Kinetics of Phase Transitions in Amorphous Carbamazepine: From Sub-Tg Structural Relaxation to High-Temperature Decomposition
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2023037
Ministry of Education Youth and Sports
PubMed
40649912
PubMed Central
PMC12250088
DOI
10.3390/ijms26136136
PII: ijms26136136
Knihovny.cz E-zdroje
- Klíčová slova
- carbamazepine, crystal growth, structural relaxation, thermal decomposition,
- MeSH
- diferenciální skenovací kalorimetrie MeSH
- karbamazepin * chemie MeSH
- kinetika MeSH
- krystalizace MeSH
- teplota MeSH
- termogravimetrie MeSH
- tranzitní teplota MeSH
- vysoká teplota MeSH
- změna skupenství * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- karbamazepin * MeSH
Thermokinetic characterization of amorphous carbamazepine was performed utilizing non-isothermal differential scanning calorimetry (DSC) and thermogravimetry (TGA). Structural relaxation of the amorphous matrix was described in terms of the Tool-Narayanaswamy-Moynihan model with the following parameters: Δh* ≈ 200-300 kJ·mol-1, β = 0.57, x = 0.44. The crystallization of the amorphous phase was modeled using complex Šesták-Berggren kinetics, which incorporates temperature-dependent activation energy and degree of autocatalysis. The activation energy of the crystal growth was determined to be >320 kJ·mol-1 at the glass transition temperature (Tg). Owing to such a high value, the amorphous carbamazepine is stable at Tg, allowing for extensive processing of the amorphous phase (e.g., self-healing of the quench-induced mechanical defects or internal stress). A discussion was conducted regarding the converse relation between the activation energies of relaxation and crystal growth, which is possibly responsible for the absence of sub-Tg crystal growth modes. The high-temperature thermal decomposition of carbamazepine proceeds via multistep kinetics, identically in both an inert and an oxidizing atmosphere. A complex reaction mechanism, consisting of a series of consecutive and competing reactions, was proposed to explain the second decomposition step, which exhibited a temporary mass increase. Whereas a negligible degree of carbamazepine degradation was predicted for the temperature characteristic of the pharmaceutical hot-melt extrusion (~150 °C), the degradation risk during the pharmaceutical 3D printing was calculated to be considerably higher (1-2% mass loss at temperatures 190-200 °C).
Zobrazit více v PubMed
Yan R., Tuo J., Tai Z., Zhang H., Yang J., Yu C., Xu Z. Management of anti-seizure medications in lactating women with epilepsy. Front. Neurol. 2022;13:1005890. doi: 10.3389/fneur.2022.1005890. PubMed DOI PMC
Hakami T. Efficacy and tolerability of antiseizure drugs. Ther. Adv. Neurol. Disord. 2021;14:17562864211037430. doi: 10.1177/17562864211037430. PubMed DOI PMC
Cornett E.M., Amarasinghe S.N., Angelette A., Abubakar T., Kaye A.M., Kaye A.D., Neuchat E.E., Urits I., Viswanath O. Valtoco® (Diazepam nasal spray) for the acute treatment of intermittent stereotypic episodes of frequent seizure activity. Neurol. Int. 2021;13:64–78. doi: 10.3390/neurolint13010007. PubMed DOI PMC
