Single-round deoxyribozyme discovery
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34133739
PubMed Central
PMC8266665
DOI
10.1093/nar/gkab504
PII: 6300618
Knihovny.cz E-zdroje
- MeSH
- DNA katalytická chemie izolace a purifikace metabolismus MeSH
- konformace nukleové kyseliny MeSH
- nukleotidové motivy MeSH
- štěpení RNA MeSH
- substrátová specifita MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA katalytická MeSH
Artificial evolution experiments typically use libraries of ∼1015 sequences and require multiple rounds of selection to identify rare variants with a desired activity. Based on the simple structures of some aptamers and nucleic acid enzymes, we hypothesized that functional motifs could be isolated from significantly smaller libraries in a single round of selection followed by high-throughput sequencing. To test this idea, we investigated the catalytic potential of DNA architectures in which twelve or fifteen randomized positions were embedded in a scaffold present in all library members. After incubating in either the presence or absence of lead (which promotes the nonenzymatic cleavage of RNA), library members that cleaved themselves at an RNA linkage were purified by PAGE and characterized by high-throughput sequencing. These selections yielded deoxyribozymes with activities 8- to 30-fold lower than those previously isolated under similar conditions from libraries containing 1014 different sequences, indicating that the disadvantage of using a less diverse pool can be surprisingly small. It was also possible to elucidate the sequence requirements and secondary structures of deoxyribozymes without performing additional experiments. Due to its relative simplicity, we anticipate that this approach will accelerate the discovery of new catalytic DNA and RNA motifs.
Zobrazit více v PubMed
Tuerk C., Gold L.. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990; 249:505–510. PubMed
Robertson D.L., Joyce G.F.. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. 1990; 344:467–468. PubMed
Ellington A.D., Szostak J.W.. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990; 346:818–822. PubMed
Wilson D.S., Szostak J.W.. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 1999; 68:611–647. PubMed
Bartel D.P., Unrau P.J.. Constructing an RNA world. Trends Cell Biol. 1999; 9:M9–M13. PubMed
Joyce G.F. Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem. 2004; 73:791–836. PubMed
Silverman S.K. Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem. Sci. 2016; 41:595–609. PubMed PMC
Zhou J., Rossi J.. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 2017; 16:181–202. PubMed PMC
Carothers J.M., Oestreich S.C., Davis J.H., Szostak J.W.. Informational complexity and functional activity of RNA structures. J. Am. Chem. Soc. 2004; 126:5130–5137. PubMed PMC
Huizenga D.E., Szostak J.W.. A DNA aptamer that binds adenosine and ATP. Biochemistry. 1995; 34:656–665. PubMed
Knight R., Yarus M.. Finding specific RNA motifs: function in a zeptomole world. RNA. 2003; 9:218–230. PubMed PMC
Sabeti P.C., Unrau P.J., Bartel D.P.. Accessing rare activities from random RNA sequences: the importance of the length of molecules in the starting pool. Chem. Biol. 1997; 4:767–774. PubMed
Turk R.M., Chumachenko N.V., Yarus M.. Multiple translation products from a five-nucleotide ribozyme. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:4585–4589. PubMed PMC
Dange V., Van Atta R.B., Hecht S.M.. A Mn2+-dependent ribozyme. Science. 1990; 248:585–588. PubMed
Kolev N.G., Hartland E.I., Huber P.W.. A manganese-dependent ribozyme in the 3′-untranslated region of Xenopus Vg1 mRNA. Nucleic Acids Res. 2008; 36:5530–5539. PubMed PMC
Pan T., Uhlenbeck O.C.. A small metalloribozyme with a two-step mechanism. Nature. 1992; 358:560–563. PubMed
Hoogstraten C.G., Legault P., Pardi A.. NMR solution structure of the lead-dependent ribozyme: evidence for dynamics in RNA catalysis. J. Mol. Biol. 1998; 284:337–350. PubMed
Wedekind J.E., McKay D.B.. Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis. Nat. Struct. Biol. 1999; 6:261–268. PubMed
Curtis E.A., Liu D.R.. Discovery of widespread GTP-binding motifs in genomic RNA and DNA. Chem. Biol. 2013; 20:521–532. PubMed PMC
Kupakuwana G.V., Crill J.E. II, McPike M.P., Borer P.N.. Acyclic identification of aptamers for human alpha-thrombin using over-represented libraries and deep sequencing. PLoS One. 2011; 6:e19395. PubMed PMC
Goodwin S., McPherson J.D., McCombie W.R.. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016; 17:333–351. PubMed PMC
Patel D.J., Suri A.K.. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs and aminoglycoside antibiotics. J. Biotechnol. 2000; 74:39–60. PubMed
Jiang F., Kumar R.A., Jones R.A., Patel D.J.. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature. 1996; 382:183–186. PubMed
Dieckmann T., Suzuki E., Nakamura G.K., Feigon J.. Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA. 1996; 2:628–640. PubMed PMC
Yang Y., Kochoyan M., Burgstaller P., Westhof E., Famulok M.. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science. 1996; 272:1343–1347. PubMed
Carothers J.M., Davis J.H., Chou J.J., Szostak J.W.. Solution structure of an informationally complex high-affinity RNA aptamer to GTP. RNA. 2006; 12:567–579. PubMed PMC
Gelinas A.D., Davies D.R., Janjic N.. Embracing proteins: structural themes in aptamer-protein complexes. Curr. Opin. Struct. Biol. 2016; 36:122–132. PubMed
Breaker R.R., Joyce G.F.. A DNA enzyme that cleaves RNA. Chem. Biol. 1994; 1:223–229. PubMed
Santoro S.W., Joyce G.F.. A general-purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. U.S.A. 1997; 94:4262–4266. PubMed PMC
Davis J.H., Szostak J.W.. Isolation of high-affinity GTP aptamers from partially structured RNA libraries. Proc. Natl. Acad. Sci. U.S.A. 2002; 99:11616–11621. PubMed PMC
Ruff K.M., Snyder T.M., Liu D.R.. Enhanced functional potential of nucleic acid aptamer libraries patterned to increase secondary structure. J. Am. Chem. Soc. 2010; 132:9453–9464. PubMed PMC
Li Y., Breaker R.R.. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group. J. Am. Chem. Soc. 2004; 121:5364–5372.
