Kinetic Processes in Amorphous Materials Revealed by Thermal Analysis: Application to Glassy Selenium
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-11753S
Grantová Agentura České Republiky
PubMed
31357537
PubMed Central
PMC6696349
DOI
10.3390/molecules24152725
PII: molecules24152725
Knihovny.cz E-zdroje
- Klíčová slova
- crystallization, glass, structural relaxation, thermal analysis, viscosity,
- MeSH
- algoritmy MeSH
- chemické jevy MeSH
- kinetika MeSH
- selen chemie MeSH
- sklo chemie MeSH
- teoretické modely MeSH
- termodynamika * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- selen MeSH
It is expected that viscous flow is affecting the kinetic processes in a supercooled liquid, such as the structural relaxation and the crystallization kinetics. These processes significantly influence the behavior of glass being prepared by quenching. In this paper, the activation energy of viscous flow is discussed with respect to the activation energy of crystal growth and the structural relaxation of glassy selenium. Differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and hot-stage infrared microscopy were used. It is shown that the activation energy of structural relaxation corresponds to that of the viscous flow at the lowest value of the glass transition temperature obtained within the commonly achievable time scale. The temperature-dependent activation energy of crystal growth, data obtained by isothermal and non-isothermal DSC and TMA experiments, as well as direct microscopic measurements, follows nearly the same dependence as the activation energy of viscous flow, taking into account viscosity and crystal growth rate decoupling due to the departure from Stokes-Einstein behavior.
Zobrazit více v PubMed
Ediger M.D., Angell C.A., Nagel S.R. Supercooled liquids and glasses. J. Phys. Chem. 1996;100:13200–13212. doi: 10.1021/jp953538d. DOI
Debenedetti P.G. Metastable Liquids. Concepts and Principles. Princeton University Press; Princeton, NJ, USA: 1996.
Málek J., Svoboda R., Pustková P., Čičmanec P. Volume and enthalpy relaxation of a-Se in the glass transition region. J. Non Cryst. Solids. 2009;355:264–272. doi: 10.1016/j.jnoncrysol.2008.11.014. DOI
Naraynaswamy O.S. A Model of Structural Relaxation in Glass. J. Am. Ceram. Soc. 1971;54:491–498. doi: 10.1111/j.1151-2916.1971.tb12186.x. DOI
Tool A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946;29:240–253. doi: 10.1111/j.1151-2916.1946.tb11592.x. DOI
DeBolt M.A., Easteal A.J., Macedo P.B., Moynihan C.T. Analysis of Structural Relaxation in Glass Using Rate Heating Data. J. Am. Ceram. Soc. 1976;59:16–21. doi: 10.1111/j.1151-2916.1976.tb09377.x. DOI
Málek J., Svoboda R. Structural Relaxation and Viscosity Behavior in Supercooled Liquids at the Glass Transition. In: Šesták J., Šimon P., editors. Thermal Analysis of Micro, Nano- and Non-Crystalline Materials. Volume 9. Springer Science+Business Media; Dordrecht, The Netherlands: 2013. pp. 147–173. (Hot Topics in Thermal Analysis and Calorimetry).
Málek J., Shánělová J. Crystallization Kinetics in Amorphous and Glassy Materials. In: Šesták J., Šimon P., editors. Thermal Analysis of Micro, Nano- and Non-Crystalline Materials. Volume 9. Springer Science+Business Media; Dordrecht, The Netherlands: 2013. pp. 291–324. (Hot Topics in Thermal Analysis and Calorimetry).
