DNA interactions of antitumor cisplatin analogs containing enantiomeric amine ligands
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
10733979
PubMed Central
PMC1300793
DOI
10.1016/s0006-3495(00)76748-8
PII: S0006-3495(00)76748-8
Knihovny.cz E-zdroje
- MeSH
- adukty DNA chemie MeSH
- aminy chemie MeSH
- biofyzika MeSH
- biofyzikální jevy MeSH
- cisplatina analogy a deriváty chemie farmakologie MeSH
- diferenciální skenovací kalorimetrie MeSH
- DNA chemie účinky léků genetika MeSH
- genetická transkripce MeSH
- konformace nukleové kyseliny MeSH
- ligandy MeSH
- molekulární sekvence - údaje MeSH
- protinádorové látky chemie farmakologie MeSH
- reagencia zkříženě vázaná MeSH
- sekvence nukleotidů MeSH
- skot MeSH
- stereoizomerie MeSH
- techniky in vitro MeSH
- termodynamika MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adukty DNA MeSH
- aminy MeSH
- cisplatina MeSH
- DNA MeSH
- ligandy MeSH
- protinádorové látky MeSH
- reagencia zkříženě vázaná MeSH
Modifications of natural DNA and synthetic oligodeoxyribonucleotide duplexes in a cell-free medium by analogs of antitumor cisplatin containing enantiomeric amine ligands, such as cis-[PtCl(2)(RR-DAB)] and cis-[PtCl(2)(SS-DAB)] (DAB = 2,3-diaminobutane), were studied by various methods of molecular biophysics and biophysical chemistry. These methods include DNA binding studies by pulse polarography and atomic absorption spectrophotometry, mapping of DNA adducts using transcription assay, interstrand cross-linking assay using gel electrophoresis under denaturing conditions, differential scanning calorimetry, chemical probing, and bending and unwinding studies of the duplexes containing single, site-specific cross-link. The major differences resulting from the modification of DNA by the two enantiomers are the thermodynamical destabilization and conformational distortions induced in DNA by the 1,2-d(GpG) intrastrand cross-link. It has been suggested that these differences are associated with a different biological activity of the two enantiomers observed previously. In addition, the results of the present work are also consistent with the view that formation of hydrogen bonds between the carbonyl oxygen of the guanine residues and the "quasi equatorial" hydrogen of the cis amine in the 1, 2-d(GpG) intrastrand cross-link plays an important role in determining the character of the distortion induced in DNA by this lesion.
Zobrazit více v PubMed
Biochemistry. 1991 Jan 8;30(1):222-30 PubMed
Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5345-9 PubMed
Anticancer Res. 1991 Jan-Feb;11(1):281-7 PubMed
Nucleic Acids Res. 1991 Jun 25;19(12):3421-9 PubMed
Biophysik. 1970;6(4):290-300 PubMed
Biophys Chem. 1976 Jan;4(1):79-92 PubMed
J Med Chem. 1978 Dec;21(12):1315-8 PubMed
Proc Natl Acad Sci U S A. 1979 Jan;76(1):200-3 PubMed
Methods Enzymol. 1980;65(1):499-560 PubMed
Nature. 1980 Aug 7;286(5773):573-8 PubMed
J Med Chem. 1981 May;24(5):508-15 PubMed
Nucleic Acids Res. 1982 Aug 11;10(15):4715-30 PubMed
Chem Pharm Bull (Tokyo). 1983 May;31(5):1469-73 PubMed
Eur J Biochem. 1984 Jun 15;141(3):465-72 PubMed
Biochim Biophys Acta. 1985;780(3):167-80 PubMed
Cell. 1985 Oct;42(3):713-24 PubMed
Proc Natl Acad Sci U S A. 1985 Dec;82(23):8009-13 PubMed
Proc Natl Acad Sci U S A. 1986 Feb;83(4):862-6 PubMed
Nature. 1986 Apr 10-16;320(6062):501-6 PubMed
Proc Natl Acad Sci U S A. 1988 Mar;85(6):1763-7 PubMed
Biochemistry. 1991 Aug 13;30(32):8026-35 PubMed
Nucleic Acids Res. 1992 Jan 25;20(2):267-72 PubMed
Biochemistry. 1992 Feb 25;31(7):1904-8 PubMed
Proc Natl Acad Sci U S A. 1988 Jun;85(12):4158-61 PubMed
Chem Biol Interact. 1989;70(1-2):39-49 PubMed
Biochemistry. 1990 Jan 30;29(4):1016-24 PubMed
J Mol Recognit. 1990 Feb;3(1):1-25 PubMed
Biochemistry. 1990 May 1;29(17):4227-34 PubMed
Biochemistry. 1990 Jun 26;29(25):6071-81 PubMed
Biophys Chem. 1990 Apr;35(2-3):155-63 PubMed
Biophys Chem. 1990 Apr;35(2-3):179-88 PubMed
Biochemistry. 1990 Oct 16;29(41):9522-31 PubMed
Eur J Biochem. 1992 May 1;205(3):895-906 PubMed
Biochemistry. 1992 Dec 15;31(49):12397-402 PubMed
Biochemistry. 1993 Nov 2;32(43):11676-81 PubMed
Biochemistry. 1994 Feb 15;33(6):1316-22 PubMed
Biochem J. 1994 May 15;300 ( Pt 1):165-73 PubMed
Nucleic Acids Res. 1994 Sep 25;22(19):3834-9 PubMed
Eur J Biochem. 1995 Mar 15;228(3):616-24 PubMed
Science. 1995 Dec 15;270(5243):1842-5 PubMed
Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7606-11 PubMed
J Biomol Struct Dyn. 1996 Jun;13(6):989-98 PubMed
Nucleic Acids Res. 1996 Oct 15;24(20):3918-25 PubMed
Nucleic Acids Res. 1996 Dec 15;24(24):5062-3 PubMed
Eur J Biochem. 1997 Feb 1;243(3):782-91 PubMed
J Med Chem. 1997 Mar 28;40(7):1090-8 PubMed
Eur J Biochem. 1997 Jun 1;246(2):508-17 PubMed
Methods Mol Biol. 1997;90:51-79 PubMed
Biochemistry. 1998 Jun 30;37(26):9230-9 PubMed
Nature. 1999 Jun 17;399(6737):708-12 PubMed
Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1982-5 PubMed
Walking of antitumor bifunctional trinuclear PtII complex on double-helical DNA
Biophysical studies on the stability of DNA intrastrand cross-links of transplatin
Conformation of DNA GG intrastrand cross-link of antitumor oxaliplatin and its enantiomeric analog