How to Distinguish Nonexponentiality and Nonlinearity in Isothermal Structural Relaxation of Glass-Forming Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39115114
PubMed Central
PMC11345833
DOI
10.1021/acs.jpcb.4c02226
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The nonexponentiality and nonlinearity are two essential features of the structural relaxation in any glass-forming material, which seem to be inextricably bound together by the material time. It is shown that the temperature down-jump and up-jump experiments of the same magnitude ΔT = T0 - T to the same temperature T provide a clue for their separation. The isothermal structural relaxation can be quantified using the stabilization period on the logarithmic time scale log(tm/t0). It is described as the sum of the nonexponentiality term 1.181/ß and the nonlinearity term (σ/2.303)ΔT for the temperature down-jump, and as their difference for the temperature up-jump. The material parameter σ = -(∂lnτ/∂Tf)i quantifies variation of the relaxation time with structural changes at the inflection point of the relaxation curve and is formulated for the most widely used phenomenological models. The asymmetry of approach to equilibrium after the temperature down-jump and up-jump was first described by Kovacs in 1963. A detailed analysis of this asymmetry is provided, and a simple method for the estimation of the parameters characterizing the nonexponentiality (ß) and nonlinearity (σ) is proposed. The applicability of this method is tested using previously reported isothermal experimental data as well as calculated data for aging of polymers and other glass-forming materials. This concept illuminates differences in structural relaxation kinetics in a simple and consistent way that can be useful in the design of novel materials and the evaluation of their physical aging treatment.
Zobrazit více v PubMed
Kovacs A. J.Transition vitreuse dans les polymeres amorphes. Etude phénoménologique.In Fortschritte Der Hochpolymeren-Forschung. Advances in Polymer Science; Springer: Berlin, Heidelberg, 1964; Vol. 3, pp. 394–507.
McKenna G. B.; Simon S. L. 50th Anniversary Perspective: Challenges in the Dynamics and Kinetics of Glass-Forming Polymers. Macromolecules 2017, 50, 6333–6361. 10.1021/acs.macromol.7b01014. DOI
Niss K.; Hecksher T. Perspective: Searching for simplicity rather than universality in glass-forming liquids. J. Chem. Phys. 2018, 149 (23), 230901.10.1063/1.5048093. PubMed DOI
Kovacs A. J. La contraction isotherme du volume des polymeres amorphes. J. Polym. Sci. 1958, 30, 131–147. 10.1002/pol.1958.1203012111. DOI
Málek J. Rate-determining factors for structural relaxation in non-crystalline materials I. Stabilization period of isothermal volume relaxation. Thermochim. Acta 1998, 313, 181–190. 10.1016/S0040-6031(98)00249-4. DOI
Hutchinson J. M. Physical aging of polymers. Prog. Polym. Sci. 1995, 20, 703–760. 10.1016/0079-6700(94)00001-I. DOI
Tool A. Q. Relation between Inelastic Deformability and Thermal Expansion of Glass in its Annealing Range. J. Am. Ceram. Soc. 1946, 29, 240–253. 10.1111/j.1151-2916.1946.tb11592.x. DOI
Tool A. Q. Effect of Heat-Treatment on the Density and Constitution of High-Silica Glasses of the Borosilicate Type. J. Am. Ceram. Soc. 1948, 31, 177–186. 10.1111/j.1151-2916.1948.tb14287.x. DOI
Adam G.; Gibbs J. H. On the Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids. J. Chem. Phys. 1965, 43, 139–146. 10.1063/1.1696442. DOI
Scherer G. W. Volume Relaxation Far from Equilibrium. J. Am. Ceram. Soc. 1986, 69, 374–381. 10.1111/j.1151-2916.1986.tb04764.x. DOI
Hodge I. M. Effects of Annealing and Prior History on Enthalpy Relaxation in Glassy Polymers.6. Adam-Gibbs Formulation of Nonlinearity. Macromolecules 1987, 20, 2897–2908. 10.1021/ma00177a044. DOI
Narayanaswamy O. S. A Model of Structural Relaxation in Glass. J. Am. Ceram. Soc. 1971, 54, 491–498. 10.1111/j.1151-2916.1971.tb12186.x. DOI
Dyre J. C. Narayanaswamy’s 1971 aging theory and material time. J. Chem. Phys. 2015, 143, 114507.10.1063/1.4930551. PubMed DOI
Hopkins I. L. Stress Relaxation or Creep of Linear Viscoelastic Substances under Varying Temperature. J. Polym. Sci. 1958, 28, 631–633. 10.1002/pol.1958.1202811817. DOI
Douglass I. M.; Dyre J. C. Distance-as-time in physical aging. Phys. Rev. E 2022, 106, 054615.10.1103/PhysRevE.106.054615. PubMed DOI
Mazurin O. V.; Rekhson S. M.; Startsev Y. K. The Role of Viscosity in the Calculation of the Properties of Glass in the Glass-Transition Region. Fiz. Khim. Stekla 1975, 1, 412–416.
