Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth

. 2022 Sep 02 ; 27 (17) : . [epub] 20220902

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36080433

Grantová podpora
LM2018103 Ministry of Education Youth and Sports

Non-isothermal differential scanning calorimetry (DSC) was used to study the influences of particle size (daver) and heating rate (q+) on the structural relaxation, crystal growth and decomposition kinetics of amorphous indomethacin. The structural relaxation and decomposition processes exhibited daver-independent kinetics, with the q+ dependences based on the apparent activation energies of 342 and 106 kJ·mol-1, respectively. The DSC-measured crystal growth kinetics played a dominant role in the nucleation throughout the total macroscopic amorphous-to-crystalline transformation: the change from the zero-order to the autocatalytic mechanism with increasing q+, the significant alteration of kinetics, with the storage below the glass transition temperature, and the accelerated crystallization due to mechanically induced defects. Whereas slow q+ led to the formation of the thermodynamically stable γ polymorph, fast q+ produced a significant amount of the metastable α polymorph. Mutual correlations between the macroscopic and microscopic crystal growth processes, and between the viscous flow and structural relaxation motions, were discussed based on the values of the corresponding activation energies. Notably, this approach helped us to distinguish between particular crystal growth modes in the case of the powdered indomethacin materials. Ediger's decoupling parameter was used to quantify the relationship between the viscosity and crystal growth. The link between the cooperativity of structural domains, parameters of the Tool-Narayanaswamy-Moynihan relaxation model and microscopic crystal growth was proposed.

Zobrazit více v PubMed

Harrigan M.R., Tuteja S., Neudeck B.L. Indomethacin in the Management of Elevated Intracranial Pressure: A Review. J. Neurotrauma. 1997;14:637–650. doi: 10.1089/neu.1997.14.637. PubMed DOI

Macones G.A., Marder S.J., Clothier B., Stamilio D.M. The controversy surrounding indomethacin for tocolysis. Am. J. Obstet. Gynecol. 2001;184:264–272. doi: 10.1067/mob.2001.111718. PubMed DOI

Lucas S. The Pharmacology of Indomethacin. Headache J. Head Face Pain. 2016;56:436–446. doi: 10.1111/head.12769. PubMed DOI

Draper M.P., Martell R.L., Levy S.B. Indomethacin-mediated reversal of multidrug resistance and drug efflux in human and murine cell lines overexpressing MRP, but not P-glycoprotein. Br. J. Cancer. 1997;75:810–815. doi: 10.1038/bjc.1997.145. PubMed DOI PMC

Amici C., La Frazia S., Brunelli C., Balsamo M., Angelini M., Santoro M.G. Inhibition of viral protein translation by indomethacin in vesicular stomatitis virus infection: Role of eIF2α kinase PKR. Cell. Microbiol. 2015;17:1391–1404. doi: 10.1111/cmi.12446. PubMed DOI PMC

Yalkowsky S.H., Dannenfelser R.M. Aquasol Database of Aqueous Solubility. College of Pharmacy, University of Arizona-Tucson; Tucson, AZ, USA: 1992. Version 5.

Kalepu S., Nekkanti V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B. 2015;5:442–453. doi: 10.1016/j.apsb.2015.07.003. PubMed DOI PMC

Kawakami K. Crystallization Tendency of Pharmaceutical Glasses: Relevance to Compound Properties, Impact of Formulation Process, and Implications for Design of Amorphous Solid Dispersions. Pharmaceutics. 2019;11:202. doi: 10.3390/pharmaceutics11050202. PubMed DOI PMC

Kawakami K., Harada T., Yoshihashi Y., Yonemochi E., Terada K., Moriyama H. Correlation between Glass-Forming Ability and Fragility of Pharmaceutical Compounds. J. Phys. Chem. B. 2015;119:4873–4880. doi: 10.1021/jp509646z. PubMed DOI

A. Einstein. Ann. der Physik 17 (1905) 549

Swallen S.F., Ediger M.D. Self-diffusion of the amorphous pharmaceutical indomethacin near Tg. Soft Matter. 2011;7:10339–10344. doi: 10.1039/c1sm06283b. DOI

Ediger M.D., Harrowell P., Yu L. Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J. Chem. Phys. 2008;128:034709. doi: 10.1063/1.2815325. PubMed DOI

Musumeci D., Hasebe M., Yu L. Crystallization of Organic Glasses: How Does Liquid Flow Damage Surface Crystal Growth? Cryst. Growth Des. 2016;16:2931–2936. doi: 10.1021/acs.cgd.6b00268. DOI

