Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018103
Ministry of Education Youth and Sports
PubMed
36080433
PubMed Central
PMC9458118
DOI
10.3390/molecules27175668
PII: molecules27175668
Knihovny.cz E-zdroje
- Klíčová slova
- DSC, amorphous indomethacin, crystal growth, particle size, structural relaxation, viscous flow,
- MeSH
- diferenciální skenovací kalorimetrie MeSH
- indomethacin * chemie MeSH
- krystalizace MeSH
- teplota MeSH
- tranzitní teplota MeSH
- viskozita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- indomethacin * MeSH
Non-isothermal differential scanning calorimetry (DSC) was used to study the influences of particle size (daver) and heating rate (q+) on the structural relaxation, crystal growth and decomposition kinetics of amorphous indomethacin. The structural relaxation and decomposition processes exhibited daver-independent kinetics, with the q+ dependences based on the apparent activation energies of 342 and 106 kJ·mol-1, respectively. The DSC-measured crystal growth kinetics played a dominant role in the nucleation throughout the total macroscopic amorphous-to-crystalline transformation: the change from the zero-order to the autocatalytic mechanism with increasing q+, the significant alteration of kinetics, with the storage below the glass transition temperature, and the accelerated crystallization due to mechanically induced defects. Whereas slow q+ led to the formation of the thermodynamically stable γ polymorph, fast q+ produced a significant amount of the metastable α polymorph. Mutual correlations between the macroscopic and microscopic crystal growth processes, and between the viscous flow and structural relaxation motions, were discussed based on the values of the corresponding activation energies. Notably, this approach helped us to distinguish between particular crystal growth modes in the case of the powdered indomethacin materials. Ediger's decoupling parameter was used to quantify the relationship between the viscosity and crystal growth. The link between the cooperativity of structural domains, parameters of the Tool-Narayanaswamy-Moynihan relaxation model and microscopic crystal growth was proposed.
Zobrazit více v PubMed
Harrigan M.R., Tuteja S., Neudeck B.L. Indomethacin in the Management of Elevated Intracranial Pressure: A Review. J. Neurotrauma. 1997;14:637–650. doi: 10.1089/neu.1997.14.637. PubMed DOI
Macones G.A., Marder S.J., Clothier B., Stamilio D.M. The controversy surrounding indomethacin for tocolysis. Am. J. Obstet. Gynecol. 2001;184:264–272. doi: 10.1067/mob.2001.111718. PubMed DOI
Lucas S. The Pharmacology of Indomethacin. Headache J. Head Face Pain. 2016;56:436–446. doi: 10.1111/head.12769. PubMed DOI
Draper M.P., Martell R.L., Levy S.B. Indomethacin-mediated reversal of multidrug resistance and drug efflux in human and murine cell lines overexpressing MRP, but not P-glycoprotein. Br. J. Cancer. 1997;75:810–815. doi: 10.1038/bjc.1997.145. PubMed DOI PMC
Amici C., La Frazia S., Brunelli C., Balsamo M., Angelini M., Santoro M.G. Inhibition of viral protein translation by indomethacin in vesicular stomatitis virus infection: Role of eIF2α kinase PKR. Cell. Microbiol. 2015;17:1391–1404. doi: 10.1111/cmi.12446. PubMed DOI PMC
Yalkowsky S.H., Dannenfelser R.M. Aquasol Database of Aqueous Solubility. College of Pharmacy, University of Arizona-Tucson; Tucson, AZ, USA: 1992. Version 5.