Moynihan C. T.; Easteal A. J.; DeBolt M. A.; Tucker J. Dependence of the Fictive Temperature of Glass on Cooling Rate. J. Am. Ceram. Soc. 1976, 59, 12–16. 10.1111/j.1151-2916.1976.tb09376.x. DOI
DeBolt M. A.; Easteal A. J.; Macedo P. B.; Moynihan C. T. Analysis of Structural Relaxation in 1. Glass Using Rate Heating Data. J. Am. Ceram. Soc. 1976, 59, 16–21. 10.1111/j.1151-2916.1976.tb09377.x. DOI
Hutchinson J. M.; Aklonis J. J.; Kovacs A. J.. New Phenomenological Approach to Volume Recovery in Glasses.In Abstract of Papers of the American Chemical Society; ACS, 1975, 170, 21.
Hutchinson J. M.; Kovacs A. J. A Simple Phenomenological Approach to the Thermal Behavior of Glasses During Uniform Heating or Cooling. J. Polym. Sci. Polym. Phys. Ed. 1976, 14, 1575–1590. 10.1002/pol.1976.180140905. DOI
Kovacs A. J.; Aklonis J. J.; Hutchinson J. M.; Ramos A. R. Isobaric Volume and Enthalpy Recovery of Glasses. II. A Transparent Multiparameter Theory. J. Polym. Sci. Polym. Phys. Ed. 1979, 17, 1097–1162. 10.1002/pol.1979.180170701. DOI
Hodge I. M. Enthalpy Relaxation and Recovery in Amorphous Materials. J. Non-Cryst. Solids 1994, 169, 211–266. 10.1016/0022-3093(94)90321-2. DOI
Málek J. Volume and Enthalpy Relaxation Rate in Glassy Materials. Macromolecules 1998, 31, 8312–8322. 10.1021/ma971875+. DOI
Málek J. Dilatometric study of structural relaxation in arsenic sulfide glass. Thermochim. Acta 1998, 311, 183–198. 10.1016/S0040-6031(97)00466-8. DOI
Sasabe H.; Moynihan C. T. Structural Relaxation in Poly (vinyl acetate). J. Polym. Sci. B Polym. Phys. 1978, 16, 1447–1457. 10.1002/pol.1978.180160810. DOI
McKenna G. B.; Vangel M. G.; Rukhin A. L.; Leigh S. D.; Lotz B.; Straupe C. The -effective paradox revisited: an extended analysis of Kovac’s volume recovery data on poly(vinyl acetate). Polymer 1999, 40, 5183–5205. 10.1016/S0032-3861(98)00668-5. DOI
Málek J.; Svoboda R.; Pustková P.; Čičmanec P. Volume and Enthalpy Relaxation of a-Se in the Glass Transition Region. J. Non-Cryst. Solids 2009, 355, 264–272. 10.1016/j.jnoncrysol.2008.11.014. DOI
Koštál P.; Málek J. Viscosity of selenium melt. J. Non-Cryst. Solids 2010, 356, 2803.10.1016/j.jnoncrysol.2010.09.032. DOI
Gaylord S.; Ananthasayanam B.; Tincher B.; Petit L.; Cox C.; Fotterningham U.; Joseph P.; Richardson K. Thermal and Structural Property Characterization of Commercially Moldable Glasses. J. Am. Ceram. Soc. 2010, 93 (8), 2207–2214. 10.1111/j.1551-2916.2010.03722.x. DOI
Fotheringham U.; Baltes A.; Fischer P.; Hohn P.; Jedamzik R.; Schenk C.; Stolz C.; Westenberger G. Refractive Index Drop Observed After Precision Molding of Optical Elements: Quantitative Understanding Based on the Tool-Narayanaswamy-Moynihan Model. J. Am. Ceram. Soc. 2008, 91, 780–783. 10.1111/j.1551-2916.2007.02238.x. DOI
