Biophysical studies on the stability of DNA intrastrand cross-links of transplatin
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18676645
PubMed Central
PMC2567932
DOI
10.1529/biophysj.108.138909
PII: S0006-3495(08)78574-6
Knihovny.cz E-zdroje
- MeSH
- biofyzikální jevy * MeSH
- cisplatina metabolismus MeSH
- DNA chemie genetika metabolismus MeSH
- kalorimetrie MeSH
- konformace nukleové kyseliny MeSH
- oligodeoxyribonukleotidy chemie genetika metabolismus MeSH
- reagencia zkříženě vázaná metabolismus MeSH
- sekvence nukleotidů MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cisplatina MeSH
- DNA MeSH
- oligodeoxyribonukleotidy MeSH
- reagencia zkříženě vázaná MeSH
- transplatin MeSH Prohlížeč
Clinically ineffective transplatin [trans-diamminedichloridoplatinum(II)] is used in the studies of the structure-pharmacological activity relationship of platinum compounds. In addition, a number of transplatin analogs exhibit promising toxic effects in several tumor cell lines including those resistant to conventional antitumor cisplatin. Moreover, transplatin-modified oligonucleotides have been shown to be effective modulators of gene expression. Owing to these facts and because DNA is also considered the major pharmacological target of platinum complexes, interactions between transplatin and DNA are of great interest. We examined, using biophysical and biochemical methods, the stability of 1,3-GNG intrastrand cross-links (CLs) formed by transplatin in short synthetic oligodeoxyribonucleotide duplexes and natural double-helical DNA. We have found that transplatin forms in double-helical DNA 1,3-GNG intrastrand CLs, but their stability depends on the sequence context. In some sequences the 1,3-GNG intrastrand CLs formed by transplatin in double-helical DNA readily rearrange into interstrand CLs. On the other hand, in a number of other sequences these intrastrand CLs are relatively stable. We show that the stability of 1,3-GNG intrastrand CLs of transplatin correlates with the extent of conformational distortion and thermodynamic destabilization induced in double-helical DNA by this adduct.
Zobrazit více v PubMed
Rosenberg, B., L. Van Camp, J. E. Trosko, and V. H. Mansour. 1969. Platinum compounds: a new class of potent antitumor agents. Nature. 222:385–386. PubMed
Vrana, O., V. Brabec, and V. Kleinwächter. 1986. Polarographic studies on the conformation of some platinum complexes: relations to anti-tumour activity. Anticancer Drug Des. 1:95–109. PubMed
Farrell, N., L. R. Kelland, J. D. Roberts, and M. Van Beusichem. 1992. Activation of the trans geometry in platinum antitumor complexes: a survey of the cytotoxicity of trans complexes containing planar ligands in murine-L1210 and human tumor panels and studies on their mechanism of action. Cancer Res. 52:5065–5072. PubMed
Brabec, V., V. Kleinwächter, J. L. Butour, and N. P. Johnson. 1990. Biophysical studies of the modification of DNA by antitumor platinum coordination complexes. Biophys. Chem. 35:129–141. PubMed
Reedijk, J. 1996. Improved understanding in platinum antitumor chemistry. Chem. Commun. 801–806.