Yoshioka M., Hancock B.C., Zografi G. Crystallization of Indomethacin from the Amorphous State below and above Its Glass Transition Temperature. J. Pharm. Sci. 1994;83:1700–1705. doi: 10.1002/jps.2600831211. PubMed DOI

Shimada Y., Komaki H., Hirai A., Goto S., Hashimoto Y., Uchiro H., Terada H. Decarboxylation of indomethacin induced by heat treatment. Int. J. Pharm. 2018;545:51–56. doi: 10.1016/j.ijpharm.2018.04.022. PubMed DOI

Svoboda R. Utilization of “q+/q−=const.” DSC cycles for physical aging studies. Eur. Polym. J. 2014;59:180–188. doi: 10.1016/j.eurpolymj.2014.07.039. DOI

Svoboda R. Utilization of constant heating rate DSC cycles for enthalpy relaxation studies and their influenceability by erroneous experimental operations. J. Non-Cryst. Solids. 2015;408:115–122. doi: 10.1016/j.jnoncrysol.2014.10.021. DOI

Angell C.A. Formation of Glasses from Liquids and Biopolymers. Science. 1995;267:1924–1935. doi: 10.1126/science.267.5206.1924. PubMed DOI

Planinsek O., Zadnik J., Kunaver M., Srcic S., Godec A. Structural evolution of indomethacin particles upon milling: Time-resolved quantification and localization of disordered structure studied by IGC and DSC. J. Pharm. Sci. 2010;99:1968–1981. doi: 10.1002/jps.21986. PubMed DOI

Vyazovkin S., Burnham A.K., Favergeon L., Koga N., Moukhina E., Pérez-Maqueda L.A., Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta. 2020;689:178597. doi: 10.1016/j.tca.2020.178597. DOI

Avrami M. Kinetics of Phase Change. I General Theory. J. Chem. Phys. 1939;7:1103–1112. doi: 10.1063/1.1750380. DOI

Avrami M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. J. Chem. Phys. 1940;8:212–224. doi: 10.1063/1.1750631. DOI

Avrami M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. J. Chem. Phys. 1941;9:177–184. doi: 10.1063/1.1750872. DOI

Šesták J. Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis. Elsevier; Amsterdam, the Netherlands: 2005.

Tarasov A.V., Tikhonov N.A., Makarenko I.V., Dunaev A.V., Arhangelskii I.V. Non-Isothermal Kinetic Methods. Open Access Edition—Max Planck Research Library for the History and Development and Knowledge; Berlin, Germany: 2013.

Van Duong T., Lüdeker D., Van Bockstal P.-J., De Beer T., Van Humbeeck J., Van den Mooter G. Polymorphism of Indomethacin in Semicrystalline Dispersions: Formation, Transformation, and Segregation. Mol. Pharm. 2018;15:1037–1051. doi: 10.1021/acs.molpharmaceut.7b00930. PubMed DOI

Surwase S.A., Boetker J., Saville D., Boyd B., Gordon K., Peltonen L., Strachan C.J. Indomethacin: New Polymorphs of an Old Drug. Mol. Pharm. 2013;10:4472–4480. doi: 10.1021/mp400299a. PubMed DOI

Rusu M., Olea M., Rusu D. Kinetic study of the indomethacin synthesis and thermal decomposition reactions. J. Pharm. Biomed. Anal. 2000;24:19–24. doi: 10.1016/S0731-7085(00)00407-6. PubMed DOI

Tita B., Fulias A., Rusu G., Tita D. Thermal behaviour of indomethacin—active substance and tablets. Rev. Chim. 2009;60:1210–1215.

Tita B., Fulias A., Tita D. Kinetic study of indomethacin under isothermal conditions. Rev. Chim-Buchar. 2010;61:1037–1041.

Ueda H., Ida Y., Kadota K., Tozuka Y. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images. Int. J. Pharm. 2013;462:115–122. doi: 10.1016/j.ijpharm.2013.12.025. PubMed DOI

Otsuka M., Kato F., Matsuda Y., Ozaki Y. Comparative determination of polymorphs of indomethacin in powders and tablets by chemometrical near-infrared spectroscopy and X-ray powder diffractometry. AAPS PharmSciTech. 2003;4:58–69. doi: 10.1208/pt040219. PubMed DOI PMC

Tool A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946;29:240–253. doi: 10.1111/j.1151-2916.1946.tb11592.x. DOI

Narayanaswamy O.S. A Model of Structural Relaxation in Glass. J. Am. Ceram. Soc. 1971;54:491–498. doi: 10.1111/j.1151-2916.1971.tb12186.x. DOI