Zhu X.; Shu C.; Zheng Q.; Yin S. Numerical Simulation of the Structural Relaxation Characteristics of K-LCV161 Glass. J. Non-Cryst. Solids 2021, 571, 121050.10.1016/j.jnoncrysol.2021.121050. DOI
Chromčíková M.; Hruška B.; Nowicka A.; Svoboda R.; Liška M. Structural Relaxation and Viscosity of Al2O3 Doped Magnesium Phosphate Glasses. J. Non-Cryst. Solids 2020, 550, 120323.10.1016/j.jnoncrysol.2020.120323. DOI
Málek J. Structural Relaxation in Chalcogenide Glasses. J. Am. Ceram. Soc. 2023, 106, 1739–1747. 10.1111/jace.18864. DOI
Wang T.; Yang Y. Q.; Li J. B.; Rao G. H. Thermodynamics and Structural Relaxation in Ce-Based Bulk Metallic Glass-Forming Liquid. J. Alloys Compd. 2011, 509, 4569–4573. 10.1016/j.jallcom.2011.01.106. DOI
Martin S. W.; Walleser J.; Karthikeyan D.; Sordelet D. Enthalpy Relaxation Studies of the Glass Transition in a Metallic Glass. J. Non-Cryst. Solids 2004, 349, 347–354. 10.1016/j.jnoncrysol.2004.08.203. DOI
Wilding M.; Webb S.; Dingwell D. B. Evaluation of a Relaxation Geospeedometer for Volcanic Glasses. Chem. Geol. 1995, 125, 137–148. 10.1016/0009-2541(95)00067-V. DOI
Wilding M.; Webb S.; Dingwell D. B.; Ablay G.; Marti J. Cooling Rate Variation in Natural Volcanic Glasses from Tenerife, Canary Islands. Contrib. Mineral. Petrol. 1996, 125, 151–160. 10.1007/s004100050212. DOI
Badrinarayanan P.; Simon S. L.; Lyng R. J.; O’Reilly J. M. Effect of Structure on Enthalpy Relaxation of Polycarbonate: Experiments and Modelling. Polymer 2008, 49 (16), 3554–3560. 10.1016/j.polymer.2008.05.046. DOI
Hodge I. M. Efects of Annealing and Prior History on Enthalpy Relaxation in Glassy Polymers. 4. Comparison of Five Polymers. Macromolecules 1983, 16, 898–902. 10.1021/ma00240a013. DOI
O’Reilly J. M. Physical Aging and Enthalpy Relaxation of Amorphous Polyesters. J. Polym. Sci., Part B 2000, 38, 495–499. 10.1002/(SICI)1099-0488(20000201)38:3<495::AID-POLB15>3.0.CO;2-R. DOI
Aou K.; Hsu S. L.; Kleiner L. W.; Tang F. W. Roles of Conformational and Configurational Deffects on the Physical Aging of Amorphous Poly(lactic acid). J. Phys. Chem. B 2007, 111, 12322.10.1021/jp074509t. DOI
Koh Y. P.; Simon S. L. Enthalpy Recovery of Polystyrene: Does a Long-Term Aging Plateau Exist?. Macromolecules 2013, 46, 5815–5821. 10.1021/ma4011236. DOI
Li Q.; Simon S. L. Enthalpy Recovery of Polymeric Glasses: Is the Theoretical Limiting Liquid Line Reached?. Polymer 2006, 47, 4781–4788. 10.1016/j.polymer.2006.04.046. DOI
Simon S. L.; Sobieski J. W.; Plazek D. J. Volume and enthalpy recovery of polystyrene. Polymer 2001, 42, 2555–2567. 10.1016/S0032-3861(00)00623-6. DOI
Liu G.; Li L.; Zheng Y.; Zuo Y. Temperature Gradient in Sample and its Effect on Enthalpy Relaxation Model Fitting of Polystyrene. J. Non-Cryst. Solids 2013, 365, 13–22. 10.1016/j.jnoncrysol.2013.01.017. DOI
Guo Y.; Zhang C.; Lai C.; Priestley R. D.; D’Acunzi M.; Fytas G. Structural Relaxation of Polymer Nanospheres under Soft and Hard Confinement: Isobaric versus Isochoric Conditions. ACS Nano 2011, 5, 5365–5373. 10.1021/nn201751m. PubMed DOI