Kalepu S., Nekkanti V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B. 2015;5:442–453. doi: 10.1016/j.apsb.2015.07.003. PubMed DOI PMC
Kawakami K. Crystallization Tendency of Pharmaceutical Glasses: Relevance to Compound Properties, Impact of Formulation Process, and Implications for Design of Amorphous Solid Dispersions. Pharmaceutics. 2019;11:202. doi: 10.3390/pharmaceutics11050202. PubMed DOI PMC
Kawakami K., Harada T., Yoshihashi Y., Yonemochi E., Terada K., Moriyama H. Correlation between Glass-Forming Ability and Fragility of Pharmaceutical Compounds. J. Phys. Chem. B. 2015;119:4873–4880. doi: 10.1021/jp509646z. PubMed DOI
A. Einstein. Ann. der Physik 17 (1905) 549
Swallen S.F., Ediger M.D. Self-diffusion of the amorphous pharmaceutical indomethacin near Tg. Soft Matter. 2011;7:10339–10344. doi: 10.1039/c1sm06283b. DOI
Ediger M.D., Harrowell P., Yu L. Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J. Chem. Phys. 2008;128:034709. doi: 10.1063/1.2815325. PubMed DOI
Musumeci D., Hasebe M., Yu L. Crystallization of Organic Glasses: How Does Liquid Flow Damage Surface Crystal Growth? Cryst. Growth Des. 2016;16:2931–2936. doi: 10.1021/acs.cgd.6b00268. DOI
Yoshioka M., Hancock B.C., Zografi G. Crystallization of Indomethacin from the Amorphous State below and above Its Glass Transition Temperature. J. Pharm. Sci. 1994;83:1700–1705. doi: 10.1002/jps.2600831211. PubMed DOI
Shimada Y., Komaki H., Hirai A., Goto S., Hashimoto Y., Uchiro H., Terada H. Decarboxylation of indomethacin induced by heat treatment. Int. J. Pharm. 2018;545:51–56. doi: 10.1016/j.ijpharm.2018.04.022. PubMed DOI
Svoboda R. Utilization of “q+/q−=const.” DSC cycles for physical aging studies. Eur. Polym. J. 2014;59:180–188. doi: 10.1016/j.eurpolymj.2014.07.039. DOI
Svoboda R. Utilization of constant heating rate DSC cycles for enthalpy relaxation studies and their influenceability by erroneous experimental operations. J. Non-Cryst. Solids. 2015;408:115–122. doi: 10.1016/j.jnoncrysol.2014.10.021. DOI
Angell C.A. Formation of Glasses from Liquids and Biopolymers. Science. 1995;267:1924–1935. doi: 10.1126/science.267.5206.1924. PubMed DOI
Planinsek O., Zadnik J., Kunaver M., Srcic S., Godec A. Structural evolution of indomethacin particles upon milling: Time-resolved quantification and localization of disordered structure studied by IGC and DSC. J. Pharm. Sci. 2010;99:1968–1981. doi: 10.1002/jps.21986. PubMed DOI
Vyazovkin S., Burnham A.K., Favergeon L., Koga N., Moukhina E., Pérez-Maqueda L.A., Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta. 2020;689:178597. doi: 10.1016/j.tca.2020.178597. DOI
Avrami M. Kinetics of Phase Change. I General Theory. J. Chem. Phys. 1939;7:1103–1112. doi: 10.1063/1.1750380. DOI
Avrami M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 1940;8:212–224. doi: 10.1063/1.1750631. DOI
Avrami M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J. Chem. Phys. 1941;9:177–184. doi: 10.1063/1.1750872. DOI
Šesták J. Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis. Elsevier; Amsterdam, the Netherlands: 2005.
Tarasov A.V., Tikhonov N.A., Makarenko I.V., Dunaev A.V., Arhangelskii I.V. Non-Isothermal Kinetic Methods. Open Access Edition—Max Planck Research Library for the History and Development and Knowledge; Berlin, Germany: 2013.
Van Duong T., Lüdeker D., Van Bockstal P.-J., De Beer T., Van Humbeeck J., Van den Mooter G. Polymorphism of Indomethacin in Semicrystalline Dispersions: Formation, Transformation, and Segregation. Mol. Pharm. 2018;15:1037–1051. doi: 10.1021/acs.molpharmaceut.7b00930. PubMed DOI
Surwase S.A., Boetker J., Saville D., Boyd B., Gordon K., Peltonen L., Strachan C.J. Indomethacin: New Polymorphs of an Old Drug. Mol. Pharm. 2013;10:4472–4480. doi: 10.1021/mp400299a. PubMed DOI
Rusu M., Olea M., Rusu D. Kinetic study of the indomethacin synthesis and thermal decomposition reactions. J. Pharm. Biomed. Anal. 2000;24:19–24. doi: 10.1016/S0731-7085(00)00407-6. PubMed DOI
Tita B., Fulias A., Rusu G., Tita D. Thermal behaviour of indomethacin—active substance and tablets. Rev. Chim. 2009;60:1210–1215.
Tita B., Fulias A., Tita D. Kinetic study of indomethacin under isothermal conditions. Rev. Chim-Buchar. 2010;61:1037–1041.