Moynihan C.T., Easteal A.J., De Bolt M.A., Tucker J. Dependence of the Fictive Temperature of Glass on Cooling Rate. J. Am. Ceram. Soc. 1976;59:12–16. doi: 10.1111/j.1151-2916.1976.tb09376.x. DOI

Svoboda R., Málek J. Description of enthalpy relaxation dynamics in terms of TNM model. J. Non-Cryst. Solids. 2013;378:186–195. doi: 10.1016/j.jnoncrysol.2013.07.008. DOI

Svoboda R. Novel equation to determine activation energy of enthalpy relaxation. J. Therm. Anal. 2015;121:895–899. doi: 10.1007/s10973-015-4619-8. DOI

Svoboda R., Čičmanec P., Málek J. Kissinger equation versus glass transition phenomenology. J. Therm. Anal. 2013;114:285–293. doi: 10.1007/s10973-012-2892-3. DOI

Svoboda R., Málek J. Glass transition in polymers: (In)correct determination of activation energy. Polymer. 2013;54:1504–1511. doi: 10.1016/j.polymer.2013.01.002. DOI

Hodge I.M., Berens A.R. Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromolecules. 1982;15:762–770. doi: 10.1021/ma00231a016. DOI

Svoboda R., Málek J. Enthalpy relaxation in Ge–Se glassy system. J. Therm. Anal. 2012;113:831–842. doi: 10.1007/s10973-012-2829-x. DOI

Šesták J. Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis. Elsevier; Amsterdam, the Netherlands: 1984.

Kissinger H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957;29:1702–1706. doi: 10.1021/ac60131a045. DOI

Svoboda R., Málek J. Is the original Kissinger equation obsolete today? J. Therm. Anal. 2013;115:1961–1967. doi: 10.1007/s10973-013-3486-4. DOI

Málek J., Svoboda R. Kinetic Processes in Amorphous Materials Revealed by Thermal Analysis: Application to Glassy Selenium. Molecules. 2019;24:2725. doi: 10.3390/molecules24152725. PubMed DOI PMC

Rautaniemi K., Vuorimaa-Laukkanen E., Strachan C.J., Laaksonen T. Crystallization Kinetics of an Amorphous Pharmaceutical Compound Using Fluorescence-Lifetime-Imaging Microscopy. Mol. Pharm. 2018;15:1964–1971. doi: 10.1021/acs.molpharmaceut.8b00117. PubMed DOI PMC

Díaz-Díaz A.M., López-Beceiro J., Li Y., Cheng Y., Artiaga R. Crystallization kinetics of a commercial poly(lactic acid) based on characteristic crystallization time and optimal crystallization temperature. J. Therm. Anal. 2020;145:3125–3132. doi: 10.1007/s10973-020-10081-7. DOI

Svoboda R. Usage of masterplots in kinetic analysis of complex surface/volume crystallization processes in Se-Te glasses. J. Non-Cryst. Solids. 2020;541:120068. doi: 10.1016/j.jnoncrysol.2020.120068. DOI

Svoboda R. Crystallization of glasses—When to use the Johnson-Mehl-Avrami kinetics? J. Eur. Ceram. Soc. 2021;41:7862–7867. doi: 10.1016/j.jeurceramsoc.2021.08.026. DOI

Svoboda R., Chovanec J., Slang S., Beneš L., Konrád P. Single-curve multivariate kinetic analysis: Application to the crystallization of commercial Fe-Si-Cr-B amorphous alloys. J. Alloys Compd. 2021;889:161672. doi: 10.1016/j.jallcom.2021.161672. DOI

Andronis V., Zografi G. Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J. Non-Cryst. Solids. 2000;271:236–248. doi: 10.1016/S0022-3093(00)00107-1. DOI

Cohen M.H., Turnbull D. Molecular Transport in Liquids and Glasses. J. Chem. Phys. 1959;31:1164–1169. doi: 10.1063/1.1730566. DOI

Angell C. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids. 1991;131–133:13–31. doi: 10.1016/0022-3093(91)90266-9. DOI

Wu T., Yu L. Origin of Enhanced Crystal Growth Kinetics near Tg Probed with Indomethacin Polymorphs. J. Phys. Chem. B. 2006;110:15694–15699. doi: 10.1021/jp062771g. PubMed DOI

Hancock B.C., Dupuis Y., Thibert R. Determination of the viscosity of an amorphous drug using thermomechanical analysis (TMA) Pharm. Res. 1999;16:672–675. doi: 10.1023/A:1018816406470. PubMed DOI

