Kinetic Processes in Amorphous Materials Revealed by Thermal Analysis: Application to Glassy Selenium

. 2019 Jul 26 ; 24 (15) : . [epub] 20190726

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31357537

Grantová podpora
17-11753S Grantová Agentura České Republiky

It is expected that viscous flow is affecting the kinetic processes in a supercooled liquid, such as the structural relaxation and the crystallization kinetics. These processes significantly influence the behavior of glass being prepared by quenching. In this paper, the activation energy of viscous flow is discussed with respect to the activation energy of crystal growth and the structural relaxation of glassy selenium. Differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and hot-stage infrared microscopy were used. It is shown that the activation energy of structural relaxation corresponds to that of the viscous flow at the lowest value of the glass transition temperature obtained within the commonly achievable time scale. The temperature-dependent activation energy of crystal growth, data obtained by isothermal and non-isothermal DSC and TMA experiments, as well as direct microscopic measurements, follows nearly the same dependence as the activation energy of viscous flow, taking into account viscosity and crystal growth rate decoupling due to the departure from Stokes-Einstein behavior.

Zobrazit více v PubMed

Ediger M.D., Angell C.A., Nagel S.R. Supercooled liquids and glasses. J. Phys. Chem. 1996;100:13200–13212. doi: 10.1021/jp953538d. DOI

Debenedetti P.G. Metastable Liquids. Concepts and Principles. Princeton University Press; Princeton, NJ, USA: 1996.

Málek J., Svoboda R., Pustková P., Čičmanec P. Volume and enthalpy relaxation of a-Se in the glass transition region. J. Non Cryst. Solids. 2009;355:264–272. doi: 10.1016/j.jnoncrysol.2008.11.014. DOI

Naraynaswamy O.S. A Model of Structural Relaxation in Glass. J. Am. Ceram. Soc. 1971;54:491–498. doi: 10.1111/j.1151-2916.1971.tb12186.x. DOI

Tool A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946;29:240–253. doi: 10.1111/j.1151-2916.1946.tb11592.x. DOI

DeBolt M.A., Easteal A.J., Macedo P.B., Moynihan C.T. Analysis of Structural Relaxation in Glass Using Rate Heating Data. J. Am. Ceram. Soc. 1976;59:16–21. doi: 10.1111/j.1151-2916.1976.tb09377.x. DOI

Málek J., Svoboda R. Structural Relaxation and Viscosity Behavior in Supercooled Liquids at the Glass Transition. In: Šesták J., Šimon P., editors. Thermal Analysis of Micro, Nano- and Non-Crystalline Materials. Volume 9. Springer Science+Business Media; Dordrecht, The Netherlands: 2013. pp. 147–173. (Hot Topics in Thermal Analysis and Calorimetry).

Málek J., Shánělová J. Crystallization Kinetics in Amorphous and Glassy Materials. In: Šesták J., Šimon P., editors. Thermal Analysis of Micro, Nano- and Non-Crystalline Materials. Volume 9. Springer Science+Business Media; Dordrecht, The Netherlands: 2013. pp. 291–324. (Hot Topics in Thermal Analysis and Calorimetry).

Ryschenkow G., Faivre G. Bulk crystallization of liquid selenium—Primary nucleation, growth kinetics and modes of crystallization. J. Cryst. Growth. 1988;87:221–235. doi: 10.1016/0022-0248(88)90169-8. DOI

Málek J., Barták J., Shánělová J. Spherulitic Crystal Growth Velocity in Selenium Supercooled Liquid. Cryst. Growth Des. 2016;16:5811–5821. doi: 10.1021/acs.cgd.6b00897. DOI

Bernatz K., Echeveria I., Simon S., Plazek D. Characterization of the molecular structure of amorphous selenium using recoverable creep compliance measurements. J. Non Cryst. Solids. 2002;307:790–801. doi: 10.1016/S0022-3093(02)01522-3. DOI

Koštál P., Málek J. Viscosity of selenium melt. J. Non Cryst. Solids. 2010;356:2803–2806. doi: 10.1016/j.jnoncrysol.2010.09.032. DOI

