Thermally Induced Phenomena in Amorphous Nifedipine: The Correlation Between the Structural Relaxation and Crystal Growth Kinetics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2023037
Ministry of Education Youth and Sports
PubMed
39795231
PubMed Central
PMC11720989
DOI
10.3390/molecules30010175
PII: molecules30010175
Knihovny.cz E-zdroje
- Klíčová slova
- DSC, Raman microscopy, amorphous nifedipine, crystal growth, structural relaxation,
- Publikační typ
- časopisecké články MeSH
The particle size-dependent processes of structural relaxation and crystal growth in amorphous nifedipine were studied by means of non-isothermal differential scanning calorimetry (DSC) and Raman microscopy. The enthalpy relaxation was described in terms of the Tool-Narayanaswamy-Moynihan model, with the relaxation motions exhibiting the activation energy of 279 kJ·mol-1 for the temperature shift, but with a significantly higher value of ~500 kJ·mol-1 being obtained for the rapid transition from the glassy to the undercooled liquid state (the latter is in agreement with the activation energy of the viscous flow). This may suggest different types of relaxation kinetics manifesting during slow and rapid heating, with only a certain portion of the relaxation motions occurring that are dependent on the parameters of a given temperature range and time frame. The DSC-recorded crystallization was found to be complex, consisting of four sub-processes: primary crystal growth of αp and βp polymorphs, enantiotropic βp → βp' transformation, and βp/βp' → αp recrystallization. Overall, nifedipine was found to be prone to the rapid glass-crystal growth that occurs below the glass transition temperature; a tendency of low-temperature degradation of the amorphous phase markedly increased with decreasing particle size (the main reason being the increased number of surface and bulk micro-cracks and mechanically induced defects). The activation energies of the DSC-monitored crystallization processes varied in the 100-125 kJ·mol-1 range, which is in agreement with the microscopically measured activation energies of crystal growth. Considering the potential correlations between the structural relaxation and crystal growth processes interpreted within the Transition Zone Theory, a certain threshold in the complexity and magnitude of the cooperating regions (as determined from the structural relaxation) may exist, which can lead to a slow-down of the crystal growth if exceeded.
Zobrazit více v PubMed
Pramadana T., Rachmawati A., Pusianawati D. Comparison of nifedipine and isoxsuprine to cervical length in threatened preterm labor. Indones. J. Obstet. Gynecol. Sci. 2021;4:56–63. doi: 10.24198/obgynia.v4i1.255. DOI
Aryana M., Winata I., Setiawan W. Magnesium sulphate and nifedipine in management of preterm premature rupture of membranes. Eur. J. Med. Health Sci. 2022;4:87–89. doi: 10.24018/ejmed.2022.4.4.1290. DOI
Mohammadi E., Teymoordash S., Norouzi A., Norouzi F., Norouzi H. Comparison of the effect of nifedipine alone and the combination of nifedipine and sildenafil in delaying preterm labor: A randomized clinical trial. J. Fam. Reprod. Health. 2021;15:112–117. doi: 10.18502/jfrh.v15i2.6452. PubMed DOI PMC
Winden T., Nijman T., Kleinrouweler C., Salim R., Kashanian M., Al-Omari W.R., Pajkrt E., Mol B.W., Oudijk M.A., Roos C. Tocolysis with nifedipine versus atosiban and perinatal outcome: An individual participant data meta-analysis. BMC Pregnancy Childbirth. 2022;22:567. doi: 10.1186/s12884-022-04854-1. PubMed DOI PMC
George R., Thomas C., Joy C., Varghese B., Undela K., Adela R. Comparative efficacy and safety of oral nifedipine with other antihypertensive medications in the management of hypertensive disorders of pregnancy: A systematic review and meta-analysis of randomized controlled trials. J. Hypertens. 2022;40:1876–1886. doi: 10.1097/HJH.0000000000003233. PubMed DOI
Salman S., Habib D., Atef M., Abbas A. The effect of oral nifedipine versus parenteral magnesium sulfate and ritodrine for tocolysis in patients with threatened preterm labor: A randomized controlled trial. Open J. Obstet. Gynecol. 2019;9:1142–1150. doi: 10.4236/ojog.2019.98110. DOI
Nivethana K.B., Senthil P., Krupanidhi K. A comparative study of iv labetalol with oral nifedipine in severe preeclampsia. Int. J. Clin. Obstet. Gynaecol. 2020;4:388–392.
Yart L., Frieden M., Konig S., Cohen M., Tejada B. Dual effect of nifedipine on pregnant human myometrium contractility: Implication of trpc1. J. Cell. Physiol. 2022;237:1980–1991. doi: 10.1002/jcp.30666. PubMed DOI PMC
Eroglu T., Mohr G., Blom M., Verkerk A., Souverein P., Torp-Pedersen C., Folke F., Wissenberg M., van den Brink L., Davis R.P., et al. Differential effects on out-of-hospital cardiac arrest of dihydropyridines: Real-world data from population-based cohorts across two European countries. Eur. Heart J.—Cardiovasc. Pharmacother. 2019;6:347–355. doi: 10.1093/ehjcvp/pvz038. PubMed DOI PMC
Salman N., Mumtaz A., Noreen S., Butt A., Ahmed M., Fatima T. Postpartum discharge on labetalol was associated with increase risk of readmission for hypertension compared with discharge on nifedipine. Pak. J. Med. Health Sci. 2023;17:597–598. doi: 10.53350/pjmhs2023171597. DOI
Othman J. Oropharyngeal angioedema due to nifedipine hypersensitivity post-hemithyroidectomy. J. Pharm. Negat. Res. 2022;13:977–980. doi: 10.47750/pnr.2022.13.S06.130. DOI
Shelke O., Kulkarni A. Formulation, development and evaluation of nifedipine emulgel for treatment of anal fissures using polymeric emulsifiers. Indian J. Pharm. Educ. Res. 2019;53:74–81. doi: 10.5530/ijper.53.2s.51. DOI
Wasan E., Zhao J., Poteet J., Mohammed M., Syeda J., Soulsbury K., Cawthray J., Bunyamin A., Zhang C., Fahlman B.M., et al. Development of a uv-stabilized topical formulation of nifedipine for the treatment of raynaud phenomenon and chilblains. Pharmaceutics. 2019;11:594. doi: 10.3390/pharmaceutics11110594. PubMed DOI PMC
Liu H., Yu Y., Liu L., Wang C., Guo N., Wang X., Xiang X., Han B. Application of physiologically-based pharmacokinetic/pharmacodynamic models to evaluate the interaction between nifedipine and apatinib. Front. Pharmacol. 2022;13:970539. doi: 10.3389/fphar.2022.970539. PubMed DOI PMC
Zhu Y., Zhang T., Zhang Y., Li W., Guo L., Liu Y., Qu X., Wang Q., Mao S., Chen X., et al. Effects of apatinib on the pharmacokinetics of nifedipine and warfarin in patients with advanced solid tumors. Drug Des. Dev. Ther. 2020;14:1963–1970. doi: 10.2147/DDDT.S237301. PubMed DOI PMC
Niu W., Li S., Jin S., Lin X., Zhang M., Cai W., Jiao Z., Xiang X. Investigating the interaction between nifedipine- and ritonavir-containing antiviral regimens: A physiologically based pharmacokinetic/pharmacodynamic analysis. Br. J. Clin. Pharmacol. 2020;87:2790–2806. doi: 10.1111/bcp.14684. PubMed DOI
Tan M. Use of physiologically-based pharmacokinetic modeling to understand the effect of omeprazole administration on the pharmacokinetics of oral extended-release nifedipine. CPT Pharmacomet. Syst. Pharmacol. 2023;13:247–256. doi: 10.1002/psp4.13075. PubMed DOI PMC
Zhao L. Effect of omeprazole administration on the pharmacokinetics of oral extended-release nifedipine in healthy subjects. Clin. Pharmacol. Ther. 2023;114:1134–1141. doi: 10.1002/cpt.3043. PubMed DOI
Beser D., Oluklu D., Hendem D., Yildirim M., Ersak D., Ayhan S., Sahin D. Fetal echocardiographic evaluation before and after nifedipine treatment in preterm labor. Echocardiography. 2022;39:1245–1251. doi: 10.1111/echo.15444. PubMed DOI
Adeosun A., Aroworamimo A., Ighodaro O., Asejeje F., Akinloye O. Blood pressure lowering, antidyslipidemic and nitric oxide modulatory effects of methanol extract of struchium sparganophora leaves on dexamethasone-salt model of hypertension in rats. Egypt. J. Basic Appl. Sci. 2021;8:252–260. doi: 10.1080/2314808X.2021.1961206. DOI
Milliner B., Brant-Zawadzki G., McIntosh S. Effect of calcium-channel blockade on the cold-induced vasodilation response. Wilderness Environ. Med. 2020;31:312–316. doi: 10.1016/j.wem.2020.03.002. PubMed DOI
Mantas A., Mihranyan A. Immediate-Release Nifedipine Binary Dry Powder Mixtures with Nanocellulose Featuring Enhanced Solubility and Dissolution Rate. Pharmaceutics. 2019;11:37. doi: 10.3390/pharmaceutics11010037. PubMed DOI PMC
Alqurshi A., Andrew Chan K.L., Royall P.G. In-Situ Freeze-Drying-Forming Amorphous Solids Directly within Capsules: An Investigation of Dissolution Enhancement for A Poorly Soluble Drug. Sci. Rep. 2017;7:2910. doi: 10.1038/s41598-017-02676-2. PubMed DOI PMC
Ueda K., Yamazoe C., Yasuda Y., Higashi K., Kawakami K., Moribe K. Mechanism of Enhanced Nifedipine Dissolution by Polymer-Blended Solid Dispersion through Molecular-Level Characterization. Mol. Pharm. 2018;15:4099–4109. doi: 10.1021/acs.molpharmaceut.8b00523. PubMed DOI
Taokaew S., Ofuchi M., Kobayashi T. Chitin Biomass-Nifedipine Amorphous Solid Dispersion for Enhancement of Hydrophobic Drug Dissolution in Aqueous Media. Sustain. Chem. Pharm. 2020;17:100284. doi: 10.1016/j.scp.2020.100284. DOI
Tubtimsri S., Weerapol Y. Improvement in Solubility and Absorption of Nifedipine Using Solid Solution: Correlations between Surface Free Energy and Drug Dissolution. Polymers. 2021;31:2963. doi: 10.3390/polym13172963. PubMed DOI PMC
Shi Q., Chen H., Wang Y., Xu J., Liu Z., Zhang C. Recent advances in drug polymorphs: Aspects of pharmaceutical properties and selective crystallization. Int. J. Pharm. 2022;611:121320. doi: 10.1016/j.ijpharm.2021.121320. PubMed DOI
Gui Y., Huang C., Shi C., Stelzer T., Geoff G., Zhang Z., Yu L. Polymorphic selectivity in crystal nucleation. J. Chem. Phys. 2022;156:144504. doi: 10.1063/5.0086308. PubMed DOI
Gui Y., Yao X., Guzei I.A., Aristov M.M., Yu J., Yu L. A mechanism for reversible solid-state transitions involving nitro torsion. Chem. Mater. 2020;32:7754. doi: 10.1021/acs.chemmater.0c02209. DOI
Gunn E., Guzei I.A., Cai T., Yu L. Polymorphism of Nifedipine: Crystal Structure and Reversible Transition of the Metastable β Polymorph. Cryst. Growth Des. 2012;12:2037–2043. doi: 10.1021/cg3000075. DOI
Klimakow M., Rademann K., Emmerling F. Toward Novel Pseudo-Polymorphs of Nifedipine: Elucidation of a Slow Crystallization Process. Cryst. Growth Des. 2010;10:2693–2698. doi: 10.1021/cg100186v. DOI