Ryschenkow G., Faivre G. Bulk crystallization of liquid selenium—Primary nucleation, growth kinetics and modes of crystallization. J. Cryst. Growth. 1988;87:221–235. doi: 10.1016/0022-0248(88)90169-8. DOI
Málek J., Barták J., Shánělová J. Spherulitic Crystal Growth Velocity in Selenium Supercooled Liquid. Cryst. Growth Des. 2016;16:5811–5821. doi: 10.1021/acs.cgd.6b00897. DOI
Bernatz K., Echeveria I., Simon S., Plazek D. Characterization of the molecular structure of amorphous selenium using recoverable creep compliance measurements. J. Non Cryst. Solids. 2002;307:790–801. doi: 10.1016/S0022-3093(02)01522-3. DOI
Koštál P., Málek J. Viscosity of selenium melt. J. Non Cryst. Solids. 2010;356:2803–2806. doi: 10.1016/j.jnoncrysol.2010.09.032. DOI
Svoboda R., Málek J. Crystallization kinetics of a-Se, part 1: Interpretation of kinetic functions. J. Therm. Anal. Calorim. 2013;114:473–482. doi: 10.1007/s10973-012-2922-1. DOI
Svoboda R., Málek J. Crystallization kinetics of a-Se, part 2: Deconvolution of a complex process—The final answer. J. Therm. Anal. Calorim. 2014;115:81–91. doi: 10.1007/s10973-013-3219-8. DOI
Svoboda R., Málek J. Crystallization kinetics of a-Se, part 3: Isothermal data. J. Therm. Anal. Calorim. 2015;119:1363–1372. doi: 10.1007/s10973-014-4201-9. DOI
Svoboda R., Gutwirth J., Málek J. Crystallization kinetics of a-Se, part 4: Thin films. Philos. Mag. 2014;94:3036–3051. doi: 10.1080/14786435.2014.950622. DOI
Málek J. The Kinetic Analysis of Non-Isothermal Data. Thermochim. Acta. 1992;200:257–269. doi: 10.1016/0040-6031(92)85118-F. DOI
Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta. 1995;267:61–73. doi: 10.1016/0040-6031(95)02466-2. DOI
Málek J., Criado J.M. The Shape of a Thermoanalytical Curve and Its Kinetic Information Content. Thermochim. Acta. 1990;164:199–209. doi: 10.1016/0040-6031(90)80437-4. DOI
Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957;29:1702–1706. doi: 10.1021/ac60131a045. DOI
Friedman H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C. 1964;6:183–195. doi: 10.1002/polc.5070060121. DOI
Zmrhalová Z., Pilný P., Svoboda R., Shánělová J., Málek J. Thermal properties and viscous flow behavior of As2Se3 glass. J. Alloys Compd. 2016;655:220–228. doi: 10.1016/j.jallcom.2015.09.193. DOI
Málek J. Rate-determining factors for structural relaxation in non-crystalline materials II. Normalized volume and enthalpy relaxation rate. Thermochim. Acta. 1998;313:181–190. doi: 10.1016/S0040-6031(98)00249-4. DOI
Svoboda R., Pustková P., Málek J. Relaxation behavior of glassy selenium. J. Phys. Chem. Sol. 2007;68:850–854. doi: 10.1016/j.jpcs.2006.12.032. DOI
Svoboda R. Novel equation to determine activation energy of enthalpy relaxation. J. Therm. Anal. Calorim. 2015;121:895–899. doi: 10.1007/s10973-015-4619-8. DOI
Kovacs A.J. Transition vitreuse dans les polymères amorphes. Etude phénoménologique. Fortschr. Hochpolym. Forsch. 1963;3:394–507. doi: 10.1007/BF02189445. DOI
Ediger M.D., Harrowell P., Yu L. Crystal growth kinetics, exhibit a fragility-dependent decoupling from viscosity. J. Chem. Phys. 2008;128:034709. doi: 10.1063/1.2815325. PubMed DOI
Gutzow I.S., Schmelzer J.W.P. The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization. Springer; Berlin/Heidelberg, Germany: 2013.
Busch R., Kim Y.J., Johnson W.L. Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.5Ti13.8Cu12.5Ni10.0Be22.5 alloy. J. Appl. Phys. 1995;77:4039–4043. doi: 10.1063/1.359485. DOI
Svoboda R., Málek J. Thermal behavior in Se-Te chalcogenide system: Interplay of thermodynamics and kinetics. J. Chem. Phys. 2014;141:224507. doi: 10.1063/1.4903543. PubMed DOI
Svoboda R., Brandová D., Chromčíková M., Setnička M., Chovanec J., Černá A., Liška M., Málek J. Se-doped GeTe4 glasses for far-infrared optical fibers. J. Alloys Compd. 2017;695:2434–2443. doi: 10.1016/j.jallcom.2016.11.139. DOI
Svoboda R., Brandová D., Chromčíková M., Liška M. Thermokinetic behavior of Ga-doped GeTe4 glasses. J. Non Cryst. Solids. 2019;512:7–14. doi: 10.1016/j.jnoncrysol.2019.02.023. DOI
Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth