries in a single round of selection followed by high-throughput sequencing. To test this idea, we investigated the catalytic potential of DNA architectures in which twelve or fifteen randomized positions were embedded in a scaffold present in all library members. After incubating in either the presence or absence of lead (which promotes the nonenzymatic cleavage of RNA), library members that cleaved themselves at an RNA linkage were purified by PAGE and characterized by high-throughput sequencing. These selections yielded deoxyribozymes with activities 8- to 30-fold lower than those previously isolated under similar conditions from libraries containing 1014 different sequences, indicating that the disadvantage of using a less diverse pool can be surprisingly small. It was also possible to elucidate the sequence requirements and secondary structures of deoxyribozymes without performing additional experiments. Due to its relative simplicity, we anticipate that this approach will accelerate the discovery of new catalytic DNA and RNA motifs.

Zobrazit více v PubMed

Tuerk C., Gold L.. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990; 249:505–510. PubMed

Robertson D.L., Joyce G.F.. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. 1990; 344:467–468. PubMed

Ellington A.D., Szostak J.W.. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990; 346:818–822. PubMed

Wilson D.S., Szostak J.W.. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 1999; 68:611–647. PubMed

Bartel D.P., Unrau P.J.. Constructing an RNA world. Trends Cell Biol. 1999; 9:M9–M13. PubMed

Joyce G.F. Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem. 2004; 73:791–836. PubMed

Silverman S.K. Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 2016; 41:595–609. PubMed PMC

Zhou J., Rossi J.. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 2017; 16:181–202. PubMed PMC

Carothers J.M., Oestreich S.C., Davis J.H., Szostak J.W.. Informational complexity and functional activity of RNA structures. J. Am. Chem. Soc. 2004; 126:5130–5137. PubMed PMC

Huizenga D.E., Szostak J.W.. A DNA aptamer that binds adenosine and ATP. Biochemistry. 1995; 34:656–665. PubMed

Knight R., Yarus M.. Finding specific RNA motifs: function in a zeptomole world. RNA. 2003; 9:218–230. PubMed PMC

Sabeti P.C., Unrau P.J., Bartel D.P.. Accessing rare activities from random RNA sequences: the importance of the length of molecules in the starting pool. Chem. Biol. 1997; 4:767–774. PubMed

Turk R.M., Chumachenko N.V., Yarus M.. Multiple translation products from a five-nucleotide ribozyme. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:4585–4589. PubMed PMC

Dange V., Van Atta R.B., Hecht S.M.. A Mn2+-dependent ribozyme. Science. 1990; 248:585–588. PubMed

Kolev N.G., Hartland E.I., Huber P.W.. A manganese-dependent ribozyme in the 3′-untranslated region of Xenopus Vg1 mRNA. Nucleic Acids Res. 2008; 36:5530–5539. PubMed PMC

Pan T., Uhlenbeck O.C.. A small metalloribozyme with a two-step mechanism. Nature. 1992; 358:560–563. PubMed

Hoogstraten C.G., Legault P., Pardi A.. NMR solution structure of the lead-dependent ribozyme: evidence for dynamics in RNA catalysis. J. Mol. Biol. 1998; 284:337–350. PubMed

Wedekind J.E., McKay D.B.. Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis. Nat. Struct. Biol. 1999; 6:261–268. PubMed

Curtis E.A., Liu D.R.. Discovery of widespread GTP-binding motifs in genomic RNA and DNA. Chem. Biol. 2013; 20:521–532. PubMed PMC

Kupakuwana G.V., Crill J.E. II, McPike M.P., Borer P.N.. Acyclic identification of aptamers for human alpha-thrombin using over-represented libraries and deep sequencing. PLoS One. 2011; 6:e19395. PubMed PMC

Goodwin S., McPherson J.D., McCombie W.R.. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016; 17:333–351. PubMed PMC

Patel D.J., Suri A.K.. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. J. Biotechnol. 2000; 74:39–60. PubMed

Jiang F., Kumar R.A., Jones R.A., Patel D.J.. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature. 1996; 382:183–186. PubMed

Dieckmann T., Suzuki E., Nakamura G.K., Feigon J.. Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA. 1996; 2:628–640. PubMed PMC

Yang Y., Kochoyan M., Burgstaller P., Westhof E., Famulok M.. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science. 1996; 272:1343–1347. PubMed

Carothers J.M., Davis J.H., Chou J.J., Szostak J.W.. Solution structure of an informationally complex high-affinity RNA aptamer to GTP. RNA. 2006; 12:567–579. PubMed PMC

Gelinas A.D., Davies D.R., Janjic N.. Embracing proteins: structural themes in aptamer-protein complexes. Curr. Opin. Struct. Biol. 2016; 36:122–132. PubMed

Breaker R.R., Joyce G.F.. A DNA enzyme that cleaves RNA. Chem. Biol. 1994; 1:223–229. PubMed

Santoro S.W., Joyce G.F.. A general-purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:4262–4266. PubMed PMC

Davis J.H., Szostak J.W.. Isolation of high-affinity GTP aptamers from partially structured RNA libraries. Proc. Natl. Acad. Sci. U.S.A. 2002; 99:11616–11621. PubMed PMC

Ruff K.M., Snyder T.M., Liu D.R.. Enhanced functional potential of nucleic acid aptamer libraries patterned to increase secondary structure. J. Am. Chem. Soc. 2010; 132:9453–9464. PubMed PMC

Li Y., Breaker R.R.. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group. J. Am. Chem. Soc. 2004; 121:5364–5372.

Palou-Mir J., Barcelo-Oliver M., Sigel R.K.O.. The role of lead(II) in nucleic acids. Met. Ions Life Sci. 2017; 17:403–434. PubMed

Brown R.S., Hingerty B.E., Dewan J.C., Klug A.. Pb(II)-catalysed cleavage of the sugar-phosphate backbone of yeast tRNAPhe - implications for lead toxicity and self-splicing RNA. Nature. 1983; 303:543–546. PubMed

Ekland E.H., Bartel D.P.. The secondary structure and sequence optimization of an RNA ligase ribozyme. Nucleic Acids Res. 1995; 23:3231–3238. PubMed PMC

Curtis E.A., Bartel D.P.. New catalytic structures from an existing ribozyme. Nat. Struct. Mol. Biol. 2013; 12:994–1000. PubMed

Curtis E.A., Bartel D.P.. Synthetic shuffling and in vitro selection reveal the rugged adaptive fitness landscape of a kinase ribozyme. RNA. 2013; 19:1116–1128. PubMed PMC

Pitt J.N., Ferré-D’Amaré A.R.. Rapid construction of empirical RNA fitness landscapes. Science. 2010; 330:376–379. PubMed PMC

Cepeda-Plaza M., Peracchi A.. Insights into DNA catalysis from structural and functional studies of the 8–17 DNAzyme. Org. Biomol. Chem. 2020; 18:1697–1709. PubMed

Li J., Zheng W., Kwon A.H., Lu Y.. In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res. 2000; 28:481–488. PubMed PMC

Peracchi A. Preferential activation of the 8–17 deoxyribozyme by Ca(2+) ions. Evidence for the identify of 8–17 with the catalytic domain of the Mg5 deoxyribozyme. J. Biol. Chem. 2000; 275:11693–11697. PubMed

Faulhammer D., Famulok M.. The Ca2+ ion as a cofactor for a novel RNA-cleaving deoxyribozyme. Angew. Chem. Int. Ed. 1996; 35:2837–2841.

Liu H., Yu X., Chen Y., Zhang J., Wu B., Zheng L., Haruehanroengra P., Wang R., Li S., Lin J.et al. .. Crystal structure of an RNA-cleaving DNAzyme. Nat. Commun. 2017; 8:2006. PubMed PMC

Cruz R.P.G., Withers J.B., Li Y.. Dinucleotide junction cleavage versatility of 8–17 deoxyribozyme. Chem. Biol. 2004; 11:57–67. PubMed

Gotrik M.R., Feagin T.A., Csordas A.T., Nakamoto M.A., Soh H.T.. Advancements in aptamer discovery technologies. Acc. Chem. Res. 2016; 49:1903–1910. PubMed

Kobori S., Yokobayashi Y.. High-throughput mutational analysis of a twister ribozyme. Angew. Chem. Int. Ed. 2016; 55:10354–10357. PubMed PMC

Kobori S., Takahashi K., Yokobayashi Y.. Deep sequencing analysis of aptazyme variants based on a pistol ribozyme. ACS Synth. Biol. 2017; 6:1283–1288. PubMed

Dhamodharan V., Kobori S., Yokobayashi Y.. Large scale mutational and kinetic analysis of a self-hydrolyzing deoxyribozyme. ACS Chem. Biol. 2017; 12:2940–2945. PubMed

Blanco C., Janzen E., Pressman A., Saha R., Chen I.A.. Molecular fitness landscapes from high-coverage sequence profiling. Annu. Rev. Biophys. 2019; 48:1–18. PubMed

Yokobayashi Y. High-throughput analysis and engineering of ribozymes and deoxyribozymes by sequencing. Acc. Chem. Res. 2020; 53:2903–2912. PubMed

Berezovski M., Musheev M., Drabovich A., Krylov S.N.. Non-SELEX selection of aptamers. J. Am. Chem. Soc. 2006; 128:1410–1411. PubMed

Nitsche A., Kurth A., Dunkhorst A., Pänke O., Sielaff H., Junge W., Muth D., Scheller F., Stöcklein W., Dahmen C.et al. .. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 2007; 7:48. PubMed PMC

Lou X., Qian J., Xiao Y., Viel L., Gerdon A.E., Lagally E.T., Atzberger P., Tarasow T.M., Heeger A.J., Soh H.T.. Micromagnetic selection of aptamers in microfluidic channels. Proc. Natl. Acad. Sci. U.S.A. 2009; 106:2989–2994. PubMed PMC

Hoon S., Zhou B., Janda K.D., Brenner S., Scolnick J.. Aptamer selection by high-throughput sequencing and informatic analysis. BioTechniques. 2011; 51:413–416. PubMed

Breaker R.R., Joyce G.F.. A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem. Biol. 1995; 2:655–660. PubMed

Sgallov′ R., Curtis E.A.. Secondary structure libraries for artificial evolution experiments. Molecules. 2021; 26:1671. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...