Málek J., Svoboda R., Pustková P., Čičmanec P. Volume and enthalpy relaxation of a-Se in the glass transition region. J. Non-Cryst. Solids. 2009;355:264–272. doi: 10.1016/j.jnoncrysol.2008.11.014. DOI

Hodge I. Adam-Gibbs formulation of non-linear enthalpy relaxation. J. Non-Cryst. Solids. 1991;131-133:435–441. doi: 10.1016/0022-3093(91)90336-5. DOI

Chromčiková M., Liška M. Simple relaxation model of the reversible part of the StepScan® DSC record of glass transition. J. Therm. Anal. 2006;84:703–708. doi: 10.1007/s10973-005-7546-2. DOI

Mullin J.W. Crystallization. 4th ed. Elsevier; Boston, MA, USA: 2001.

Alonzo D.E., Zhang G.G.Z., Zhou D., Gao Y., Taylor L.S. Understanding the Behavior of Amorphous Pharmaceutical Systems during Dissolution. Pharm. Res. 2010;27:608–618. doi: 10.1007/s11095-009-0021-1. PubMed DOI

Lee A.Y., Erdemir D., Myerson A.S. Crystal Polymorphism in Chemical Process Development. Annu. Rev. Chem. Biomol. Eng. 2011;2:259–280. doi: 10.1146/annurev-chembioeng-061010-114224. PubMed DOI

Svoboda R., Brandová D. Crystal growth from mechanically induced defects. J. Therm. Anal. 2016;127:799–808. doi: 10.1007/s10973-016-5529-0. DOI

Gunn E.M., Guzei I.A., Yu L. Does Crystal Density Control Fast Surface Crystal Growth in Glasses? A Study with Polymorphs. Cryst. Growth Des. 2011;11:3979–3984. doi: 10.1021/cg2005503. DOI

Hasebe M., Musumeci D., Powell C.T., Cai T., Gunn E., Zhu L., Yu L. Fast Surface Crystal Growth on Molecular Glasses and Its Termination by the Onset of Fluidity. J. Phys. Chem. B. 2014;118:7638–7646. doi: 10.1021/jp503110g. PubMed DOI

Wu T., Sun Y., Li N., de Villiers M.M., Yu L. Inhibiting Surface Crystallization of Amorphous Indomethacin by Nanocoating. Langmuir. 2007;23:5148–5153. doi: 10.1021/la070050i. PubMed DOI

Newman A., Zografi G. What We Need to Know about Solid-State Isothermal Crystallization of Organic Molecules from the Amorphous State below the Glass Transition Temperature. Mol. Pharm. 2020;17:1761–1777. doi: 10.1021/acs.molpharmaceut.0c00181. PubMed DOI

Zhang W., Brian C.W., Yu L. Fast Surface Diffusion of Amorphous o-Terphenyl and Its Competition with Viscous Flow in Surface Evolution. J. Phys. Chem. B. 2015;119:5071–5078. doi: 10.1021/jp5127464. PubMed DOI

Sun Y., Zhu L., Kearns K.L., Ediger M.D., Yu L. Glasses crystallize rapidly at free surfaces by growing crystals upward. Proc. Natl. Acad. Sci. USA. 2011;108:5990–5995. doi: 10.1073/pnas.1017995108. PubMed DOI PMC

Romanová J., Svoboda R., Obadalová I., Beneš L., Pekárek T., Krejčík L., Komersová A. Amorphous Enzalutamide—Non-isothermal recrystallization kinetics and thermal stability. Thermochim. Acta. 2018;665:134–141. doi: 10.1016/j.tca.2018.05.020. DOI

Svoboda R., Romanová J., Šlang S., Obadalová I., Komersová A. Influence of particle size and manufacturing conditions on the recrystallization of amorphous Enzalutamide. Eur. J. Pharm. Sci. 2020;153:105468. doi: 10.1016/j.ejps.2020.105468. PubMed DOI

Svoboda R., Prikryl J., Provotorov P., Kolobov A.V., Krbal M. Next-gen approach to the combined micro/macro-scopic measurements of crystal growth in chalcogenide thin films: The case of Se90Te10. J. Alloys Compd. 2022;923:166389. doi: 10.1016/j.jallcom.2022.166389. DOI

Descamps M., Dudognon E. Crystallization from the Amorphous State: Nucleation–Growth Decoupling, Polymorphism Interplay, and the Role of Interfaces. J. Pharm. Sci. 2014;103:2615–2628. doi: 10.1002/jps.24016. PubMed DOI