Mirza N., Stevelink R., Taweel B., Koeleman B.P., Marson A.G. Using common genetic variants to find drugs for common epilepsies. Brain Commun. 2021;3:fcab287. doi: 10.1093/braincomms/fcab287. PubMed DOI PMC
Nierenberg A.A., Agustini B., Köhler-Forsberg O., Cusin C., Katz D., Sylvia L.G., Peters A., Berk M. Diagnosis and treatment of bipolar disorder: A review. JAMA. 2023;330:1370–1380. doi: 10.1001/jama.2023.18588. PubMed DOI
Lochana P., Banerjee M., Bansal N., Patel J.A., Varghese R. Carbamazepine and Bipolar Disorder: Pharmacodynamics, Pharmacokinetics, Pharmacogenomics, and Adverse Drug Reactions—A Comprehensive Review. Asian J. Pharm. Pharmacol. 2023;9:189–195. doi: 10.31024/ajpp.2023.9.6.3. DOI
Grunze A., Amann B.L., Grunze H. Efficacy of carbamazepine and its derivatives in the treatment of bipolar disorder. Medicina. 2021;57:433. doi: 10.3390/medicina57050433. PubMed DOI PMC
Ali S.F.B., Rahman Z., Dharani S., Afrooz H., Khan M.A. Chemometric models for quantification of carbamazepine anhydrous and dihydrate forms in the formulation. J. Pharm. Sci. 2019;108:1211–1219. doi: 10.1016/j.xphs.2018.10.023. PubMed DOI
Kobayashi Y., Ito S., Itai S., Yamamoto K. Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int. J. Pharm. 2000;193:137–146. doi: 10.1016/S0378-5173(99)00315-4. PubMed DOI
Lindenberg M., Kopp S., Dressman J.B. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm. 2004;58:265–278. doi: 10.1016/j.ejpb.2004.03.001. PubMed DOI
Xu X., Grohganz H., Knapik-Kowalczuk J., Paluch M., Rades T. Mechanistic Investigation into Crystallization of Hydrated Co-Amorphous Systems of Flurbiprofen and Lidocaine. Pharmaceutics. 2025;17:175. doi: 10.3390/pharmaceutics17020175. PubMed DOI PMC
Shen S., Wang X., Dong C., Zhao W., Wang Y., Zhu L. Solution-Mediated Phase Transformation Processes of Amorphous Iohexol: Mechanisms and Its Applications. Cryst. Growth Des. 2025;25:519–532. doi: 10.1021/acs.cgd.4c01155. DOI
Budiman A., Lailasari E., Nurani N.V., Yunita E.N., Anastasya G., Aulia R.N., Lestari I.N., Subra L., Aulifa D.L. Ternary solid dispersions: A review of the preparation, characterization, mechanism of drug release, and physical stability. Pharmaceutics. 2023;15:2116. doi: 10.3390/pharmaceutics15082116. PubMed DOI PMC
Baird J.A., van Eerdenbrugh B., Taylor L.S. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J. Pharm. Sci. 2010;99:3787–3806. doi: 10.1002/jps.22197. PubMed DOI
Schneider-Rauber G., Arhangelskis M., Bond A.D., Ho R., Nere N., Bordawekar S., Sheikh A.Y., Jones W. Polymorphism and surface diversity arising from stress-induced transformations—The case of multicomponent forms of carbamazepine. Struct. Sci. 2021;77:54–67. doi: 10.1107/S2052520620015437. DOI
Dołęga A., Juszyńska-Gałązka E., Deptuch A., Baran S., Zieliński P.M. Cold-crystallization and physical stability of glassy carbamazepine. Thermochim. Acta. 2022;707:179100. doi: 10.1016/j.tca.2021.179100. DOI
Chakravarty P., Pandya K., Nagapudi K. Determination of fragility in organic small molecular glass forming liquids: Comparison of calorimetric and spectroscopic data and commentary on pharmaceutical importance. Mol. Pharm. 2018;15:1248–1257. doi: 10.1021/acs.molpharmaceut.7b01068. PubMed DOI