Ueda H., Ida Y., Kadota K., Tozuka Y. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images. Int. J. Pharm. 2013;462:115–122. doi: 10.1016/j.ijpharm.2013.12.025. PubMed DOI
Otsuka M., Kato F., Matsuda Y., Ozaki Y. Comparative determination of polymorphs of indomethacin in powders and tablets by chemometrical near-infrared spectroscopy and X-ray powder diffractometry. AAPS PharmSciTech. 2003;4:58–69. doi: 10.1208/pt040219. PubMed DOI PMC
Tool A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946;29:240–253. doi: 10.1111/j.1151-2916.1946.tb11592.x. DOI
Narayanaswamy O.S. A Model of Structural Relaxation in Glass. J. Am. Ceram. Soc. 1971;54:491–498. doi: 10.1111/j.1151-2916.1971.tb12186.x. DOI
Moynihan C.T., Easteal A.J., De Bolt M.A., Tucker J. Dependence of the Fictive Temperature of Glass on Cooling Rate. J. Am. Ceram. Soc. 1976;59:12–16. doi: 10.1111/j.1151-2916.1976.tb09376.x. DOI
Svoboda R., Málek J. Description of enthalpy relaxation dynamics in terms of TNM model. J. Non-Cryst. Solids. 2013;378:186–195. doi: 10.1016/j.jnoncrysol.2013.07.008. DOI
Svoboda R. Novel equation to determine activation energy of enthalpy relaxation. J. Therm. Anal. 2015;121:895–899. doi: 10.1007/s10973-015-4619-8. DOI
Svoboda R., Čičmanec P., Málek J. Kissinger equation versus glass transition phenomenology. J. Therm. Anal. 2013;114:285–293. doi: 10.1007/s10973-012-2892-3. DOI
Svoboda R., Málek J. Glass transition in polymers: (In)correct determination of activation energy. Polymer. 2013;54:1504–1511. doi: 10.1016/j.polymer.2013.01.002. DOI
Hodge I.M., Berens A.R. Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromolecules. 1982;15:762–770. doi: 10.1021/ma00231a016. DOI
Svoboda R., Málek J. Enthalpy relaxation in Ge–Se glassy system. J. Therm. Anal. 2012;113:831–842. doi: 10.1007/s10973-012-2829-x. DOI
Šesták J. Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis. Elsevier; Amsterdam, the Netherlands: 1984.
Kissinger H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957;29:1702–1706. doi: 10.1021/ac60131a045. DOI
Svoboda R., Málek J. Is the original Kissinger equation obsolete today? J. Therm. Anal. 2013;115:1961–1967. doi: 10.1007/s10973-013-3486-4. DOI
Málek J., Svoboda R. Kinetic Processes in Amorphous Materials Revealed by Thermal Analysis: Application to Glassy Selenium. Molecules. 2019;24:2725. doi: 10.3390/molecules24152725. PubMed DOI PMC
Rautaniemi K., Vuorimaa-Laukkanen E., Strachan C.J., Laaksonen T. Crystallization Kinetics of an Amorphous Pharmaceutical Compound Using Fluorescence-Lifetime-Imaging Microscopy. Mol. Pharm. 2018;15:1964–1971. doi: 10.1021/acs.molpharmaceut.8b00117. PubMed DOI PMC
Díaz-Díaz A.M., López-Beceiro J., Li Y., Cheng Y., Artiaga R. Crystallization kinetics of a commercial poly(lactic acid) based on characteristic crystallization time and optimal crystallization temperature. J. Therm. Anal. 2020;145:3125–3132. doi: 10.1007/s10973-020-10081-7. DOI
Svoboda R. Usage of masterplots in kinetic analysis of complex surface/volume crystallization processes in Se-Te glasses. J. Non-Cryst. Solids. 2020;541:120068. doi: 10.1016/j.jnoncrysol.2020.120068. DOI
Svoboda R. Crystallization of glasses—When to use the Johnson-Mehl-Avrami kinetics? J. Eur. Ceram. Soc. 2021;41:7862–7867. doi: 10.1016/j.jeurceramsoc.2021.08.026. DOI
Svoboda R., Chovanec J., Slang S., Beneš L., Konrád P. Single-curve multivariate kinetic analysis: Application to the crystallization of commercial Fe-Si-Cr-B amorphous alloys. J. Alloys Compd. 2021;889:161672. doi: 10.1016/j.jallcom.2021.161672. DOI