Wungtanagorn R.; Schmidt S. J. Phenomenological Study of Enthalpy Relaxation of Amorphous Glucose, Fructose and their Mixture. Thermochim. Acta 2001, 369, 95–116. 10.1016/S0040-6031(00)00741-3. DOI
Gao C.; Ye B.; Jiang B.; Liu X.-N. Comparative Investigation on the Enthalpy Relaxation of Four Amorphous Pentose Isomers. J. Therm. Anal. Calorim. 2014, 115 (1), 37–44. 10.1007/s10973-013-3217-x. DOI
Gao C.; Ma H. M. Enthalpy Relaxation in D-Sorbitol Glass. J. Therm. Anal. Calorim. 2015, 120, 1905–1912. 10.1007/s10973-015-4463-x. DOI
Hill S. A.; MacNaughtan W.; Farhat I. A.; Noel T. R.; Parker R.; Ring S. G.; Whitcombe M. J. The Effect of Thermal History on the Maillard Reaction in a Glassy Matrix. J. Agric. Food Chem. 2005, 53, 10213–10218. 10.1021/jf0515678. PubMed DOI
Noel T. R.; Parker R.; Brownsey G. J.; Farhat I. A.; MacNaughtan W.; Ring S. G. Physical Aging of Starch, Maltodextrin, and Maltose. J. Agric. Food Chem. 2005, 53, 8580–8585. 10.1021/jf0580770. PubMed DOI
Morris C.; Taylor A. J.; Farhat I. A.; MacNaughtan W. Modelling of Physical Ageing in Starch using the TNM Equation. Carbohydr. Res. 2011, 346, 1122–1128. 10.1016/j.carres.2011.04.009. PubMed DOI
Montserrat S.; Calventus Y.; Hutchinson J. M. Physical Aging of Thermosetting Powder Coatings. Prog. Org. Coat. 2006, 55 (1), 35–42. 10.1016/j.porgcoat.2005.10.005. DOI
Hutchinson J. M.; McCarthy D.; Montserrat S.; Cortes P. Enthalpy Relaxation in Partially Cured Epoxy Resin. J. Polym. Sci. B Polym. Phys. 1996, 34, 229–239. 10.1002/(SICI)1099-0488(19960130)34:2<229::AID-POLB3>3.0.CO;2-O. DOI
Montserrat S.; Cortés P.; Pappin A. J.; Quah K. H.; Hutchinson J. M. Structural Relaxation in Fully Cured Epoxy Resins. J. Non-Cryst. Solids 1994, 172–174, 1017–1022. 10.1016/0022-3093(94)90615-7. DOI
Cortés P.; Montserrat S.; Hutchinson J. M. Addition of a Reactive Diluent to a Catalyzed Epoxy-Anhydride System. II. Effect on Enthalpy Relaxation. J. Appl. Polym. Sci. 1997, 63, 17–25. 10.1002/(SICI)1097-4628(19970103)63:1<17::AID-APP4>3.0.CO;2-V. DOI
Montserrat S.; Cortés P.; Calventus Y.; Hutchinson J. M. Effect of Crosslink Length on the Enthalpy Relaxation of Fully Cured Epoxy-Diamine Resins. Polym. Sci. Polym. Phys. Ed. 2000, 38, 456–468. 10.1002/(SICI)1099-0488(20000201)38:3<456::AID-POLB11>3.0.CO;2-3. DOI
Ramirez C.; Abad M. J.; Cano J.; Lopez J.; Nogueira P.; Barral L. Enthalpy Relaxation in an Epoxy-Cycloaliphatic Amine Resin. Colloid Polym. Sci. 2001, 279, 184–189. 10.1007/s003960000419. DOI
Morancho J. M.; Salla J. M. Relaxation in a Neat Epoxy Resin and in the Same Resin Modified with a Carboxyl-Terminated Copolymer. J. Non-Cryst. Solids 1998, 235, 596–599. 10.1016/S0022-3093(98)00569-9. DOI