Angell C.A., Ngai K.L., McKenna G.B., McMillan P.F., Martin S.W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 2000;88:3113–3157. doi: 10.1063/1.1286035. DOI
Kohlrausch F. Beiträge zur Kenntniss der elastischen Nachwirkung. Ann. Der Phys. 1866;204:1–20. doi: 10.1002/andp.18662040502. DOI
Williams G., Watts D.C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 1970;66:80–85. doi: 10.1039/tf9706600080. DOI
Dołęga A., Zieliński P.M. Kinetics of non-isothermal cold-crystallization of carbamazepine in the glassy state studied by DSC. J. Non-Cryst. Solids. 2022;575:121198. doi: 10.1016/j.jnoncrysol.2021.121198. DOI
Avrami M. Kinetics of phase change. I—General theory. J. Chem. Phys. 1939;7:1103–1112. doi: 10.1063/1.1750380. DOI
Avrami M. Kinetics of phase change. II—Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940;8:212–224. doi: 10.1063/1.1750631. DOI
Avrami M. Granulation, phase change, and microstructure kinetics of phase change III. J. Chem. Phys. 1941;9:177–184. doi: 10.1063/1.1750872. DOI
Luo M., Chen A., Shan S., Guo M., Cai T. Molar Ratio-Dependent Crystallization in Coamorphous Celecoxib–Carbamazepine Systems: The Interplay of Thermodynamics and Kinetics. Mol. Pharm. 2025;22:3401–3413. doi: 10.1021/acs.molpharmaceut.5c00278. PubMed DOI
Pinto M.A.L., Ambrozini B., Ferreira A.P.G., Cavalheiro É.T.G. Thermoanalytical studies of carbamazepine: Hydration/dehydration, thermal decomposition, and solid phase transitions. Braz. J. Pharm. Sci. 2014;50:877–884. doi: 10.1590/S1984-82502014000400023. DOI
Bordawekar M.S., Pudipeddi M., Ruegger C.E., Dhareshwar S.S. Formulation Intervention to Overcome Decreased Kinetic Solubility of a Low Tg Amorphous Drug. AAPS PharmSciTech. 2023;24:149. doi: 10.1208/s12249-023-02601-z. PubMed DOI
Kushwah V., Gomes Lopes D., Saraf I., Koutsamanis I., Werner B., Zangger K., Roy M.C., Bartlett J.A., Schmidt H.F., Shamblin S.L., et al. Phase behavior of drug–lipid–surfactant ternary systems toward understanding the annealing-induced change. Mol. Pharm. 2021;19:532–546. doi: 10.1021/acs.molpharmaceut.1c00651. PubMed DOI
Luo M., Chen A., Huang C., Guo M., Cai T. Effects of Polymers on Cocrystal Growth in a Drug–Drug Coamorphous System: Relations between Glass-to-Crystal Growth and Surface-Enhanced Crystal Growth. Mol. Pharm. 2024;21:3591–3602. doi: 10.1021/acs.molpharmaceut.4c00315. PubMed DOI
Cai T., Zhu L., Yu L. Crystallization of organic glasses: Effects of polymer additives on bulk and surface crystal growth in amorphous nifedipine. Pharm. Res. 2011;28:2458–2466. doi: 10.1007/s11095-011-0472-z. PubMed DOI
Sun Y., Zhu L., Wu T., Cai T., Gunn E.M., Yu L. Stability of amorphous pharmaceutical solids: Crystal growth mechanisms and effect of polymer additives. AAPS J. 2012;14:380–388. doi: 10.1208/s12248-012-9345-6. PubMed DOI PMC
Scherer G.W. Theories of relaxation. J. Non-Cryst. Sol. 1990;123:75–89. doi: 10.1016/0022-3093(90)90775-H. DOI
Richert R. Physical aging and heterogeneous dynamics. Phys. Rev. Lett. 2010;104:085702. doi: 10.1103/PhysRevLett.104.085702. PubMed DOI
