How to Distinguish Nonexponentiality and Nonlinearity in Isothermal Structural Relaxation of Glass-Forming Materials

. 2024 Aug 22 ; 128 (33) : 8074-8083. [epub] 20240808

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39115114

The nonexponentiality and nonlinearity are two essential features of the structural relaxation in any glass-forming material, which seem to be inextricably bound together by the material time. It is shown that the temperature down-jump and up-jump experiments of the same magnitude ΔT = T0 - T to the same temperature T provide a clue for their separation. The isothermal structural relaxation can be quantified using the stabilization period on the logarithmic time scale log(tm/t0). It is described as the sum of the nonexponentiality term 1.181/ß and the nonlinearity term (σ/2.303)ΔT for the temperature down-jump, and as their difference for the temperature up-jump. The material parameter σ = -(∂lnτ/∂Tf)i quantifies variation of the relaxation time with structural changes at the inflection point of the relaxation curve and is formulated for the most widely used phenomenological models. The asymmetry of approach to equilibrium after the temperature down-jump and up-jump was first described by Kovacs in 1963. A detailed analysis of this asymmetry is provided, and a simple method for the estimation of the parameters characterizing the nonexponentiality (ß) and nonlinearity (σ) is proposed. The applicability of this method is tested using previously reported isothermal experimental data as well as calculated data for aging of polymers and other glass-forming materials. This concept illuminates differences in structural relaxation kinetics in a simple and consistent way that can be useful in the design of novel materials and the evaluation of their physical aging treatment.

Zobrazit více v PubMed

Kovacs A. J.Transition vitreuse dans les polymeres amorphes. Etude phénoménologique.In Fortschritte Der Hochpolymeren-Forschung. Advances in Polymer Science; Springer: Berlin, Heidelberg, 1964; Vol. 3, pp. 394–507.

McKenna G. B.; Simon S. L. 50th Anniversary Perspective: Challenges in the Dynamics and Kinetics of Glass-Forming Polymers. Macromolecules 2017, 50, 6333–6361. 10.1021/acs.macromol.7b01014. DOI

Niss K.; Hecksher T. Perspective: Searching for simplicity rather than universality in glass-forming liquids. J. Chem. Phys. 2018, 149 (23), 230901.10.1063/1.5048093. PubMed DOI

Kovacs A. J. La contraction isotherme du volume des polymeres amorphes. J. Polym. Sci. 1958, 30, 131–147. 10.1002/pol.1958.1203012111. DOI

Málek J. Rate-determining factors for structural relaxation in non-crystalline materials I. Stabilization period of isothermal volume relaxation. Thermochim. Acta 1998, 313, 181–190. 10.1016/S0040-6031(98)00249-4. DOI

Hutchinson J. M. Physical aging of polymers. Prog. Polym. Sci. 1995, 20, 703–760. 10.1016/0079-6700(94)00001-I. DOI

Tool A. Q. Relation between Inelastic Deformability and Thermal Expansion of Glass in its Annealing Range. J. Am. Ceram. Soc. 1946, 29, 240–253. 10.1111/j.1151-2916.1946.tb11592.x. DOI

Tool A. Q. Effect of Heat-Treatment on the Density and Constitution of High-Silica Glasses of the Borosilicate Type. J. Am. Ceram. Soc. 1948, 31, 177–186. 10.1111/j.1151-2916.1948.tb14287.x. DOI

Adam G.; Gibbs J. H. On the Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids. J. Chem. Phys. 1965, 43, 139–146. 10.1063/1.1696442. DOI

Scherer G. W. Volume Relaxation Far from Equilibrium. J. Am. Ceram. Soc. 1986, 69, 374–381. 10.1111/j.1151-2916.1986.tb04764.x. DOI

Hodge I. M. Effects of Annealing and Prior History on Enthalpy Relaxation in Glassy Polymers.6. Adam-Gibbs Formulation of Nonlinearity. Macromolecules 1987, 20, 2897–2908. 10.1021/ma00177a044. DOI

Narayanaswamy O. S. A Model of Structural Relaxation in Glass. J. Am. Ceram. Soc. 1971, 54, 491–498. 10.1111/j.1151-2916.1971.tb12186.x. DOI