Andronis V., Zografi G. Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J. Non-Cryst. Solids. 2000;271:236–248. doi: 10.1016/S0022-3093(00)00107-1. DOI
Cohen M.H., Turnbull D. Molecular Transport in Liquids and Glasses. J. Chem. Phys. 1959;31:1164–1169. doi: 10.1063/1.1730566. DOI
Angell C. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids. 1991;131–133:13–31. doi: 10.1016/0022-3093(91)90266-9. DOI
Wu T., Yu L. Origin of Enhanced Crystal Growth Kinetics near Tg Probed with Indomethacin Polymorphs. J. Phys. Chem. B. 2006;110:15694–15699. doi: 10.1021/jp062771g. PubMed DOI
Hancock B.C., Dupuis Y., Thibert R. Determination of the viscosity of an amorphous drug using thermomechanical analysis (TMA) Pharm. Res. 1999;16:672–675. doi: 10.1023/A:1018816406470. PubMed DOI
Málek J., Svoboda R., Pustková P., Čičmanec P. Volume and enthalpy relaxation of a-Se in the glass transition region. J. Non-Cryst. Solids. 2009;355:264–272. doi: 10.1016/j.jnoncrysol.2008.11.014. DOI
Hodge I. Adam-Gibbs formulation of non-linear enthalpy relaxation. J. Non-Cryst. Solids. 1991;131-133:435–441. doi: 10.1016/0022-3093(91)90336-5. DOI
Chromčiková M., Liška M. Simple relaxation model of the reversible part of the StepScan® DSC record of glass transition. J. Therm. Anal. 2006;84:703–708. doi: 10.1007/s10973-005-7546-2. DOI
Mullin J.W. Crystallization. 4th ed. Elsevier; Boston, MA, USA: 2001.
Alonzo D.E., Zhang G.G.Z., Zhou D., Gao Y., Taylor L.S. Understanding the Behavior of Amorphous Pharmaceutical Systems during Dissolution. Pharm. Res. 2010;27:608–618. doi: 10.1007/s11095-009-0021-1. PubMed DOI
Lee A.Y., Erdemir D., Myerson A.S. Crystal Polymorphism in Chemical Process Development. Annu. Rev. Chem. Biomol. Eng. 2011;2:259–280. doi: 10.1146/annurev-chembioeng-061010-114224. PubMed DOI
Svoboda R., Brandová D. Crystal growth from mechanically induced defects. J. Therm. Anal. 2016;127:799–808. doi: 10.1007/s10973-016-5529-0. DOI
Gunn E.M., Guzei I.A., Yu L. Does Crystal Density Control Fast Surface Crystal Growth in Glasses? A Study with Polymorphs. Cryst. Growth Des. 2011;11:3979–3984. doi: 10.1021/cg2005503. DOI
Hasebe M., Musumeci D., Powell C.T., Cai T., Gunn E., Zhu L., Yu L. Fast Surface Crystal Growth on Molecular Glasses and Its Termination by the Onset of Fluidity. J. Phys. Chem. B. 2014;118:7638–7646. doi: 10.1021/jp503110g. PubMed DOI
Wu T., Sun Y., Li N., de Villiers M.M., Yu L. Inhibiting Surface Crystallization of Amorphous Indomethacin by Nanocoating. Langmuir. 2007;23:5148–5153. doi: 10.1021/la070050i. PubMed DOI
Newman A., Zografi G. What We Need to Know about Solid-State Isothermal Crystallization of Organic Molecules from the Amorphous State below the Glass Transition Temperature. Mol. Pharm. 2020;17:1761–1777. doi: 10.1021/acs.molpharmaceut.0c00181. PubMed DOI
Zhang W., Brian C.W., Yu L. Fast Surface Diffusion of Amorphous o-Terphenyl and Its Competition with Viscous Flow in Surface Evolution. J. Phys. Chem. B. 2015;119:5071–5078. doi: 10.1021/jp5127464. PubMed DOI
Sun Y., Zhu L., Kearns K.L., Ediger M.D., Yu L. Glasses crystallize rapidly at free surfaces by growing crystals upward. Proc. Natl. Acad. Sci. USA. 2011;108:5990–5995. doi: 10.1073/pnas.1017995108. PubMed DOI PMC
Romanová J., Svoboda R., Obadalová I., Beneš L., Pekárek T., Krejčík L., Komersová A. Amorphous Enzalutamide—Non-isothermal recrystallization kinetics and thermal stability. Thermochim. Acta. 2018;665:134–141. doi: 10.1016/j.tca.2018.05.020. DOI