Svoboda R., Pakosta M., Doležel P. How the Presence of Crystalline Phase Affects Structural Relaxation in Molecular Liquids: The Case of Amorphous Indomethacin. Int. J. Mol. Sci. 2023;24:16275. doi: 10.3390/ijms242216275. PubMed DOI PMC
Awad A., Gaisford S., Basit A.W. Fused deposition modelling: Advances in engineering and medicine. 3D Print. Pharm. 2018;31:107–132. doi: 10.1007/978-3-319-90755-0_6. DOI
Mohapatra S., Kar R.K., Biswal P.K., Bindhani S. Approaches of 3D printing in current drug delivery. Sens. Int. 2022;3:100146. doi: 10.1016/j.sintl.2021.100146. DOI
Li N., Qiao D., Zhao S., Lin Q., Zhang B., Xie F. 3D printing to innovate biopolymer materials for demanding applications: A review. Mater. Today Chem. 2021;20:100459. doi: 10.1016/j.mtchem.2021.100459. DOI
Liu J., Sun L., Xu W., Wang Q., Yu S., Sun J. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydr. Polym. 2019;207:297–316. doi: 10.1016/j.carbpol.2018.11.077. PubMed DOI
Patel N.G., Serajuddin A.T. Development of FDM 3D-printed tablets with rapid drug release, high drug-polymer miscibility and reduced printing temperature by applying the acid-base supersolubilization (ABS) principle. Int. J. Pharm. 2021;600:120524. doi: 10.1016/j.ijpharm.2021.120524. PubMed DOI
Svoboda R. Thermally Induced Phenomena in Amorphous Nifedipine: The Correlation Between the Structural Relaxation and Crystal Growth Kinetics. Molecules. 2025;30:175. doi: 10.3390/molecules30010175. PubMed DOI PMC
Svoboda R., Kozlová K. Thermo-Structural Characterization of Phase Transitions in Amorphous Griseofulvin: From sub-Tg Relaxation and Crystal Growth to High-Temperature Decomposition. Molecules. 2024;29:1516. doi: 10.3390/molecules29071516. PubMed DOI PMC
Svoboda R., Košťálová D., Krbal M., Komersová A. Indomethacin: The interplay between structural relaxation, viscous flow and crystal growth. Molecules. 2022;27:5668. doi: 10.3390/molecules27175668. PubMed DOI PMC
Svoboda R., Macháčková J., Nevyhoštěná M., Komersová A. Thermal stability of amorphous nimesulide: From glass formation to crystal growth and thermal degradation. Phys. Chem. Chem. Phys. 2024;26:856–872. doi: 10.1039/D3CP02260A. PubMed DOI
Grzesiak A.L., Lang M., Kim K., Matzger A.J. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. J. Pharm. Sci. 2003;92:2260–2271. doi: 10.1002/jps.10455. PubMed DOI
Tian F., Zeitler J.A., Strachan C.J., Saville D.J., Gordon K.C., Rades T. Characterizing the conversion kinetics of carbamazepine polymorphs to the dihydrate in aqueous suspension using Raman spectroscopy. J. Pharm. Biomed. Anal. 2006;40:271–280. doi: 10.1016/j.jpba.2005.07.030. PubMed DOI
Šesták J. Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis. Elsevier; Amsterdam, The Netherlands: 2005.
Svoboda R., Málek J. Description of enthalpy relaxation dynamics in terms of TNM model. J. Non-Cryst. Solids. 2013;378:186–195. doi: 10.1016/j.jnoncrysol.2013.07.008. DOI
Ediger M. Lecture: Unusual liquids prepared by vapor deposition; Proceedings of the Viscous Liquids and the Glass Transition XXI; Roskilde, Denmark. 14–16 May 2025.