Dyre J. C. Narayanaswamy’s 1971 aging theory and material time. J. Chem. Phys. 2015, 143, 114507.10.1063/1.4930551. PubMed DOI

Hopkins I. L. Stress Relaxation or Creep of Linear Viscoelastic Substances under Varying Temperature. J. Polym. Sci. 1958, 28, 631–633. 10.1002/pol.1958.1202811817. DOI

Douglass I. M.; Dyre J. C. Distance-as-time in physical aging. Phys. Rev. E 2022, 106, 054615.10.1103/PhysRevE.106.054615. PubMed DOI

Mazurin O. V.; Rekhson S. M.; Startsev Y. K. The Role of Viscosity in the Calculation of the Properties of Glass in the Glass-Transition Region. Fiz. Khim. Stekla 1975, 1, 412–416.

Moynihan C. T.; Easteal A. J.; DeBolt M. A.; Tucker J. Dependence of the Fictive Temperature of Glass on Cooling Rate. J. Am. Ceram. Soc. 1976, 59, 12–16. 10.1111/j.1151-2916.1976.tb09376.x. DOI

DeBolt M. A.; Easteal A. J.; Macedo P. B.; Moynihan C. T. Analysis of Structural Relaxation in 1. Glass Using Rate Heating Data. J. Am. Ceram. Soc. 1976, 59, 16–21. 10.1111/j.1151-2916.1976.tb09377.x. DOI

Hutchinson J. M.; Aklonis J. J.; Kovacs A. J.. New Phenomenological Approach to Volume Recovery in Glasses.In Abstract of Papers of the American Chemical Society; ACS, 1975, 170, 21.

Hutchinson J. M.; Kovacs A. J. A Simple Phenomenological Approach to the Thermal Behavior of Glasses During Uniform Heating or Cooling. J. Polym. Sci. Polym. Phys. Ed. 1976, 14, 1575–1590. 10.1002/pol.1976.180140905. DOI

Kovacs A. J.; Aklonis J. J.; Hutchinson J. M.; Ramos A. R. Isobaric Volume and Enthalpy Recovery of Glasses. II. A Transparent Multiparameter Theory. J. Polym. Sci. Polym. Phys. Ed. 1979, 17, 1097–1162. 10.1002/pol.1979.180170701. DOI

Hodge I. M. Enthalpy Relaxation and Recovery in Amorphous Materials. J. Non-Cryst. Solids 1994, 169, 211–266. 10.1016/0022-3093(94)90321-2. DOI

Málek J. Volume and Enthalpy Relaxation Rate in Glassy Materials. Macromolecules 1998, 31, 8312–8322. 10.1021/ma971875+. DOI

Málek J. Dilatometric study of structural relaxation in arsenic sulfide glass. Thermochim. Acta 1998, 311, 183–198. 10.1016/S0040-6031(97)00466-8. DOI

Sasabe H.; Moynihan C. T. Structural Relaxation in Poly (vinyl acetate). J. Polym. Sci. B Polym. Phys. 1978, 16, 1447–1457. 10.1002/pol.1978.180160810. DOI

McKenna G. B.; Vangel M. G.; Rukhin A. L.; Leigh S. D.; Lotz B.; Straupe C. The -effective paradox revisited: an extended analysis of Kovac’s volume recovery data on poly(vinyl acetate). Polymer 1999, 40, 5183–5205. 10.1016/S0032-3861(98)00668-5. DOI

Málek J.; Svoboda R.; Pustková P.; Čičmanec P. Volume and Enthalpy Relaxation of a-Se in the Glass Transition Region. J. Non-Cryst. Solids 2009, 355, 264–272. 10.1016/j.jnoncrysol.2008.11.014. DOI

Koštál P.; Málek J. Viscosity of selenium melt. J. Non-Cryst. Solids 2010, 356, 2803.10.1016/j.jnoncrysol.2010.09.032. DOI

Gaylord S.; Ananthasayanam B.; Tincher B.; Petit L.; Cox C.; Fotterningham U.; Joseph P.; Richardson K. Thermal and Structural Property Characterization of Commercially Moldable Glasses. J. Am. Ceram. Soc. 2010, 93 (8), 2207–2214. 10.1111/j.1551-2916.2010.03722.x. DOI

Fotheringham U.; Baltes A.; Fischer P.; Hohn P.; Jedamzik R.; Schenk C.; Stolz C.; Westenberger G. Refractive Index Drop Observed After Precision Molding of Optical Elements: Quantitative Understanding Based on the Tool-Narayanaswamy-Moynihan Model. J. Am. Ceram. Soc. 2008, 91, 780–783. 10.1111/j.1551-2916.2007.02238.x. DOI

Zhu X.; Shu C.; Zheng Q.; Yin S. Numerical Simulation of the Structural Relaxation Characteristics of K-LCV161 Glass. J. Non-Cryst. Solids 2021, 571, 121050.10.1016/j.jnoncrysol.2021.121050. DOI

Chromčíková M.; Hruška B.; Nowicka A.; Svoboda R.; Liška M. Structural Relaxation and Viscosity of Al2O3 Doped Magnesium Phosphate Glasses. J. Non-Cryst. Solids 2020, 550, 120323.10.1016/j.jnoncrysol.2020.120323. DOI

Málek J. Structural Relaxation in Chalcogenide Glasses. J. Am. Ceram. Soc. 2023, 106, 1739–1747. 10.1111/jace.18864. DOI

Wang T.; Yang Y. Q.; Li J. B.; Rao G. H. Thermodynamics and Structural Relaxation in Ce-Based Bulk Metallic Glass-Forming Liquid. J. Alloys Compd. 2011, 509, 4569–4573. 10.1016/j.jallcom.2011.01.106. DOI

Martin S. W.; Walleser J.; Karthikeyan D.; Sordelet D. Enthalpy Relaxation Studies of the Glass Transition in a Metallic Glass. J. Non-Cryst. Solids 2004, 349, 347–354. 10.1016/j.jnoncrysol.2004.08.203. DOI

Wilding M.; Webb S.; Dingwell D. B. Evaluation of a Relaxation Geospeedometer for Volcanic Glasses. Chem. Geol. 1995, 125, 137–148. 10.1016/0009-2541(95)00067-V. DOI

Wilding M.; Webb S.; Dingwell D. B.; Ablay G.; Marti J. Cooling Rate Variation in Natural Volcanic Glasses from Tenerife, Canary Islands. Contrib. Mineral. Petrol. 1996, 125, 151–160. 10.1007/s004100050212. DOI

Badrinarayanan P.; Simon S. L.; Lyng R. J.; O’Reilly J. M. Effect of Structure on Enthalpy Relaxation of Polycarbonate: Experiments and Modelling. Polymer 2008, 49 (16), 3554–3560. 10.1016/j.polymer.2008.05.046. DOI

Hodge I. M. Efects of Annealing and Prior History on Enthalpy Relaxation in Glassy Polymers. 4. Comparison of Five Polymers. Macromolecules 1983, 16, 898–902. 10.1021/ma00240a013. DOI

O’Reilly J. M. Physical Aging and Enthalpy Relaxation of Amorphous Polyesters. J. Polym. Sci., Part B 2000, 38, 495–499. 10.1002/(SICI)1099-0488(20000201)38:3<495::AID-POLB15>3.0.CO;2-R. DOI

Aou K.; Hsu S. L.; Kleiner L. W.; Tang F. W. Roles of Conformational and Configurational Deffects on the Physical Aging of Amorphous Poly(lactic acid). J. Phys. Chem. B 2007, 111, 12322.10.1021/jp074509t. DOI

Koh Y. P.; Simon S. L. Enthalpy Recovery of Polystyrene: Does a Long-Term Aging Plateau Exist?. Macromolecules 2013, 46, 5815–5821. 10.1021/ma4011236. DOI

Li Q.; Simon S. L. Enthalpy Recovery of Polymeric Glasses: Is the Theoretical Limiting Liquid Line Reached?. Polymer 2006, 47, 4781–4788. 10.1016/j.polymer.2006.04.046. DOI

Simon S. L.; Sobieski J. W.; Plazek D. J. Volume and enthalpy recovery of polystyrene. Polymer 2001, 42, 2555–2567. 10.1016/S0032-3861(00)00623-6. DOI