Ishida H., Wu T., Yu L. Sudden rise of crystal growth rate of nifedipine near Tg without and with polyvinylpyrrolidone. J. Pharm. Sci. 2007;96:1131–1138. doi: 10.1002/jps.20925. PubMed DOI
Li W., Shi P., Du S., Wang L., Han D., Zhou L., Tang W., Gong J. Revealing the role of anisotropic solvent interaction in crystal habit formation of nifedipine. J. Cryst. Growth. 2020;552:125941. doi: 10.1016/j.jcrysgro.2020.125941. DOI
Gnutzmann T., Kahlau R., Scheifler S., Friedrichs F., Rossler E.A., Rademann K., Emmerling F. Crystal growth rates and molecular dynamics of nifedipine. CrystEngComm. 2013;15:4062–4069. doi: 10.1039/c2ce26911b. DOI
Cheng S., McKenna G.B. Nanoconfinement Effects on the Glass Transition and Crystallization Behaviors of Nifedipine. Mol. Pharm. 2019;16:856–866. doi: 10.1021/acs.molpharmaceut.8b01172. PubMed DOI
Luo M., Chen A., Huang C., Guo M., Cai T. Effects of Polymers on Cocrystal Growth in a Drug–Drug Coamorphous System: Relations between Glass-to-Crystal Growth and Surface-Enhanced Crystal Growth. Mol. Pharm. 2024;21:3591–3602. doi: 10.1021/acs.molpharmaceut.4c00315. PubMed DOI
Cai T., Zhu L., Yu L. Crystallization of Organic Glasses: Effects of Polymer Additives on Bulk and Surface Crystal Growth in Amorphous Nifedipine. Pharm. Res. 2011;28:2458–2466. doi: 10.1007/s11095-011-0472-z. PubMed DOI
Sun Y., Zhu L., Wu T., Cai T., Gunn E., Yu L. Stability of Amorphous Pharmaceutical Solids: Crystal Growth Mechanisms and Effect of Polymer Additives. AAPS J. 2012;14:380–388. doi: 10.1208/s12248-012-9345-6. PubMed DOI PMC
Zhu L., Wong L., Yu L. Surface-Enhanced Crystallization of Amorphous Nifedipine. Mol. Pharm. 2008;5:921–926. doi: 10.1021/mp8000638. PubMed DOI
Chattoraj S., Bhugra C., Li Z.J., Sun C.C. Effect of Heating Rate and Kinetic Model Selection on Activation Energy of Non-isothermal Crystallization of Amorphous Felodipine. J. Pharm. Sci. 2014;103:3950–3957. doi: 10.1002/jps.24204. PubMed DOI
Zhou D., Schmitt E.A., Zhang G.G., Law D., Vyazovkin S., Wight C.A., Grant D.J.W. Crystallization Kinetics of Amorphous Nifedipine Studied by Model-Fitting and Model-Free Approaches. J. Pharm. Sci. 2003;92:1779–1792. doi: 10.1002/jps.10425. PubMed DOI
Cheng S., McKenna G.B. Isothermal Crystallization and Time–Temperature Transformation of Amorphous Nifedipine: A Case of Polymorphism Formation and Conversion. Mol. Pharm. 2021;18:2786–2802. doi: 10.1021/acs.molpharmaceut.1c00331. PubMed DOI
Grooff D., De Villiers M.M., Liebenberg W. Thermal methods for evaluating polymorphic transitions in nifedipine. Thermochim. Acta. 2007;454:33–42. doi: 10.1016/j.tca.2006.12.009. DOI
Mallamace F., Branca C., Corsaro C., Leone N., Spooren J., Chen S.-H., Stanley H.E. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc. Natl. Acad. Sci. USA. 2010;107:22457–22462. doi: 10.1073/pnas.1015340107. PubMed DOI PMC
Martin J.D., Hillis B.G., Hou F. Transition Zone Theory Compared to Standard Models: Reexamining the Theory of Crystal Growth from Melts. J. Phys. Chem. C. 2020;124:18724–18740. doi: 10.1021/acs.jpcc.0c03003. DOI
