Effects of monofunctional adducts of platinum(II) complexes on thermodynamic stability and energetics of DNA duplexes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
15574710
PubMed Central
PMC1305123
DOI
10.1529/biophysj.104.051771
PII: S0006-3495(05)73187-8
Knihovny.cz E-zdroje
- MeSH
- adukty DNA analýza chemie MeSH
- denaturace nukleových kyselin MeSH
- DNA analýza chemie MeSH
- kinetika MeSH
- oprava DNA * MeSH
- platina analýza chemie MeSH
- přenos energie MeSH
- teplota MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adukty DNA MeSH
- DNA MeSH
- platina MeSH
Effects of adducts of [PtCl(NH3)3]Cl or chlorodiethylenetriamineplatinum(II) on DNA stability were studied with emphasis on thermodynamic origins of that stability. Oligodeoxyribonucleotide duplexes (15-bp) containing the single, site-specific monofunctional adduct at G-residues of the central sequences TGT/ACA or 5'-AGT/5'-ACT were prepared and analyzed by differential scanning calorimetry, temperature-dependent ultraviolet absorption and circular dichroism. The unfolding of the platinated duplexes was accompanied by relatively small unfavorable free energy terms. This destabilization was enthalpic in origin. On the other hand, a relatively large reduction of melting temperature (T(m)) was observed as a consequence of the monofunctional adduct in the TGT sequence, whereas T(m) due to the adduct in the AGT sequence was reduced only slightly. We also examined the efficiency of the mammalian nucleotide excision repair system to remove from DNA the monofunctional adducts and found that these lesions were not recognized by this repair system. Thus, rather thermodynamic than thermal characterization of DNA adducts of monofunctional platinum compounds is a property implicated in the modulation of downstream effects such as protein recognition and repair.
Zobrazit více v PubMed
Brabec, V. 2002. DNA modifications by antitumor platinum and ruthenium compounds: their recognition and repair. Prog. Nucleic Acid Res. Mol. Biol. 71:1–68. PubMed
Brabec, V., V. Boudny, and Z. Balcarova. 1994. Monofunctional adducts of platinum(II) produce in DNA a sequence-dependent local denaturation. Biochemistry. 33:1316–1322. PubMed
Brabec, V., V. Kleinwächter, J. L. Butour, and N. P. Johnson. 1990. Biophysical studies of the modification of DNA by antitumour platinum coordination complexes. Biophys. Chem. 35:129–141. PubMed
Brabec, V., and M. Leng. 1993. DNA interstrand cross-links of trans-diamminedichloroplatinum(II) are preferentially formed between guanine and complementary cytosine residues. Proc. Natl. Acad. Sci. USA. 90:5345–5349. PubMed PMC
Brabec, V., J. Reedijk, and M. Leng. 1992. Sequence-dependent distortions induced in DNA by monofunctional platinum(II) binding. Biochemistry. 31:12397–12402. PubMed
Buschta-Hedayat, N., T. Buterin, M. T. Hess, M. Missura, and H. Naegeli. 1999. Recognition of nonhybridizing base pairs during nucleotide excision repair of DNA. Proc. Natl. Acad. Sci. USA. 96:6090–6095. PubMed PMC
Corda, Y., C. Job, M.-F. Anin, M. Leng, and D. Job. 1993. Spectrum of DNA-platinum adduct recognition by prokaryotic and eukaryotic DNA-dependent RNA polymerases. Biochemistry. 32:8582–8588. PubMed
Geacintov, N. E., S. Broyde, T. Buterin, H. Naegeli, M. Wu, S. X. Yan, and D. J. Patel. 2002. Thermodynamic and structural factors in the removal of bulky DNA adducts by the nucleotide excision repair machinery. Biopolymers. 65:202–210. PubMed
Gunz, D., M. T. Hess, and H. Naegeli. 1996. Recognition of DNA adducts by human nucleotide excision repair: evidence for a thermodynamic probing mechanism. J. Biol. Chem. 271:25089–25098. PubMed
Hofr, C., and V. Brabec. 2001. Thermal and thermodynamic properties of duplex DNA containing site-specific interstrand cross-link of antitumor cisplatin or its clinically ineffective trans isomer. J. Biol. Chem. 276:9655–9661. PubMed
Hofr, C., N. Farrell, and V. Brabec. 2001. Thermodynamic properties of duplex DNA containing a site-specific d(GpG) intrastrand crosslink formed by an antitumor dinuclear platinum complex. Nucleic Acids Res. 29:2034–2040. PubMed PMC
Hollis, L. S., W. I. Sundquist, J. N. Burstyn, W. J. Heiger-Bernays, S. F. Bellon, K. J. Ahmed, A. R. Amundsen, E. W. Stern, and S. J. Lippard. 1991. Mechanistic studies of a novel class of trisubstituted platinum(II) antitumor agents. Cancer Res. 51:1866–1875. PubMed
Johnson, N. P., J.-L. Butour, G. Villani, F. L. Wimmer, M. Defais, V. Pierson, and V. Brabec. 1989. Metal antitumor compounds: the mechanism of action of platinum complexes. Prog. Clin. Biochem. Med. 10:1–24.