Palou-Mir J., Barcelo-Oliver M., Sigel R.K.O.. The role of lead(II) in nucleic acids. Met. Ions Life Sci. 2017; 17:403–434. PubMed
Brown R.S., Hingerty B.E., Dewan J.C., Klug A.. Pb(II)-catalysed cleavage of the sugar-phosphate backbone of yeast tRNAPhe - implications for lead toxicity and self-splicing RNA. Nature. 1983; 303:543–546. PubMed
Ekland E.H., Bartel D.P.. The secondary structure and sequence optimization of an RNA ligase ribozyme. Nucleic Acids Res. 1995; 23:3231–3238. PubMed PMC
Curtis E.A., Bartel D.P.. New catalytic structures from an existing ribozyme. Nat. Struct. Mol. Biol. 2013; 12:994–1000. PubMed
Curtis E.A., Bartel D.P.. Synthetic shuffling and in vitro selection reveal the rugged adaptive fitness landscape of a kinase ribozyme. RNA. 2013; 19:1116–1128. PubMed PMC
Pitt J.N., Ferré-D’Amaré A.R.. Rapid construction of empirical RNA fitness landscapes. Science. 2010; 330:376–379. PubMed PMC
Cepeda-Plaza M., Peracchi A.. Insights into DNA catalysis from structural and functional studies of the 8–17 DNAzyme. Org. Biomol. Chem. 2020; 18:1697–1709. PubMed
Li J., Zheng W., Kwon A.H., Lu Y.. In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. Nucleic Acids Res. 2000; 28:481–488. PubMed PMC
Peracchi A. Preferential activation of the 8–17 deoxyribozyme by Ca(2+) ions. Evidence for the identify of 8–17 with the catalytic domain of the Mg5 deoxyribozyme. J. Biol. Chem. 2000; 275:11693–11697. PubMed
Faulhammer D., Famulok M.. The Ca2+ ion as a cofactor for a novel RNA-cleaving deoxyribozyme. Angew. Chem. Int. Ed. 1996; 35:2837–2841.
Liu H., Yu X., Chen Y., Zhang J., Wu B., Zheng L., Haruehanroengra P., Wang R., Li S., Lin J.et al. .. Crystal structure of an RNA-cleaving DNAzyme. Nat. Commun. 2017; 8:2006. PubMed PMC
Cruz R.P.G., Withers J.B., Li Y.. Dinucleotide junction cleavage versatility of 8–17 deoxyribozyme. Chem. Biol. 2004; 11:57–67. PubMed
Gotrik M.R., Feagin T.A., Csordas A.T., Nakamoto M.A., Soh H.T.. Advancements in aptamer discovery technologies. Acc. Chem. Res. 2016; 49:1903–1910. PubMed
Kobori S., Yokobayashi Y.. High-throughput mutational analysis of a twister ribozyme. Angew. Chem. Int. Ed. 2016; 55:10354–10357. PubMed PMC
Kobori S., Takahashi K., Yokobayashi Y.. Deep sequencing analysis of aptazyme variants based on a pistol ribozyme. ACS Synth. Biol. 2017; 6:1283–1288. PubMed
Dhamodharan V., Kobori S., Yokobayashi Y.. Large scale mutational and kinetic analysis of a self-hydrolyzing deoxyribozyme. ACS Chem. Biol. 2017; 12:2940–2945. PubMed
Blanco C., Janzen E., Pressman A., Saha R., Chen I.A.. Molecular fitness landscapes from high-coverage sequence profiling. Annu. Rev. Biophys. 2019; 48:1–18. PubMed
Yokobayashi Y. High-throughput analysis and engineering of ribozymes and deoxyribozymes by sequencing. Acc. Chem. Res. 2020; 53:2903–2912. PubMed
Berezovski M., Musheev M., Drabovich A., Krylov S.N.. Non-SELEX selection of aptamers. J. Am. Chem. Soc. 2006; 128:1410–1411. PubMed
Nitsche A., Kurth A., Dunkhorst A., Pänke O., Sielaff H., Junge W., Muth D., Scheller F., Stöcklein W., Dahmen C.et al. .. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 2007; 7:48. PubMed PMC
Lou X., Qian J., Xiao Y., Viel L., Gerdon A.E., Lagally E.T., Atzberger P., Tarasow T.M., Heeger A.J., Soh H.T.. Micromagnetic selection of aptamers in microfluidic channels. Proc. Natl. Acad. Sci. U.S.A. 2009; 106:2989–2994. PubMed PMC
Hoon S., Zhou B., Janda K.D., Brenner S., Scolnick J.. Aptamer selection by high-throughput sequencing and informatic analysis. BioTechniques. 2011; 51:413–416. PubMed
Breaker R.R., Joyce G.F.. A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem. Biol. 1995; 2:655–660. PubMed
Sgallov′ R., Curtis E.A.. Secondary structure libraries for artificial evolution experiments. Molecules. 2021; 26:1671. PubMed PMC
Apollon: a deoxyribozyme that generates a yellow product
Aurora: a fluorescent deoxyribozyme for high-throughput screening
Pushing the Limits of Nucleic Acid Function