Svoboda R., Málek J. Crystallization kinetics of a-Se, part 1: Interpretation of kinetic functions. J. Therm. Anal. Calorim. 2013;114:473–482. doi: 10.1007/s10973-012-2922-1. DOI

Svoboda R., Málek J. Crystallization kinetics of a-Se, part 2: Deconvolution of a complex process—The final answer. J. Therm. Anal. Calorim. 2014;115:81–91. doi: 10.1007/s10973-013-3219-8. DOI

Svoboda R., Málek J. Crystallization kinetics of a-Se, part 3: Isothermal data. J. Therm. Anal. Calorim. 2015;119:1363–1372. doi: 10.1007/s10973-014-4201-9. DOI

Svoboda R., Gutwirth J., Málek J. Crystallization kinetics of a-Se, part 4: Thin films. Philos. Mag. 2014;94:3036–3051. doi: 10.1080/14786435.2014.950622. DOI

Málek J. The Kinetic Analysis of Non-Isothermal Data. Thermochim. Acta. 1992;200:257–269. doi: 10.1016/0040-6031(92)85118-F. DOI

Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta. 1995;267:61–73. doi: 10.1016/0040-6031(95)02466-2. DOI

Málek J., Criado J.M. The Shape of a Thermoanalytical Curve and Its Kinetic Information Content. Thermochim. Acta. 1990;164:199–209. doi: 10.1016/0040-6031(90)80437-4. DOI

Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957;29:1702–1706. doi: 10.1021/ac60131a045. DOI

Friedman H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C. 1964;6:183–195. doi: 10.1002/polc.5070060121. DOI

Zmrhalová Z., Pilný P., Svoboda R., Shánělová J., Málek J. Thermal properties and viscous flow behavior of As2Se3 glass. J. Alloys Compd. 2016;655:220–228. doi: 10.1016/j.jallcom.2015.09.193. DOI

Málek J. Rate-determining factors for structural relaxation in non-crystalline materials II. Normalized volume and enthalpy relaxation rate. Thermochim. Acta. 1998;313:181–190. doi: 10.1016/S0040-6031(98)00249-4. DOI

Svoboda R., Pustková P., Málek J. Relaxation behavior of glassy selenium. J. Phys. Chem. Sol. 2007;68:850–854. doi: 10.1016/j.jpcs.2006.12.032. DOI

Svoboda R. Novel equation to determine activation energy of enthalpy relaxation. J. Therm. Anal. Calorim. 2015;121:895–899. doi: 10.1007/s10973-015-4619-8. DOI

Kovacs A.J. Transition vitreuse dans les polymères amorphes. Etude phénoménologique. Fortschr. Hochpolym. Forsch. 1963;3:394–507. doi: 10.1007/BF02189445. DOI

Ediger M.D., Harrowell P., Yu L. Crystal growth kinetics, exhibit a fragility-dependent decoupling from viscosity. J. Chem. Phys. 2008;128:034709. doi: 10.1063/1.2815325. PubMed DOI

Gutzow I.S., Schmelzer J.W.P. The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization. Springer; Berlin/Heidelberg, Germany: 2013.

Busch R., Kim Y.J., Johnson W.L. Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.5Ti13.8Cu12.5Ni10.0Be22.5 alloy. J. Appl. Phys. 1995;77:4039–4043. doi: 10.1063/1.359485. DOI

Svoboda R., Málek J. Thermal behavior in Se-Te chalcogenide system: Interplay of thermodynamics and kinetics. J. Chem. Phys. 2014;141:224507. doi: 10.1063/1.4903543. PubMed DOI

Svoboda R., Brandová D., Chromčíková M., Setnička M., Chovanec J., Černá A., Liška M., Málek J. Se-doped GeTe4 glasses for far-infrared optical fibers. J. Alloys Compd. 2017;695:2434–2443. doi: 10.1016/j.jallcom.2016.11.139. DOI

Svoboda R., Brandová D., Chromčíková M., Liška M. Thermokinetic behavior of Ga-doped GeTe4 glasses. J. Non Cryst. Solids. 2019;512:7–14. doi: 10.1016/j.jnoncrysol.2019.02.023. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth

. 2022 Sep 02 ; 27 (17) : . [epub] 20220902

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...