Thermodynamic stability and energetics of DNA duplexes containing major intrastrand cross-links of second-generation antitumor dinuclear Pt(II) complexes
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- antitumorózní látky chemie farmakologie MeSH
- diferenciální skenovací kalorimetrie MeSH
- DNA chemie MeSH
- interkalátory chemie farmakologie MeSH
- konformace nukleové kyseliny účinky léků MeSH
- oprava DNA účinky léků MeSH
- organoplatinové sloučeniny chemie farmakologie MeSH
- sekvence nukleotidů MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antitumorózní látky MeSH
- DNA MeSH
- interkalátory MeSH
- organoplatinové sloučeniny MeSH
The effects of major DNA intrastrand cross-links of antitumor dinuclear Pt(II) complexes [{trans-PtCl(NH(3))(2)}(2)-μ-{trans-(H(2)N(CH(2))(6)NH(2)(CH(2))(2)NH(2)(CH(2))(6)NH(2))}](4+) (1) and [{PtCl(DACH)}(2)-μ-{H(2)N(CH(2))(6)NH(2)(CH(2))(2)NH(2)(CH(2))(6)NH(2))}](4+) (2) (DACH is 1,2-diaminocyclohexane) on DNA stability were studied with emphasis on thermodynamic origins of that stability. Oligodeoxyribonucleotide duplexes containing the single 1,2, 1,3, or 1,5 intrastrand cross-links at guanine residues in the central TGGT, TGTGT, or TGTTTGT sequences, respectively, were prepared and analyzed by differential scanning calorimetry. The unfolding of the platinated duplexes was accompanied by unfavorable free energy terms. The efficiency of the cross-links to thermodynamically destabilize the duplex depended on the number of base pairs separating the platinated bases. The trend was 1,5→1,2→1,3 cross-link of 1 and 1,5→1,3→1,2 cross-link of 2. Interestingly, the results showed that the capability of the cross-links to reduce the thermodynamic stability of DNA (ΔG(298)(0)) correlated with the extent of conformational distortions induced in DNA by various types of intrastrand cross-links of 1 or 2 determined by chemical probes of DNA conformation. We also examined the efficiency of the mammalian nucleotide excision repair systems to remove from DNA the intrastrand cross-links of 1 or 2. The efficiency of the excinucleases to remove the cross-links from DNA depended on the length of the cross-link; the trend was identical to that observed for the efficiency of the intrastrand cross-links to thermodynamically destabilize the duplex. Thus, the results are consistent with the thesis that an important factor that determines the susceptibility of the intrastrand cross-links of dinuclear platinum complexes 1 and 2 to be removed from DNA by nucleotide excision repair is the efficiency of these lesions to thermodynamically destabilize DNA.
Zobrazit více v PubMed
Prog Nucleic Acid Res Mol Biol. 2002;71:1-68 PubMed
Biopolymers. 2002 Nov 5;65(3):202-10 PubMed
Eur J Cancer. 2001 May;37(7):930-8 PubMed
Mol Pharmacol. 2007 Sep;72(3):704-14 PubMed
Biochemistry. 1996 Dec 24;35(51):16705-13 PubMed
Chem Biol. 2002 May;9(5):629-38 PubMed
Br J Cancer. 1999 Aug;80(12):1912-9 PubMed
Biochemistry. 1990 Jun 26;29(25):6071-81 PubMed
Nat Rev Drug Discov. 2005 Apr;4(4):307-20 PubMed
Biophys J. 2005 Feb;88(2):1207-14 PubMed
J Biol Chem. 2002 Dec 13;277(50):48076-86 PubMed
Neuro Oncol. 2006 Jul;8(3):215-26 PubMed
Nucleic Acids Res. 2003 Nov 15;31(22):6450-60 PubMed
Curr Opin Struct Biol. 1995 Jun;5(3):334-42 PubMed
Nucleic Acids Res. 1996 Dec 15;24(24):5062-3 PubMed
Proc Natl Acad Sci U S A. 1985 Dec;82(23):8009-13 PubMed
J Mol Recognit. 1990 Feb;3(1):1-25 PubMed
Nucleic Acids Res. 1991 Jun 25;19(12):3421-9 PubMed
J Biol Chem. 2001 Mar 30;276(13):9655-61 PubMed
Arch Biochem Biophys. 2006 Feb 1;446(1):1-10 PubMed
Trends Biochem Sci. 1995 Oct;20(10):435-9 PubMed
Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5345-9 PubMed
Annu Rev Biochem. 1996;65:135-67 PubMed
Biochemistry. 2003 Jan 28;42(3):792-800 PubMed
Chem Commun (Camb). 2010 Sep 28;46(36):6640-50 PubMed
J Mol Biol. 2000 Feb 25;296(3):803-12 PubMed
Cancer Res. 1999 Aug 15;59(16):3968-71 PubMed
Proc Natl Acad Sci U S A. 1980 Jul;77(7):3855-9 PubMed
Annu Rev Biochem. 1996;65:43-81 PubMed
Biophys J. 2007 Dec 1;93(11):3950-62 PubMed
Anal Biochem. 1996 Sep 5;240(2):273-82 PubMed
Int J Cancer. 1997 Mar 4;70(5):551-5 PubMed
J Biol Chem. 1995 Sep 1;270(35):20862-9 PubMed
J Biol Chem. 2001 Jun 22;276(25):22191-9 PubMed
Nucleic Acids Res. 2001 May 15;29(10):2034-40 PubMed
Nat Rev Cancer. 2007 Aug;7(8):573-84 PubMed
Biochemistry. 1993 Nov 2;32(43):11676-81 PubMed
Biochem J. 1994 May 15;300 ( Pt 1):165-73 PubMed
Proc Natl Acad Sci U S A. 1999 May 25;96(11):6090-5 PubMed
J Biol Chem. 2000 May 26;275(21):15789-98 PubMed
Biochemistry. 1992 Dec 15;31(49):12397-402 PubMed
Cell. 1985 Oct;42(3):713-24 PubMed
Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10394-8 PubMed
Ann N Y Acad Sci. 1994 Jul 29;726:45-55; discussion 55-6 PubMed
Inorg Chem. 2007 Jul 23;46(15):5820-2 PubMed
Biochemistry. 1996 Aug 6;35(31):10004-13 PubMed
Inorg Chem. 2003 Sep 8;42(18):5498-506 PubMed
Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7606-11 PubMed
Biophys J. 2000 Apr;78(4):2008-21 PubMed
Biochem Pharmacol. 2010 Jan 15;79(2):112-21 PubMed