Svoboda R., Košťálová D., Krbal M., Komersová A. Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth. Molecules. 2022;27:5668. doi: 10.3390/molecules27175668. PubMed DOI PMC
Adam G., Gibbs J.H. On the Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids. J. Chem. Phys. 1965;43:139–146. doi: 10.1063/1.1696442. DOI
Mehta M., Ragoonanan V., McKenna G.B., Suryanarayanan R. Correlation between Molecular Mobility and Physical Stability in Pharmaceutical Glasses. Mol. Pharm. 2016;13:1267–1277. doi: 10.1021/acs.molpharmaceut.5b00853. PubMed DOI
Berthier L., Chandler D., Garrahan J.P. Length scale for the onset of Fickian diffusion in supercooled liquids. Eur. Lett. 2005;69:320–326. doi: 10.1209/epl/i2004-10401-5. DOI
Svoboda R. Utilization of “q+/q- = const.” DSC cycles for enthalpy relaxation studies. Eur. Polym. J. 2014;59:180–188. doi: 10.1016/j.eurpolymj.2014.07.039. DOI
Svoboda R., Kozlová K. Thermo-structural characterization of phase transitions in amorphous griseofulvin: From sub-Tg relaxation and crystal growth to high-temperature decomposition. Molecules. 2024;29:1516. doi: 10.3390/molecules29071516. PubMed DOI PMC
Svoboda R., Macháčková J., Nevyhoštěná M., Komersová A. Thermal stability of amorphous nimesulide: From glass formation to crystal growth and thermal degradation. Phys. Chem. Chem. Phys. 2024;26:856–872. doi: 10.1039/D3CP02260A. PubMed DOI
Chan K.L.A., Fleming O.S., Kazarian S.G., Vassou D., Chryssikos G.D., Gionis V. Polymorphism and devitrification of nifedipine under controlled humidity: A combined FT-Raman, IR and Raman microscopic investigation. J. Raman Spectrosc. 2004;35:353–359. doi: 10.1002/jrs.1139. DOI
Tool A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946;29:240–253. doi: 10.1111/j.1151-2916.1946.tb11592.x. DOI
Narayanaswamy O.S. A model of structural relaxation in glass. J. Am. Ceram. Soc. 1971;54:491–497. doi: 10.1111/j.1151-2916.1971.tb12186.x. DOI
Moynihan C.T., Easteal A.J., DeBolt M.A., Tucker J. Dependence of the fictive temperature of glass on cooling rate. J. Am. Ceram. Soc. 1976;59:12–16. doi: 10.1111/j.1151-2916.1976.tb09376.x. DOI
Svoboda R., Málek J. Description of macroscopic relaxation dynamics in glasses. J. Non-Cryst. Solids. 2013;378:186–195. doi: 10.1016/j.jnoncrysol.2013.07.008. DOI
Debolt M.A., Easteal A.J., Macedo P.B., Moynihan C.T. Analysis of Structural Relaxation in Glass Using Rate Heating Data. J. Am. Ceram. Soc. 1976;59:16–21. doi: 10.1111/j.1151-2916.1976.tb09377.x. DOI
Svoboda R., Málek J. Enthalpy relaxation in Ge-Se glassy system. J. Therm. Anal. Cal. 2013;113:831–842. doi: 10.1007/s10973-012-2829-x. DOI
Angell C.A., Ngai K.L., McKenna G.B., McMillan P.F., Martin S.W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 2000;88:3113–3157. doi: 10.1063/1.1286035. DOI
Šesták J. Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis. Elsevier; Amsterdam, The Netherlands: 2005.
Šesták J. Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis. Elsevier; Amsterdam, The Netherlands: 1984.