Liu G.; Li L.; Zheng Y.; Zuo Y. Temperature Gradient in Sample and its Effect on Enthalpy Relaxation Model Fitting of Polystyrene. J. Non-Cryst. Solids 2013, 365, 13–22. 10.1016/j.jnoncrysol.2013.01.017. DOI

Guo Y.; Zhang C.; Lai C.; Priestley R. D.; D’Acunzi M.; Fytas G. Structural Relaxation of Polymer Nanospheres under Soft and Hard Confinement: Isobaric versus Isochoric Conditions. ACS Nano 2011, 5, 5365–5373. 10.1021/nn201751m. PubMed DOI

Wungtanagorn R.; Schmidt S. J. Phenomenological Study of Enthalpy Relaxation of Amorphous Glucose, Fructose and their Mixture. Thermochim. Acta 2001, 369, 95–116. 10.1016/S0040-6031(00)00741-3. DOI

Gao C.; Ye B.; Jiang B.; Liu X.-N. Comparative Investigation on the Enthalpy Relaxation of Four Amorphous Pentose Isomers. J. Therm. Anal. Calorim. 2014, 115 (1), 37–44. 10.1007/s10973-013-3217-x. DOI

Gao C.; Ma H. M. Enthalpy Relaxation in D-Sorbitol Glass. J. Therm. Anal. Calorim. 2015, 120, 1905–1912. 10.1007/s10973-015-4463-x. DOI

Hill S. A.; MacNaughtan W.; Farhat I. A.; Noel T. R.; Parker R.; Ring S. G.; Whitcombe M. J. The Effect of Thermal History on the Maillard Reaction in a Glassy Matrix. J. Agric. Food Chem. 2005, 53, 10213–10218. 10.1021/jf0515678. PubMed DOI

Noel T. R.; Parker R.; Brownsey G. J.; Farhat I. A.; MacNaughtan W.; Ring S. G. Physical Aging of Starch, Maltodextrin, and Maltose. J. Agric. Food Chem. 2005, 53, 8580–8585. 10.1021/jf0580770. PubMed DOI

Morris C.; Taylor A. J.; Farhat I. A.; MacNaughtan W. Modelling of Physical Ageing in Starch using the TNM Equation. Carbohydr. Res. 2011, 346, 1122–1128. 10.1016/j.carres.2011.04.009. PubMed DOI

Montserrat S.; Calventus Y.; Hutchinson J. M. Physical Aging of Thermosetting Powder Coatings. Prog. Org. Coat. 2006, 55 (1), 35–42. 10.1016/j.porgcoat.2005.10.005. DOI

Hutchinson J. M.; McCarthy D.; Montserrat S.; Cortes P. Enthalpy Relaxation in Partially Cured Epoxy Resin. J. Polym. Sci. B Polym. Phys. 1996, 34, 229–239. 10.1002/(SICI)1099-0488(19960130)34:2<229::AID-POLB3>3.0.CO;2-O. DOI

Montserrat S.; Cortés P.; Pappin A. J.; Quah K. H.; Hutchinson J. M. Structural Relaxation in Fully Cured Epoxy Resins. J. Non-Cryst. Solids 1994, 172–174, 1017–1022. 10.1016/0022-3093(94)90615-7. DOI

Cortés P.; Montserrat S.; Hutchinson J. M. Addition of a Reactive Diluent to a Catalyzed Epoxy-Anhydride System. II. Effect on Enthalpy Relaxation. J. Appl. Polym. Sci. 1997, 63, 17–25. 10.1002/(SICI)1097-4628(19970103)63:1<17::AID-APP4>3.0.CO;2-V. DOI

Montserrat S.; Cortés P.; Calventus Y.; Hutchinson J. M. Effect of Crosslink Length on the Enthalpy Relaxation of Fully Cured Epoxy-Diamine Resins. Polym. Sci. Polym. Phys. Ed. 2000, 38, 456–468. 10.1002/(SICI)1099-0488(20000201)38:3<456::AID-POLB11>3.0.CO;2-3. DOI

Ramirez C.; Abad M. J.; Cano J.; Lopez J.; Nogueira P.; Barral L. Enthalpy Relaxation in an Epoxy-Cycloaliphatic Amine Resin. Colloid Polym. Sci. 2001, 279, 184–189. 10.1007/s003960000419. DOI