Svoboda R., Romanová J., Šlang S., Obadalová I., Komersová A. Influence of particle size and manufacturing conditions on the recrystallization of amorphous Enzalutamide. Eur. J. Pharm. Sci. 2020;153:105468. doi: 10.1016/j.ejps.2020.105468. PubMed DOI
Svoboda R., Prikryl J., Provotorov P., Kolobov A.V., Krbal M. Next-gen approach to the combined micro/macro-scopic measurements of crystal growth in chalcogenide thin films: The case of Se90Te10. J. Alloys Compd. 2022;923:166389. doi: 10.1016/j.jallcom.2022.166389. DOI
Descamps M., Dudognon E. Crystallization from the Amorphous State: Nucleation–Growth Decoupling, Polymorphism Interplay, and the Role of Interfaces. J. Pharm. Sci. 2014;103:2615–2628. doi: 10.1002/jps.24016. PubMed DOI
Wang Y., Wang Y., Cheng J., Chen H., Xu J., Liu Z., Shi Q., Zhang C. Recent Advances in the Application of Characterization Techniques for Studying Physical Stability of Amorphous Pharmaceutical Solids. Crystals. 2021;11:1440. doi: 10.3390/cryst11121440. DOI
Andronis V., Zografi G. The molecular mobility of supercooled amorphous indomethacin as a function of temperature and relative humidity. Pharm. Res. 1998;15:835–842. doi: 10.1023/A:1011960112116. PubMed DOI
Nascimento M.L.F., Zanotto E.D. Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition? J. Chem. Phys. 2010;133:174701. doi: 10.1063/1.3490793. PubMed DOI
Schmelzer J.W., Abyzov A.S., Fokin V.M., Schick C., Zanotto E.D. Crystallization in glass-forming liquids: Effects of decoupling of diffusion and viscosity on crystal growth. J. Non-Cryst. Solids. 2015;429:45–53. doi: 10.1016/j.jnoncrysol.2015.08.027. DOI
Svoboda R., Prikryl J., Cicmancova V., Prokop V., Kolobov A.V., Krbal M. Crystal Growth in Amorphous Selenium Thin Films─Reviewed and Revisited: Direct Comparison of Microscopic and Calorimetric Measurements. Cryst. Growth Des. 2021;21:7087–7097. doi: 10.1021/acs.cgd.1c00984. DOI
Martin J.D., Hillis B.G., Hou F. Transition Zone Theory Compared to Standard Models: Reexamining the Theory of Crystal Growth from Melts. J. Phys. Chem. C. 2020;124:18724–18740. doi: 10.1021/acs.jpcc.0c03003. DOI
Adam G., Gibbs J.H. On the Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids. J. Chem. Phys. 1965;43:139–146. doi: 10.1063/1.1696442. DOI
Mallamace F., Branca C., Corsaro C., Leone N., Spooren J., Chen S.-H., Stanley H.E. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc. Natl. Acad. Sci. USA. 2010;107:22457–22462. doi: 10.1073/pnas.1015340107. PubMed DOI PMC
Mehta M., Ragoonanan V., McKenna G.B., Suryanarayanan R. Correlation between Molecular Mobility and Physical Stability in Pharmaceutical Glasses. Mol. Pharm. 2016;13:1267–1277. doi: 10.1021/acs.molpharmaceut.5b00853. PubMed DOI
Kumar S.K., Szamel G., Douglas J.F. Nature of the breakdown in the Stokes-Einstein relationship in a hard sphere fluid. J. Chem. Phys. 2006;124:214501. doi: 10.1063/1.2192769. PubMed DOI
Berthier L., Chandler D., Garrahan J.P. Length scale for the onset of Fickian diffusion in supercooled liquids. Eur. Lett. 2005;69:320–326. doi: 10.1209/epl/i2004-10401-5. DOI
Zou Q.-Z., Li Z.-W., Zhu Y.-L., Sun Z.-Y. Coupling and decoupling between translational and rotational dynamics in supercooled monodisperse soft Janus particles. Soft Matter. 2019;15:3343–3352. doi: 10.1039/C9SM00165D. PubMed DOI
Indomethacin: Effect of Diffusionless Crystal Growth on Thermal Stability during Long-Term Storage