Johnson W.A., Mehl K.F. Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Metall. Eng. 1939;135:416–442.
Avrami M. Kinetics of phase change I—General theory. J. Chem. Phys. 1939;7:1103–1112. doi: 10.1063/1.1750380. DOI
Avrami M. Kinetics of phase change. II—Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940;7:212–224. doi: 10.1063/1.1750631. DOI
Avrami M. Granulation, phase change, and microstructure—Kinetics of phase change III. J. Chem. Phys. 1941;7:177–184. doi: 10.1063/1.1750872. DOI
Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957;29:1702–1706. doi: 10.1021/ac60131a045. DOI
Svoboda R., Čičmanec P., Málek J. Kissinger equation versus glass transition phenomenology. J. Therm. Anal. Cal. 2013;114:285–293. doi: 10.1007/s10973-012-2892-3. DOI
Svoboda R., Chovanec J., Slang S., Beneš L., Konrád P. Single-curve multivariate kinetic analysis: Application to the crystallization of commercial Fe-Si-Cr-B amorphous alloys. J. Alloys Compd. 2022;889:161672. doi: 10.1016/j.jallcom.2021.161672. DOI
Hasebe M., Musumeci D., Powell C.T., Cai T., Gunn E., Zhu L., Yu L.J. Fast surface crystal growth on molecular glasses and its termination by the onset of fluidity. Phys. Chem. B. 2014;118:7638–7646. doi: 10.1021/jp503110g. PubMed DOI
Madejczyk O., Minecka A., Kamińska E., Heczko D., Tarnacka M., Wolnica K., Kamiński K., Paluch M. Studying the crystal growth of selected active pharmaceutical ingredients from single-and two-component systems above and below the glass transition temperature. Cryst. Growth Des. 2019;19:1031–1040. doi: 10.1021/acs.cgd.8b01562. DOI
Hodge I. Adam-Gibbs formulation of non-linear enthalpy relaxation. J. Non-Cryst. Solids. 1991;131–133:435–441. doi: 10.1016/0022-3093(91)90336-5. DOI
Chromčiková M., Liška M. Simple relaxation model of the reversible part of the StepScan® DSC record of glass transition. J. Therm. Anal. 2006;84:703–708. doi: 10.1007/s10973-005-7546-2. DOI
Hutchinson J.M., Kovacs A.J. Effects of thermal history on structural recovery of glasses during isobaric heating. Polym. Eng. Sci. 1984;24:1087–1103. doi: 10.1002/pen.760241404. DOI
Hutchinson J.M., Ruddy M. Thermal cycling of glasses. II. Experimental evaluation of the structure (or non-linearity) parameter x. J. Polym. Sci. 1988;26:2341–2366. doi: 10.1002/polb.1988.090261112. DOI
Wu T., Sun Y., Li N., de Villiers M.M., Yu L. Inhibiting Surface Crystallization of Amorphous Indomethacin by Nanocoating. Langmuir. 2007;23:5148–5153. doi: 10.1021/la070050i. PubMed DOI
Descamps M., Dudognon E. Crystallization from the Amorphous State: Nucleation–Growth Decoupling, Polymorphism Interplay, and the Role of Interfaces. J. Pharm. Sci. 2014;103:2615–2628. doi: 10.1002/jps.24016. PubMed DOI
Filho R.O.C., Franco P.I.B.M., Conceicao E.C., Leles M.I.G. Stability studies on nifedipine tablets using thermogravimetry and differential scanning calorimetry. J. Therm. Anal. Calorim. 2009;97:343–347. doi: 10.1007/s10973-009-0083-7. DOI
Shamsipur M., Hemmateenejad B., Akhond M., Javidnia K., Miri R. A study of the photo-degradation kinetics of nifedipine by multivariate curve resolution analysis. J. Pharm. Biomed. Anal. 2003;31:1013–1019. doi: 10.1016/S0731-7085(02)00710-0. PubMed DOI