Wang Y., Wang Y., Cheng J., Chen H., Xu J., Liu Z., Shi Q., Zhang C. Recent Advances in the Application of Characterization Techniques for Studying Physical Stability of Amorphous Pharmaceutical Solids. Crystals. 2021;11:1440. doi: 10.3390/cryst11121440. DOI

Andronis V., Zografi G. The molecular mobility of supercooled amorphous indomethacin as a function of temperature and relative humidity. Pharm. Res. 1998;15:835–842. doi: 10.1023/A:1011960112116. PubMed DOI

Nascimento M.L.F., Zanotto E.D. Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition? J. Chem. Phys. 2010;133:174701. doi: 10.1063/1.3490793. PubMed DOI

Schmelzer J.W., Abyzov A.S., Fokin V.M., Schick C., Zanotto E.D. Crystallization in glass-forming liquids: Effects of decoupling of diffusion and viscosity on crystal growth. J. Non-Cryst. Solids. 2015;429:45–53. doi: 10.1016/j.jnoncrysol.2015.08.027. DOI

Svoboda R., Prikryl J., Cicmancova V., Prokop V., Kolobov A.V., Krbal M. Crystal Growth in Amorphous Selenium Thin Films─Reviewed and Revisited: Direct Comparison of Microscopic and Calorimetric Measurements. Cryst. Growth Des. 2021;21:7087–7097. doi: 10.1021/acs.cgd.1c00984. DOI

Martin J.D., Hillis B.G., Hou F. Transition Zone Theory Compared to Standard Models: Reexamining the Theory of Crystal Growth from Melts. J. Phys. Chem. C. 2020;124:18724–18740. doi: 10.1021/acs.jpcc.0c03003. DOI

Adam G., Gibbs J.H. On the Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids. J. Chem. Phys. 1965;43:139–146. doi: 10.1063/1.1696442. DOI

Mallamace F., Branca C., Corsaro C., Leone N., Spooren J., Chen S.-H., Stanley H.E. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc. Natl. Acad. Sci. USA. 2010;107:22457–22462. doi: 10.1073/pnas.1015340107. PubMed DOI PMC

Mehta M., Ragoonanan V., McKenna G.B., Suryanarayanan R. Correlation between Molecular Mobility and Physical Stability in Pharmaceutical Glasses. Mol. Pharm. 2016;13:1267–1277. doi: 10.1021/acs.molpharmaceut.5b00853. PubMed DOI

Kumar S.K., Szamel G., Douglas J.F. Nature of the breakdown in the Stokes-Einstein relationship in a hard sphere fluid. J. Chem. Phys. 2006;124:214501. doi: 10.1063/1.2192769. PubMed DOI

Berthier L., Chandler D., Garrahan J.P. Length scale for the onset of Fickian diffusion in supercooled liquids. Eur. Lett. 2005;69:320–326. doi: 10.1209/epl/i2004-10401-5. DOI

Zou Q.-Z., Li Z.-W., Zhu Y.-L., Sun Z.-Y. Coupling and decoupling between translational and rotational dynamics in supercooled monodisperse soft Janus particles. Soft Matter. 2019;15:3343–3352. doi: 10.1039/C9SM00165D. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Thermally Induced Phenomena in Amorphous Nifedipine: The Correlation Between the Structural Relaxation and Crystal Growth Kinetics

. 2025 Jan 04 ; 30 (1) : . [epub] 20250104

In Situ Raman Spectroscopy as a Valuable Tool for Monitoring Crystallization Kinetics in Molecular Glasses

. 2024 Oct 09 ; 29 (19) : . [epub] 20241009

How to Distinguish Nonexponentiality and Nonlinearity in Isothermal Structural Relaxation of Glass-Forming Materials

. 2024 Aug 22 ; 128 (33) : 8074-8083. [epub] 20240808

Thermo-Structural Characterization of Phase Transitions in Amorphous Griseofulvin: From Sub-Tg Relaxation and Crystal Growth to High-Temperature Decomposition

. 2024 Mar 28 ; 29 (7) : . [epub] 20240328

How the Presence of Crystalline Phase Affects Structural Relaxation in Molecular Liquids: The Case of Amorphous Indomethacin

. 2023 Nov 13 ; 24 (22) : . [epub] 20231113

Thermal degradation of Affinisol HPMC: Optimum Processing Temperatures for Hot Melt Extrusion and 3D Printing

. 2023 Sep ; 40 (9) : 2253-2268. [epub] 20230823

Indomethacin: Effect of Diffusionless Crystal Growth on Thermal Stability during Long-Term Storage

. 2023 Feb 06 ; 28 (4) : . [epub] 20230206

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...