Kasparkova, J., O. Novakova, N. Farrell, and V. Brabec. 2003. DNA binding by antitumor trans-[PtCl2(NH3)(thiazole)]. Protein recognition and nucleotide excision repair of monofunctional adducts. Biochemistry. 42:792–800. PubMed
Koberle, B., K. A. Grimaldi, A. Sunters, J. A. Hartley, L. R. Kelland, and J. R. W. Masters. 1997. DNA repair capacity and cisplatin sensitivity of human testis tumour cells. Int. J. Cancer. 70:551–555. PubMed
Leharne, S. A., and B. Z. Chowdhry. 1998. Thermodynamic background to differential scanning calorimetry. In Biocalorimetry: Applications of Calorimetry in the Biological Science. J. E. Ladbury and B. Z. Chowdhry, editors. J. Wiley & Sons, Chichester, UK. 157–182.
Malina, J., J. Kasparkova, G. Natile, and V. Brabec. 2002. Recognition of major DNA adducts of enantiomeric cisplatin analogs by HMG box proteins and nucleotide excision repair of these adducts. Chem. Biol. 9:629–638. PubMed
Manley, J. L., A. Fire, A. Cano, P. A. Sharp, and M. L. Gefter. 1980. DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc. Natl. Acad. Sci. USA. 77:3855–3859. PubMed PMC
Marky, L. A., and K. J. Breslauer. 1987. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers. 26:1601–1620. PubMed
Matsunaga, T., D. Mu, C.-H. Park, J. T. Reardon, and A. Sancar. 1995. Human DNA repair excision nuclease. J. Biol. Chem. 270:20862–20869. PubMed
Murphy, J. H., and T. L. Trapane. 1996. Concentration and extinction coefficient determination for oligonucleotides and analogs using a general phosphate analysis. Anal. Biochem. 240:273–282. PubMed
Novakova, O., J. Kasparkova, J. Malina, G. Natile, and V. Brabec. 2003. DNA-protein cross-linking by trans-[PtCl2(E-iminoether)2]. A concept for activation of the trans geometry in platinum antitumor complexes. Nucleic Acids Res. 31:6450–6460. PubMed PMC
Pilch, D. S., S. U. Dunham, E. R. Jamieson, S. J. Lippard, and K. J. Breslauer. 2000. DNA sequence context modulates the impact of a cisplatin 1,2-d(GpG) intrastrand cross-link on the conformational and thermodynamic properties of duplex DNA. J. Mol. Biol. 296:803–812. PubMed
Pilch, D. S., G. E. Plum, and K. J. Breslauer. 1995. The thermodynamics of DNA structures that contain lesions or guanine tetrads. Curr. Opin. Struct. Biol. 5:334–342. PubMed
Plum, G. E., and K. J. Breslauer. 1994. DNA lesions: a thermodynamic perspective. Ann. N. Y. Acad. Sci. 726:45–56. PubMed
Plum, G. E., C. A. Gelfand, and K. J. Breslauer. 1999. Physicochemical approaches to structural elucidation. Effects of 3,N4-ethenodeoxycytidine on duplex stability and energetics. In Exocyclic DNA Adducts in Mutagenesis and Carcinogenesis. B. Singer and H. Bartsch, editors. IARC, Lyon, France. 169–177. PubMed
Poklar, N., D. S. Pilch, S. J. Lippard, E. A. Redding, S. U. Dunham, and K. J. Breslauer. 1996. Influence of cisplatin intrastrand crosslinking on the conformation, thermal stability, and energetics of a 20-mer DNA duplex. Proc. Natl. Acad. Sci. USA. 93:7606–7611. PubMed PMC
Reardon, J. T., and A. Sancar. 1998. Molecular mechanism of nucleotide excision repair in mammalian cells. In Advances in DNA Damage and Repair. M. Dizdaroglu and A. Karakaya, editors. Plenum, New York. 377–393.
Reardon, J. T., A. Vaisman, S. G. Chaney, and A. Sancar. 1999. Efficient nucleotide excision repair of cisplatin, oxaliplatin, and bis-aceto-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts. Cancer Res. 59:3968–3971. PubMed
Rentzeperis, D., D. P. Kharakoz, and L. A. Marky. 1991. Coupling of sequential transitions of any molecularity from equilibrium melting curves. Biochemistry. 30:6276–6283. PubMed
Sancar, A. 1996. DNA excision repair. Annu. Rev. Biochem. 65:43–81. PubMed
SantaLucia, J., Jr. 1998. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA. 95:1460–1465. PubMed PMC
Van Garderen, C. J., H. Van den Elst, J. H. Van Boom, J. Reedijk, and L. P. A. Van Houte. 1989. A double-stranded DNA fragment shows a significant decrease in double-helix stability after binding of monofunctional platinum amine compounds. J. Am. Chem. Soc. 111:4123–4125.
Vrana, O., V. Brabec, and V. Kleinwächter. 1986. Polarographic studies on the conformation of some platinum complexes: relations to anti-tumour activity. Anticancer Drug Des. 1:95–109. PubMed
Wood, R. D. 1999. DNA damage recognition during nucleotide excision repair in mammalian cells. Biochimie. 81:39–44. PubMed
Zaludova, R., A. Zakovska, J. Kasparkova, Z. Balcarova, O. Vrana, M. Coluccia, G. Natile, and V. Brabec. 1997. DNA modifications by antitumor trans-[PtCl2(E-iminoether)2]. Mol. Pharmacol. 52:354–361. PubMed
Zamble, D. B., D. Mu, J. T. Reardon, A. Sancar, and S. J. Lippard. 1996. Repair of cisplatin-DNA adducts by the mammalian excision nuclease. Biochemistry. 35:10004–10013. PubMed
Biophysical studies on the stability of DNA intrastrand cross-links of transplatin