DNA interactions of antitumor cisplatin analogs containing enantiomeric amine ligands

. 2000 Apr ; 78 (4) : 2008-21.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid10733979
Odkazy

PubMed 10733979
PubMed Central PMC1300793
DOI 10.1016/s0006-3495(00)76748-8
PII: S0006-3495(00)76748-8
Knihovny.cz E-zdroje

Modifications of natural DNA and synthetic oligodeoxyribonucleotide duplexes in a cell-free medium by analogs of antitumor cisplatin containing enantiomeric amine ligands, such as cis-[PtCl(2)(RR-DAB)] and cis-[PtCl(2)(SS-DAB)] (DAB = 2,3-diaminobutane), were studied by various methods of molecular biophysics and biophysical chemistry. These methods include DNA binding studies by pulse polarography and atomic absorption spectrophotometry, mapping of DNA adducts using transcription assay, interstrand cross-linking assay using gel electrophoresis under denaturing conditions, differential scanning calorimetry, chemical probing, and bending and unwinding studies of the duplexes containing single, site-specific cross-link. The major differences resulting from the modification of DNA by the two enantiomers are the thermodynamical destabilization and conformational distortions induced in DNA by the 1,2-d(GpG) intrastrand cross-link. It has been suggested that these differences are associated with a different biological activity of the two enantiomers observed previously. In addition, the results of the present work are also consistent with the view that formation of hydrogen bonds between the carbonyl oxygen of the guanine residues and the "quasi equatorial" hydrogen of the cis amine in the 1, 2-d(GpG) intrastrand cross-link plays an important role in determining the character of the distortion induced in DNA by this lesion.

Zobrazit více v PubMed

Biochemistry. 1991 Jan 8;30(1):222-30 PubMed

Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5345-9 PubMed

Anticancer Res. 1991 Jan-Feb;11(1):281-7 PubMed

Nucleic Acids Res. 1991 Jun 25;19(12):3421-9 PubMed

Biophysik. 1970;6(4):290-300 PubMed

Biophys Chem. 1976 Jan;4(1):79-92 PubMed

J Med Chem. 1978 Dec;21(12):1315-8 PubMed

Proc Natl Acad Sci U S A. 1979 Jan;76(1):200-3 PubMed

Methods Enzymol. 1980;65(1):499-560 PubMed

Nature. 1980 Aug 7;286(5773):573-8 PubMed

J Med Chem. 1981 May;24(5):508-15 PubMed

Nucleic Acids Res. 1982 Aug 11;10(15):4715-30 PubMed

Chem Pharm Bull (Tokyo). 1983 May;31(5):1469-73 PubMed

Eur J Biochem. 1984 Jun 15;141(3):465-72 PubMed

Biochim Biophys Acta. 1985;780(3):167-80 PubMed

Cell. 1985 Oct;42(3):713-24 PubMed

Proc Natl Acad Sci U S A. 1985 Dec;82(23):8009-13 PubMed

Proc Natl Acad Sci U S A. 1986 Feb;83(4):862-6 PubMed

Nature. 1986 Apr 10-16;320(6062):501-6 PubMed

Proc Natl Acad Sci U S A. 1988 Mar;85(6):1763-7 PubMed

Biochemistry. 1991 Aug 13;30(32):8026-35 PubMed

Nucleic Acids Res. 1992 Jan 25;20(2):267-72 PubMed

Biochemistry. 1992 Feb 25;31(7):1904-8 PubMed

Proc Natl Acad Sci U S A. 1988 Jun;85(12):4158-61 PubMed

Chem Biol Interact. 1989;70(1-2):39-49 PubMed

Biochemistry. 1990 Jan 30;29(4):1016-24 PubMed

J Mol Recognit. 1990 Feb;3(1):1-25 PubMed

Biochemistry. 1990 May 1;29(17):4227-34 PubMed

Biochemistry. 1990 Jun 26;29(25):6071-81 PubMed

Biophys Chem. 1990 Apr;35(2-3):155-63 PubMed

Biophys Chem. 1990 Apr;35(2-3):179-88 PubMed

Biochemistry. 1990 Oct 16;29(41):9522-31 PubMed

Eur J Biochem. 1992 May 1;205(3):895-906 PubMed

Biochemistry. 1992 Dec 15;31(49):12397-402 PubMed

Biochemistry. 1993 Nov 2;32(43):11676-81 PubMed

Biochemistry. 1994 Feb 15;33(6):1316-22 PubMed

Biochem J. 1994 May 15;300 ( Pt 1):165-73 PubMed

Nucleic Acids Res. 1994 Sep 25;22(19):3834-9 PubMed

Eur J Biochem. 1995 Mar 15;228(3):616-24 PubMed

Science. 1995 Dec 15;270(5243):1842-5 PubMed

Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7606-11 PubMed

J Biomol Struct Dyn. 1996 Jun;13(6):989-98 PubMed

Nucleic Acids Res. 1996 Oct 15;24(20):3918-25 PubMed

Nucleic Acids Res. 1996 Dec 15;24(24):5062-3 PubMed

Eur J Biochem. 1997 Feb 1;243(3):782-91 PubMed

J Med Chem. 1997 Mar 28;40(7):1090-8 PubMed

Eur J Biochem. 1997 Jun 1;246(2):508-17 PubMed

Methods Mol Biol. 1997;90:51-79 PubMed

Biochemistry. 1998 Jun 30;37(26):9230-9 PubMed

Nature. 1999 Jun 17;399(6737):708-12 PubMed

Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1982-5 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Thermodynamic stability and energetics of DNA duplexes containing major intrastrand cross-links of second-generation antitumor dinuclear Pt(II) complexes

. 2012 Feb ; 17 (2) : 187-96. [epub] 20110906

Replacement of a thiourea with an amidine group in a monofunctional platinum-acridine antitumor agent. Effect on DNA interactions, DNA adduct recognition and repair

. 2011 Oct 03 ; 8 (5) : 1941-54. [epub] 20110817

Walking of antitumor bifunctional trinuclear PtII complex on double-helical DNA

. 2011 Jan ; 39 (2) : 720-8. [epub] 20100909

Biophysical studies on the stability of DNA intrastrand cross-links of transplatin

. 2008 Nov 01 ; 95 (9) : 4361-71. [epub] 20080801

Conformation of DNA GG intrastrand cross-link of antitumor oxaliplatin and its enantiomeric analog

. 2007 Dec 01 ; 93 (11) : 3950-62. [epub] 20070817

Chiral differentiation of DNA adducts formed by enantiomeric analogues of antitumor cisplatin is sequence-dependent

. 2005 Jun ; 88 (6) : 4159-69. [epub] 20050401

DNA-protein cross-linking by trans-[PtCl(2)(E-iminoether)(2)]. A concept for activation of the trans geometry in platinum antitumor complexes

. 2003 Nov 15 ; 31 (22) : 6450-60.

Thermodynamic properties of duplex DNA containing a site-specific d(GpG) intrastrand crosslink formed by an antitumor dinuclear platinum complex

. 2001 May 15 ; 29 (10) : 2034-40.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...