Morancho J. M.; Salla J. M. Relaxation in a Neat Epoxy Resin and in the Same Resin Modified with a Carboxyl-Terminated Copolymer. J. Non-Cryst. Solids 1998, 235, 596–599. 10.1016/S0022-3093(98)00569-9. DOI

Lu H.; Nutt S. Enthalpy Relaxation of Layered Silicate-Epoxy Nanocomposites. Macromol. Chem. Phys. 2003, 204, 1832–1841. 10.1002/macp.200350046. DOI

Hodge I. M.; O’Reily J. M. Nonlinear Kinetic and Thermodynamic Properties of Monomeric Organic Glasses. J. Phys. Chem. B 1999, 103 (20), 4171–4176. 10.1021/jp984146k. DOI

Sartor G.; Johari G. P. Structural Relaxation and Calorimetry in the Glass-Softening Range of 1,3,5-Tris(1-naphtyl) benzene. J. Phys. Chem. B 1999, 103, 11036–11040. 10.1021/jp9925987. DOI

Moynihan C. T.; Crichton S. N.; Opalka S. M. Linear and Non-Linear Structural Relaxation. J. Non-Cryst. Solids 1991, 131–133, 420–434. 10.1016/0022-3093(91)90335-4. DOI

Svoboda R.; Koštálová D.; Krbal M.; Komersová A. Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth. Molecules 2022, 27, 5668–23. 10.3390/molecules27175668. PubMed DOI PMC

Andreozzi L.; Faetti M.; Giordano M.; Palazzuoli D.; Zulli F. Enthalpy Relaxation in Polymers: A Comparison among Different Multiparameter Approaches Extending the TNM/AGV Model. Macromolecules 2003, 36, 7379–7387. 10.1021/ma0347870. DOI

Hodge I. M. Adam-Gibbs Formulation of Non-Linear Enthalpy Relaxation. J. Non-Cryst. Solids 1991, 131–133, 435–441. 10.1016/0022-3093(91)90336-5. DOI

Sales B. C. Structural Relaxation Dynamics of Phosphate Glasses: The Effects of Network Topology on the Glass Transition. J. Non-Cryst. Solids 1990, 119, 136–150. 10.1016/0022-3093(90)90837-C. DOI

Málek J. Structural Relaxation Rate and Aging in Amorhous Solids. J. Phys. Chem. C 2023, 127, 6080–6087. 10.1021/acs.jpcc.3c00637. DOI

Angell C. A. Formation of Glasses from Liquids and Biopolymers. Science 1995, 267, 1924–1935. 10.1126/science.267.5206.1924. PubMed DOI

Hecksher T.; Olsen N. B.; Niss K.; Dyre J. C. Physical aging of molecular glasses studied by a device allowing for rapid thermal equilibration. J. Chem. Phys. 2010, 133, 174514.10.1063/1.3487646. PubMed DOI

Riechers B.; Roed L. A.; Mehri S.; Ingebrigtsen T. S.; Hecksher T.; Dyre J. C.; Niss K. Predicting nonlinear physical aging of glasses from equilibrium relaxation via the material time. Sci. Adv. 2022, 8, eabl980910.1126/sciadv.abl9809. PubMed DOI PMC

Málek J. Structural relaxation of As2S3 glass by length dilatometry. J. Non-Cryst. Solids 1998, 235–237, 527–533. 10.1016/S0022-3093(98)00609-7. DOI

Di Lisio V.; Stavropoulou V.-M.; Cangialosi D. Physical aging in molecular glasses beyond the α relaxation. J. Chem. Phys. 2023, 159 (6), 064505.10.1063/5.0157994. PubMed DOI

Hénot M.; Nguyen X. A.; Ladieu F. Crossing the Frontier of Validity of the Material Time Approach in the Aging of a Molecular Glass. J. Phys. Chem. Lett. 2024, 15, 3170–3177. 10.1021/acs.jpclett.4c00527. PubMed DOI

Böhmer T.; Gabriel J. P.; Costigliola L.; Kociok J. N.; Hecksher T.; Dyre J. C.; Blochowicz T. Time reversibility during the ageing of materials. Nat. Phys. 2024, 20, 637–645. 10.1038/s41567-023-02366-z. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...