Lu H.; Nutt S. Enthalpy Relaxation of Layered Silicate-Epoxy Nanocomposites. Macromol. Chem. Phys. 2003, 204, 1832–1841. 10.1002/macp.200350046. DOI
Hodge I. M.; O’Reily J. M. Nonlinear Kinetic and Thermodynamic Properties of Monomeric Organic Glasses. J. Phys. Chem. B 1999, 103 (20), 4171–4176. 10.1021/jp984146k. DOI
Sartor G.; Johari G. P. Structural Relaxation and Calorimetry in the Glass-Softening Range of 1,3,5-Tris(1-naphtyl) benzene. J. Phys. Chem. B 1999, 103, 11036–11040. 10.1021/jp9925987. DOI
Moynihan C. T.; Crichton S. N.; Opalka S. M. Linear and Non-Linear Structural Relaxation. J. Non-Cryst. Solids 1991, 131–133, 420–434. 10.1016/0022-3093(91)90335-4. DOI
Svoboda R.; Koštálová D.; Krbal M.; Komersová A. Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth. Molecules 2022, 27, 5668–23. 10.3390/molecules27175668. PubMed DOI PMC
Andreozzi L.; Faetti M.; Giordano M.; Palazzuoli D.; Zulli F. Enthalpy Relaxation in Polymers: A Comparison among Different Multiparameter Approaches Extending the TNM/AGV Model. Macromolecules 2003, 36, 7379–7387. 10.1021/ma0347870. DOI
Hodge I. M. Adam-Gibbs Formulation of Non-Linear Enthalpy Relaxation. J. Non-Cryst. Solids 1991, 131–133, 435–441. 10.1016/0022-3093(91)90336-5. DOI
Sales B. C. Structural Relaxation Dynamics of Phosphate Glasses: The Effects of Network Topology on the Glass Transition. J. Non-Cryst. Solids 1990, 119, 136–150. 10.1016/0022-3093(90)90837-C. DOI
Málek J. Structural Relaxation Rate and Aging in Amorhous Solids. J. Phys. Chem. C 2023, 127, 6080–6087. 10.1021/acs.jpcc.3c00637. DOI
Angell C. A. Formation of Glasses from Liquids and Biopolymers. Science 1995, 267, 1924–1935. 10.1126/science.267.5206.1924. PubMed DOI
Hecksher T.; Olsen N. B.; Niss K.; Dyre J. C. Physical aging of molecular glasses studied by a device allowing for rapid thermal equilibration. J. Chem. Phys. 2010, 133, 174514.10.1063/1.3487646. PubMed DOI
Riechers B.; Roed L. A.; Mehri S.; Ingebrigtsen T. S.; Hecksher T.; Dyre J. C.; Niss K. Predicting nonlinear physical aging of glasses from equilibrium relaxation via the material time. Sci. Adv. 2022, 8, eabl980910.1126/sciadv.abl9809. PubMed DOI PMC
Málek J. Structural relaxation of As2S3 glass by length dilatometry. J. Non-Cryst. Solids 1998, 235–237, 527–533. 10.1016/S0022-3093(98)00609-7. DOI
Di Lisio V.; Stavropoulou V.-M.; Cangialosi D. Physical aging in molecular glasses beyond the α relaxation. J. Chem. Phys. 2023, 159 (6), 064505.10.1063/5.0157994. PubMed DOI
Hénot M.; Nguyen X. A.; Ladieu F. Crossing the Frontier of Validity of the Material Time Approach in the Aging of a Molecular Glass. J. Phys. Chem. Lett. 2024, 15, 3170–3177. 10.1021/acs.jpclett.4c00527. PubMed DOI
Böhmer T.; Gabriel J. P.; Costigliola L.; Kociok J. N.; Hecksher T.; Dyre J. C.; Blochowicz T. Time reversibility during the ageing of materials. Nat. Phys. 2024, 20, 637–645. 10.1038/s41567-023-02366-z. DOI