With an increasing focus on sustainable technologies in the pharmaceutical industry, milling provides a solvent-free approach to improve drug dissolution. Milling of drugs with an excipient offers additional opportunities to achieve supersaturation kinetics. Therefore, this work aims to present insights of co-milling fenofibrate and apremilast, two good glass formers with low and high glass transition temperatures (Tgs) respectively. Drugs were co-milled with croscarmellose sodium for various process durations followed by thermal analysis, investigation of crystallinity, surface area and dissolution. The dissolution enhancement of the low-Tg glass former fenofibrate highly correlated with the process-induced increase in surface area of co-milled systems (R2 = 0.96). In contrast, the high-Tg glass former apremilast lost its crystalline order gradually after ≥ 10 min of co-milling, and favourable supersaturation kinetics during biorelevant dissolution testing were observed. Interestingly, the melting point of co-milled apremilast decreased and linearly correlated with the highest measured drug concentration (cmax) during in vitro dissolution (onset temperature R2 = 0.98; peak temperature R2 = 0.96). The melting point depression remained stable after 90 days for apremilast, whereas fenofibrate co-milled for 20 min or more showed an increase in melting point upon storage. This study demonstrated that co-milling with croscarmellose sodium is ideally suited to good glass formers with a high Tg. The melting point depression is thereby proposed as an easily accessible critical quality attribute to estimate likely dissolution performance of drugs in dry co-milled formulations.
- MeSH
- Aspirin chemistry analogs & derivatives MeSH
- Fenofibrate * chemistry MeSH
- Excipients chemistry MeSH
- Drug Compounding methods MeSH
- Solubility MeSH
- Glass * chemistry MeSH
- Thalidomide analogs & derivatives MeSH
- Transition Temperature MeSH
- Drug Liberation MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
OBJECTIVE: Systematic review and meta-analysis on laboratory studies aimed to answer whether there is a difference in fracture resistance and fracture mode of structurally compromised teeth restored with direct composite restorations reinforced with short glass-fiber or bidirectional polyethylene fiber substructure, and between the two different fiber-reinforcement types. METHODS: An electronic literature search was conducted in Medline, Scopus, Web of Science, Lilacs, Google Scholar, Cochrane Library, and University Library databases. The last search was conducted on 16 November 2023. Only studies looking at Ribbond-reinforced restorations and/ or the use of EverX Posterior within restorations were included. Data were categorized and analyzed based on specific outcome measures including fracture resistance and fracture mode. Data from individual studies were divided into premolars and molars for each material category and then collated to compare the mean differences in fracture resistance between control groups (composite restorations) and intervention groups (fiber-reinforced composite restorations). RESULTS: From the initial 1266 articles identified, 23 laboratory-based studies were included for quantitative analysis. Twenty articles had an overall low risk of bias and 3 had an overall unclear risk of bias. The pooled estimate of the effect favored the intervention groups as having statistically significant higher fracture resistance when compared to control groups. CONCLUSIONS: Both fiber types improve fracture resistance and the fracture mode of structurally compromised teeth is equally efficient. Application technique deserves attention. Ribbond could be placed in a single layer at the cavity floor, whereas EverX Posterior should replace missing dentin in an anatomically shaped way.
- MeSH
- Tooth Fractures * prevention & control MeSH
- Humans MeSH
- Polyethylenes MeSH
- Glass chemistry MeSH
- Composite Resins * therapeutic use chemistry MeSH
- Dental Restoration, Permanent * methods MeSH
- Dental Materials chemistry MeSH
- Dental Restoration Failure MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Research Support, Non-U.S. Gov't MeSH
- Systematic Review MeSH
- Keywords
- sklovláknové čepy,
- MeSH
- Metals MeSH
- Humans MeSH
- Glass MeSH
- Alloys MeSH
- Dental Pins * MeSH
- Dental Materials MeSH
- Check Tag
- Humans MeSH
Actin is a fundamental member of an ancient superfamily of structural intracellular proteins and plays a crucial role in cytoskeleton dynamics, ciliogenesis, phagocytosis, and force generation in both prokaryotes and eukaryotes. It is shown that actin has another function in metazoans: patterning biosilica deposition, a role that has spanned over 500 million years. Species of glass sponges (Hexactinellida) and demosponges (Demospongiae), representatives of the first metazoans, with a broad diversity of skeletal structures with hierarchical architecture unchanged since the late Precambrian, are studied. By etching their skeletons, organic templates dominated by individual F-actin filaments, including branched fibers and the longest, thickest actin fiber bundles ever reported, are isolated. It is proposed that these actin-rich filaments are not the primary site of biosilicification, but this highly sophisticated and multi-scale form of biomineralization in metazoans is ptterned.