Dołęga A., Juszyńska-Gałązka E., Osiecka-Drewniak N., Natkański P., Kuśtrowski P., Krupa A., Zieliński P.M. Study on the thermal performance of carbamazepine at different temperatures, pressures and atmosphere conditions. Thermochim. Acta. 2021;703:178990. doi: 10.1016/j.tca.2021.178990. DOI
Dołęga A., Krupa A., Zieliński P.M. Enhanced thermal stability of carbamazepine obtained by fast heating, hydration and recrystallization from organic solvent solutions: A DSC and HPLC study. Thermochim. Acta. 2020;690:178691. doi: 10.1016/j.tca.2020.178691. DOI
Guinet Y., Paccou L., Danède F., Willart J.F., Derollez P., Hédoux A. Comparison of amorphous states prepared by melt-quenching and cryomilling polymorphs of carbamazepine. Int. J. Pharm. 2016;509:305–313. doi: 10.1016/j.ijpharm.2016.05.050. PubMed DOI
O’Brien L.E., Timmins P., Williams A.C., York P. Use of in situ FT-Raman spectroscopy to study the kinetics of the transformation of carbamazepine polymorphs. J. Pharm. Biomed. Anal. 2004;36:335–340. doi: 10.1016/j.jpba.2004.06.024. PubMed DOI
Tool A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946;29:240–253. doi: 10.1111/j.1151-2916.1946.tb11592.x. DOI
Narayanaswamy O. A model of structural relaxation in glass. J. Am. Ceram. Soc. 1971;54:491–498. doi: 10.1111/j.1151-2916.1971.tb12186.x. DOI
Moynihan C.T., Easteal A.J., De Bolt M.A., Tucker J. Dependence of the fictive temperature of glass on cooling rate. J. Am. Ceram. Soc. 1976;59:12–16. doi: 10.1111/j.1151-2916.1976.tb09376.x. DOI
Svoboda R. Novel equation to determine activation energy of enthalpy relaxation. J. Therm. Anal. Calorim. 2015;121:895–899. doi: 10.1007/s10973-015-4619-8. DOI
Hodge I.M., Berens A.R. Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromolecules. 1982;15:762–770. doi: 10.1021/ma00231a016. DOI
Holba P., Šesták J. Heat inertia and its role in thermal analysis. J. Therm. Anal. Calorim. 2015;121:303–307. doi: 10.1007/s10973-015-4486-3. DOI
Svoboda R., Málek J. Enthalpy relaxation in Ge–Se glassy system. J. Therm. Anal. 2012;113:831–842. doi: 10.1007/s10973-012-2829-x. DOI
Šesták J. Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis. Elsevier; Amsterdam, The Netherlands: 1984.
Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957;29:1702–1706. doi: 10.1021/ac60131a045. DOI
Augis J.A., Bennett J.E. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J. Therm. Anal. 1978;13:283–292. doi: 10.1007/BF01912301. DOI
Svoboda R., Chovanec J., Slang S., Beneš L., Konrad P. Single-curve multivariate kinetic analysis: Application to the crystallization of commercial Fe-Si-Cr-B amorphous alloys. J. Alloys Compd. 2021;889:161672. doi: 10.1016/j.jallcom.2021.161672. DOI
Opfermann J. Kinetic analysis using multivariate non-linear regression. J. Therm. Anal. Calorim. 2000;60:641–658. doi: 10.1023/A:1010167626551. DOI
Svoboda R., Romanová J., Šlang S., Obadalová I., Komersová A. Influence of particle size and manufacturing conditions on the recrystallization of amorphous Enzalutamide. Eur. J. Pharm. Sci. 2020;153:105468. doi: 10.1016/j.ejps.2020.105468. PubMed DOI
Patil H., Tiwari R.V., Repka M.A. Hot-Melt Extrusion: From Theory to Application in Pharmaceutical Formulation. AAPS PharmSciTech. 2016;17:20–42. doi: 10.1208/s12249-015-0360-7. PubMed DOI PMC
Huang S., O’Donnell K.P., Keen J.M., Rickard M.A., McGinity J.W., Williams R.O., III A New Extrudable Form of Hypromellose: AFFINISOL™ HPMC HME. AAPS PharmSciTech. 2016;17:106–119. doi: 10.1208/s12249-015-0395-9. PubMed DOI PMC
Svoboda R., Nevyhoštěná M., Macháčková J., Vaculík J., Knotková K., Chromčíková M., Komersová A. Thermal degradation of Affinisol HPMC: Optimum processing temperatures for hot melt extrusion and 3D printing. Pharm. Res. 2023;40:2253–2268. doi: 10.1007/s11095-023-03592-z. PubMed DOI PMC
Cohen M.H., Turnbull D. Molecular Transport in Liquids and Glasses. J. Chem. Phys. 1959;31:1164–1169. doi: 10.1063/1.1730566. DOI