Farrell, N. 1996. Current status of structure-activity relationships of platinum anticancer drugs: activation of the trans geometry. In Metal Ions in Biological Systems. A. Sigel and H. Sigel, editors. Marcel Dekker, New York, Basel, Hong Kong. 603–639. PubMed
Kelland, L. R., S. Y. Sharp, C. F. O. Neill, F. I. Raynaud, P. J. Beale, and I. R. Judson. 1999. Mini-review: discovery and development of platinum complexes designed to circumvent cisplatin resistance. J. Inorg. Biochem. 77:111–115. PubMed
Brabec, V. 2002. DNA modifications by antitumor platinum and ruthenium compounds: their recognition and repair. Prog. Nucleic Acid Res. Mol. Biol. 71:1–68. PubMed
Natile, G., and M. Coluccia. 2004. Antitumor active trans-platinum compounds. In Metal Ions in Biological Systems. A. Sigel and H. Sigel, editors. Marcel Dekker, New York, Basel. 209–250. PubMed
Brabec, V., and J. Kasparkova. 2005. Modifications of DNA by platinum complexes: relation to resistance of tumors to platinum antitumor drugs. Drug Resist. Updat. 8:131–146. PubMed
Jamieson, E. R., and S. J. Lippard. 1999. Structure, recognition, and processing of cisplatin-DNA adducts. Chem. Rev. 99:2467–2498. PubMed
Siddik, Z. H. 2003. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 22:7265–7279. PubMed
Wang, D., and S. J. Lippard. 2005. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4:307–320. PubMed
Brabec, V., and M. Leng. 1993. DNA interstrand cross-links of trans-diamminedichloroplatinum(II) are preferentially formed between guanine and complementary cytosine residues. Proc. Natl. Acad. Sci. USA. 90:5345–5349. PubMed PMC
Eastman, A., M. M. Jennerwein, and D. L. Nagel. 1988. Characterization of bifunctional adducts produced in DNA by trans-diamminedichloroplatinum(II). Chem. Biol. Interact. 67:71–80. PubMed
Eastman, A., and M. A. Barry. 1987. Interaction of trans-diamminedichloroplatinum(II) with DNA: formation of monofunctional adducts and their reaction with glutathione. Biochemistry. 26:3303–3307. PubMed
Boudvillain, M., R. Dalbies, C. Aussourd, and M. Leng. 1995. Intrastrand cross-links are not formed in the reaction between transplatin and native DNA: relation with the clinical inefficiency of transplatin. Nucleic Acids Res. 23:2381–2388. PubMed PMC
Leng, M., A. Schwartz, and M. J. Giraud-Panis. 2000. Transplatin-modified oligonucleotides as potential antitumor drugs. In Platinum-Based Drugs in Cancer Therapy. L. R. Kelland and N. P. Farrell, editors. Humana Press, Totowa, New Jersey. 63–85.
Giraud-Panis, M.-J., and M. Leng. 2000. Transplatin-modified oligonucleotides as modulators of gene expression. Pharmacol. Ther. 85:175–181. PubMed
Aupeix-Scheidler, K., S. Chabas, L. Bidou, J.-P. Rousset, M. Leng, and J.-J. Toulme. 2000. Inhibition of in vitro and ex vivo translation by a transplatin-modified oligo(2′-O-methylribonucleotide) directed against the HIV-1 gag-pol frameshift signal. Nucleic Acids Res. 28:438–445. PubMed PMC
Kasparkova, J., O. Novakova, N. Farrell, and V. Brabec. 2003. DNA binding by antitumor trans-[PtCl2(NH3)(thiazole)]. Protein recognition and nucleotide excision repair of monofunctional adducts. Biochemistry. 42:792–800. PubMed
Brabec, V., K. Neplechova, J. Kasparkova, and N. Farrell. 2000. Steric control of DNA interstrand cross-link sites of trans platinum complexes: specificity can be dictated by planar nonleaving groups. J. Biol. Inorg. Chem. 5:364–368. PubMed
Kasparkova, J., V. Marini, Y. Najajreh, D. Gibson, and V. Brabec. 2003. DNA binding mode of the cis and trans geometries of new antitumor nonclassical platinum complexes containing piperidine, piperazine or 4-picoline ligand in cell-free media. Relations to their activity in cancer cell lines. Biochemistry. 42:6321–6332. PubMed
Stehlikova, K., J. Kasparkova, O. Novakova, A. Martinez, V. Moreno, and V. Brabec. 2006. Recognition of DNA modified by trans-[PtCl2NH3(4-hydroxymethylpyridine)] by tumor suppressor protein p53 and character of DNA adducts of this cytotoxic complex. FEBS J. 273:301–314. PubMed
Najajreh, Y., J. Kasparkova, V. Marini, D. Gibson, and V. Brabec. 2005. Structural characterization and DNA interactions of new cytotoxic transplatin analogues containing one planar and one nonplanar heterocyclic amine ligand. J. Biol. Inorg. Chem. 10:722–731. PubMed
Comess, K. M., C. E. Costello, and S. J. Lippard. 1990. Identification and characterization of a novel linkage isomerization in the reaction of trans-diamminedichloroplatinum(II) with 5′-d(TCTACGCGTTCT). Biochemistry. 29:2102–2110. PubMed
Brabec, V., M. Sip, and M. Leng. 1993. DNA conformational distortion produced by site-specific interstrand cross-link of trans-diamminedichloroplatinum(II). Biochemistry. 32:11676–11681. PubMed
Brabec, V., J. Reedijk, and M. Leng. 1992. Sequence-dependent distortions induced in DNA by monofunctional platinum(II) binding. Biochemistry. 31:12397–12402. PubMed
Yoon, C., M. D. Kuwabara, R. Law, R. Wall, and D. S. Sigman. 1988. Sequence-dependent variability of DNA structure. J. Biol. Chem. 263:8458–8463. PubMed
Schwartz, A., L. Marrot, and M. Leng. 1989. Conformation of DNA modified at a d(GG) or a d(AG) site by the antitumor drug cis-diamminedichloroplatinum(II). Biochemistry. 28:7975–7978. PubMed
Bailly, C., D. Gentle, F. Hamy, M. Purcell, and M. J. Waring. 1994. Localized chemical reactivity in DNA associated with the sequence-specific bis intercalation of echinomycin. Biochem. J. 300:165–173. PubMed PMC
Ross, S. A., and C. J. Burrows. 1996. Cytosine-specific chemical probing of DNA using bromide and monoperoxysulfate. Nucleic Acids Res. 24:5062–5063. PubMed PMC
Bailly, C., and M. J. Waring. 1997. Diethylpyrocarbonate and osmium tetroxide as probes for drug-induced changes in DNA conformation in vitro. In Drug-DNA Interaction Protocols. K. R. Fox, editor. Humana Press, Totowa, New Jersey. 51–79. PubMed
Hofr, C., N. Farrell, and V. Brabec. 2001. Thermodynamic properties of duplex DNA containing a site-specific d(GpG) intrastrand crosslink formed by an antitumor dinuclear platinum complex. Nucleic Acids Res. 29:2034–2040. PubMed PMC
Hofr, C., and V. Brabec. 2001. Thermal and thermodynamic properties of duplex DNA containing site-specific interstrand cross-link of antitumor cisplatin or its clinically ineffective trans isomer. J. Biol. Chem. 276:9655–9661. PubMed
Bursova, V., J. Kasparkova, C. Hofr, and V. Brabec. 2005. Effects of monofunctional adducts of Platinum(II) complexes on thermodynamic stability and energetics of DNA duplexes. Biophys. J. 88:1207–1214. PubMed PMC
Novakova, O., H. Chen, O. Vrana, A. Rodger, P. J. Sadler, and V. Brabec. 2003. DNA interactions of monofunctional organometallic ruthenium(II) antitumor complexes in cell-free media. Biochemistry. 42:11544–11554. PubMed
Hofr, C., and V. Brabec. 2005. Thermal stability and energetics of 15-mer DNA duplex interstrand cross-linked by trans-diamminedichloroplatinum(II). Biopolymers. 77:222–229. PubMed
Murphy, J. H., and T. L. Trapane. 1996. Concentration and extinction coefficient determination for oligonucleotides and analogs using a general phosphate analysis. Anal. Biochem. 240:273–282. PubMed
Burstyn, J. N., W. J. HeigerBernays, S. M. Cohen, and S. J. Lippard. 2000. Formation of cis-diamminedichloroplatinum(II) 1,2-intrastrand cross-links on DNA is flanking-sequence independent. Nucleic Acids Res. 28:4237–4243. PubMed PMC
Intini, F. P., A. Boccarelli, V. C. Francia, C. Pacifico, M. F. Sivo, G. Natile, D. Giordano, P. De Rinaldis, and M. Coluccia. 2004. Platinum complexes with imino ethers or cyclic ligands mimicking imino ethers: synthesis, in vitro antitumor activity, and DNA interaction properties. J. Biol. Inorg. Chem. 9:768–780. PubMed
Dalbies, R., D. Payet, and M. Leng. 1994. DNA double helix promotes a linkage isomerization reaction in trans-diamminedichloroplatinum(II)-modified DNA. Proc. Natl. Acad. Sci. USA. 91:8147–8151. PubMed PMC
Sigman, D. S., and C. H. B. Chen. 1990. Chemical nucleases—new reagents in molecular biology. Annu. Rev. Biochem. 59:207–236. PubMed
Sigman, D. S. 1990. Chemical nucleases. Biochemistry. 29:9097–9105. PubMed
Nielsen, P. E. 1990. Chemical and photochemical probing of DNA complexes. J. Mol. Recognit. 3:1–24. PubMed
Kasparkova, J., N. Farrell, and V. Brabec. 2000. Sequence specificity, conformation, and recognition by HMG1 protein of major DNA interstrand cross-links of antitumor dinuclear platinum complexes. J. Biol. Chem. 275:15789–15798. PubMed
Pilch, D. S., S. U. Dunham, E. R. Jamieson, S. J. Lippard, and K. J. Breslauer. 2000. DNA sequence context modulates the impact of a cisplatin 1,2-d(GpG) intrastrand cross-link an the conformational and thermodynamic properties of duplex DNA. J. Mol. Biol. 296:803–812. PubMed
Malina, J., C. Hofr, L. Maresca, G. Natile, and V. Brabec. 2000. DNA interactions of antitumor cisplatin analogs containing enantiomeric amine ligands. Biophys. J. 78:2008–2021. PubMed PMC
Novakova, O., J. Kasparkova, V. Bursova, C. Hofr, M. Vojtiskova, H. Chen, P. J. Sadler, and V. Brabec. 2005. Conformation of DNA modified by monofunctional Ru(II) arene complexes: recognition by DNA-binding proteins and repair. Relationship to cytotoxicity. Chem. Biol. 12:121–129. PubMed
Comess, K. M., J. N. Burstyn, J. M. Essigmann, and S. J. Lippard. 1992. Replication inhibition and translesion synthesis on templates containing site-specifically placed cis-diamminedichloroplatinum(II) DNA adducts. Biochemistry. 31:3975–3990. PubMed
Novakova, O., J. Kasparkova, J. Malina, G. Natile, and V. Brabec. 2003. DNA-protein cross-linking by trans-[PtCl2(E-iminoether)2]. A concept for activation of the trans geometry in platinum antitumor complexes. Nucleic Acids Res. 31:6450–6460. PubMed PMC
Moriarity, B., O. Novakova, N. Farrell, V. Brabec, and J. Kasparkova. 2007. 1,2-GG intrastrand cross-link of antitumor dinuclear bifunctional platinum compound with spermidine linker inhibits DNA polymerization more effectively than the cross-link of conventional cisplatin. Arch. Biochem. Biophys. 459:264–272. PubMed
Coluccia, M., and G. Natile. 2007. Trans-platinum complexes in cancer therapy. Anti-Cancer Agents Med. Chem. 7:111–123. PubMed
Gee, J. E., I. Robbins, A. C. VanderLaan, J. H. VanBoom, C. Colombier, M. Leng, A. M. Raible, J. S. Nelson, and B. Lebleu. 1998. Assessment of high-affinity hybridization, RNase H cleavage, and covalent linkage in translation arrest by antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. 8:103–111. PubMed
Bancroft, D. P., C. A. Lepre, and S. J. Lippard. 1990. Pt-195 NMR kinetic and mechanistic studies of cis-diamminedichloroplatinum and trans-diamminedichloroplatinum(II) binding to DNA. J. Am. Chem. Soc. 112:6860–6871.
Dalbies, R., M. Boudvillain, and M. Leng. 1995. Linkage isomerization reaction of intrastrand cross-links in trans-diamminedichloroplatinum(II)-modified single-stranded oligonucleotides. Nucleic Acids Res. 23:949–953. PubMed PMC
Leng, M., D. Locker, M. J. Giraud-Panis, A. Schwartz, F. P. Intini, G. Natile, C. Pisano, A. Boccarelli, D. Giordano, and M. Coluccia. 2000. Replacement of an NH3 by an iminoether in transplatin makes an antitumor drug from an inactive compound. Mol. Pharmacol. 58:1525–1535. PubMed