- MeSH
- Actins * MeSH
- Skeleton MeSH
- Silicon Dioxide * chemistry MeSH
- Glass MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In recent years, mesoporous bioactive glass nanoparticles (MBGNPs) have generated great attention in biomedical applications. In this study, cerium and gallium doped MBGNPs were prepared by microemulsion assisted sol-gel method in the binary SiO2-CaO system. MBGNPs with spheroidal and pineal shaped morphology were obtained. Nitrogen sorption analysis elucidated the mesoporous structure of synthesized nanoparticles with high specific surface area. X-ray diffraction analysis confirmed the amorphous nature of the nanoparticles. The chemical compositions of all samples were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES), which revealed that the contents of cerium and gallium could be tailored by adjusting the concentrations of the precursors used for the synthesis. All MBGNPs exhibited in vitro bioactivity when immersed in simulated body fluid, except the particles doped with higher amounts than 1 mol% of cerium. MBGNPs showed antibacterial activity against S. aureus and E. coli without exhibiting cytotoxicity towards MG-63 osteoblast-like cells. Mentioned features of the obtained Ce and Ga-doped MBGNPs make them useful for multifunctional applications such as drug delivery carriers or bioactive fillers for bone tissue engineering applications.
Antifouling polymer layers containing extracellular matrix-derived peptide motifs offer promising new options for biomimetic surface engineering. In this contribution, we report the design of antifouling vascular grafts bearing biofunctional peptide motifs for tissue regeneration applications based on hierarchical polymer brushes. Hierarchical diblock poly(methyl ether oligo(ethylene glycol) methacrylate-block-glycidyl methacrylate) brushes bearing azide groups (poly(MeOEGMA-block-GMA-N3)) were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) and functionalized with biomimetic RGD peptide sequences. Varying the conditions of copper-catalyzed alkyne-azide "click" reaction allowed for the immobilization of RGD peptides in a wide surface concentration range. The synthesized hierarchical polymer brushes bearing peptide motifs were characterized in detail using various surface sensitive physicochemical methods. The hierarchical brushes presenting the RGD sequences provided excellent cell adhesion properties and at the same time remained resistant to fouling from blood plasma. The synthesis of anti-fouling hierarchical brushes bearing 1.2 × 103 nmol/cm2 RGD biomimetic sequences has been adapted for the surface modification of commercially available grafts of woven polyethylene terephthalate (PET) fibers. The fiber mesh was endowed with polymerization initiator groups via aminolysis and acylation reactions optimized for the material. The obtained bioactive antifouling vascular grafts promoted the specific adhesion and growth of endothelial cells, thus providing a potential avenue for endothelialization of artificial conduits.
- MeSH
- Adsorption MeSH
- Amino Acid Motifs MeSH
- Azides chemistry MeSH
- Coated Materials, Biocompatible * MeSH
- Biomimetic Materials * MeSH
- Cell Adhesion MeSH
- Cell Division MeSH
- Endothelium, Vascular physiology MeSH
- Blood Vessel Prosthesis * MeSH
- Click Chemistry MeSH
- Human Umbilical Vein Endothelial Cells MeSH
- Immobilized Proteins MeSH
- Silicon MeSH
- Plasma MeSH
- Blood Proteins MeSH
- Humans MeSH
- Oligopeptides chemistry MeSH
- Polyethylene Terephthalates chemistry MeSH
- Polymerization * MeSH
- Surface Properties MeSH
- Guided Tissue Regeneration instrumentation MeSH
- Glass MeSH
- Materials Testing MeSH
- Thrombosis prevention & control MeSH
- Gold MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
The antifouling, antimicrobial, elution behavior, skin irritant, and cytotoxicity properties of water-soluble phosphate glass on stainless steel were evaluated. Water-soluble phosphate glass samples with 35% Cu (mol/mol) were prepared by altering the network modifier (Na2O, K2O) and network former (P2O5, B2O3) compositions. The materials were melted at temperatures within the range of 850-950 °C. The melt was then quenched and ground into fine particles using a twin roll mill. The resulting water-soluble glasses were prepared as glass frit (size < 100 μm) using a sieve. The amorphous phase was determined by X-ray diffraction and differential thermal analysis. Water-soluble glasses with a reduced Cu ion elution rate of 1.2 ppm per week were formed because the chemical resistances of the formulated glasses improved as the P2O5 content decreased and the B2O3 content increased. To test its antifouling properties, the glass frit was mixed with paint and coated onto a STS316L sheet. The surface roughness was increased markedly from 1.4 to 19.2 nm, increasing the specific surface area for antimicrobial activity. It was demonstrated that the proposed method was able to form noncytotoxic, nonirritant, water-soluble glasses with 99.9% antimicrobial activity against Staphylococcus aureus. These results suggest that water-soluble phosphate glass on STS316L sheets could be useful in filtration plants.
- MeSH
- Anti-Bacterial Agents chemistry pharmacology MeSH
- Biofouling prevention & control MeSH
- Water Purification instrumentation MeSH
- X-Ray Diffraction MeSH
- Filtration instrumentation MeSH
- Phosphates chemistry pharmacology MeSH
- Rabbits MeSH
- Skin drug effects MeSH
- Glass chemistry MeSH
- Staphylococcus aureus drug effects growth & development MeSH
- Temperature MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH