How the Presence of Crystalline Phase Affects Structural Relaxation in Molecular Liquids: The Case of Amorphous Indomethacin

. 2023 Nov 13 ; 24 (22) : . [epub] 20231113

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38003465

Grantová podpora
LM2023037 Ministry of Education Youth and Sports

The influence of partial crystallinity on the structural relaxation behavior of low-molecular organic glasses is, contrary to, e.g., polymeric materials, a largely unexplored territory. In the present study, differential scanning calorimetry was used to prepare a series of amorphous indomethacin powders crystallized to various extents. The preparations stemmed from the two distinct particle size fractions: 50-125 µm and 300-500 µm. The structural relaxation data from the cyclic calorimetric measurements were described in terms of the phenomenological Tool-Narayanaswamy-Moynihan model. For the 300-500 µm powder, the crystalline phase forming dominantly on the surface led to a monotonous decrease in the glass transition by ~6 °C in the 0-70% crystallinity range. The activation energy of the relaxation motions and the degree of heterogeneity within the relaxing matrix were not influenced by the increasing crystallinity, while the interconnectivity slightly increased. This behavior was attributed to the release of the quenched-in stresses and to the consequent slight increase in the structural interconnectivity. For the 50-125 µm powder, distinctly different relaxation dynamics were observed. This leads to a conclusion that the crystalline phase grows throughout the bulk glassy matrix along the internal micro-cracks. At higher crystallinity, a sharp increase in Tg, an increase in interconnectivity, and an increase in the variability of structural units engaged in the relaxation motions were observed.

Zobrazit více v PubMed

Angell C.A., Ngai K.L., McKenna G.B., McMillan P.F., Martin S.W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 2000;88:3113–3157. doi: 10.1063/1.1286035. DOI

Struik L.C.E. Physical Aging in Amorphous Polymers and Other Materials. Elsevier Scientific Pub. Co.; Amsterdam, The Netherlands: 1978.

Kovacs A.J. Fortschritte der Hochpolymeren-Forschung. Volume 3. Springer; Berlin/Heidelberg, Germany: 1964. Transition vitreuse dans les polymères amorphes. Etude phénoménologique. Advances in Polymer Science. DOI

Scherer G.W. Theories of relaxation. J. Non-Cryst. Sol. 1990;123:75–89. doi: 10.1016/0022-3093(90)90775-H. DOI

Hodge I.M. Enthalpy relaxation and recovery in amorphous materials. J. Non-Cryst. Sol. 1994;169:211–266. doi: 10.1016/0022-3093(94)90321-2. DOI

Richert R. Physical Aging and Heterogeneous Dynamics. Phys. Rev. Lett. 2010;104:085702. doi: 10.1103/PhysRevLett.104.085702. PubMed DOI

Shi X., Mandanici A., McKenna G.B. Shear stress relaxation and physical aging study on simple glass-forming materials. J. Chem. Phys. 2005;123:174507. doi: 10.1063/1.2085050. PubMed DOI

Berthier L., Biroli G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 2011;83:587. doi: 10.1103/RevModPhys.83.587. DOI

McKenna G.B., Simon S.L. 50th Anniversary Perspective: Challenges in the Dynamics and Kinetics of Glass-Forming Polymers. Macromolecules. 2017;50:6333–6361. doi: 10.1021/acs.macromol.7b01014. DOI

Gao X.Y., Ong C.Y., Lee C.S., Yip C.T., Deng H.Y., Lam C.H. Kauzmann paradox: A possible crossover due to diminishing local excitations. Phys. Rev. B. 2023;107:174206. doi: 10.1103/PhysRevB.107.174206. DOI

Jaeger T.D., Simmons D.S. Temperature dependence of aging dynamics in highly non-equilibrium model polymer glasses. J. Chem. Phys. 2022;156:114504. doi: 10.1063/5.0080717. PubMed DOI

Wu G., Liu Y., Shi G. New Experimental Evidence for Thermodynamic Links to the Kinetic Fragility of Glass-Forming Polymers. Macromolecules. 2021;54:5595–5606. doi: 10.1021/acs.macromol.1c00670. DOI

Peredo-Ortiz R., Medina-Noyola M., Voigtmann T., Elizondo-Aguilera L.F. “Inner clocks” of glass-forming liquids. J. Chem. Phys. 2022;156:244506. doi: 10.1063/5.0087649. PubMed DOI

Ngai K.L., Capaccioli S., Wang L.M. Segmental α-Relaxation for the First Step and Sub-Rouse Modes for the Second Step in Enthalpy Recovery in the Glassy State of Polystyrene. Macromolecules. 2019;52:1440–1446. doi: 10.1021/acs.macromol.8b02125. DOI

Vela D.D., Simmons D.S. The microscopic origins of stretched exponential relaxation in two model glass-forming liquids as probed by simulations in the isoconfigurational ensemble. J. Chem. Phys. 2020;153:234503. doi: 10.1063/5.0035609. PubMed DOI

Tool A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946;29:240–253. doi: 10.1111/j.1151-2916.1946.tb11592.x. DOI

Narayanaswamy O.S. A model of structural relaxation in glass. J. Am. Ceram. Soc. 1971;54:491–497. doi: 10.1111/j.1151-2916.1971.tb12186.x. DOI

Moynihan C.T., Easteal A.J., DeBolt M.A., Tucker J. Dependence of the fictive temperature of glass on cooling rate. J. Am. Ceram. Soc. 1976;59:12–16. doi: 10.1111/j.1151-2916.1976.tb09376.x. DOI

Adam G., Gibbs J.H. On the Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids. J. Chem. Phys. 1965;43:139–146. doi: 10.1063/1.1696442. DOI

Svoboda R., Košťálová D., Krbal M., Komersová A. Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth. Molecules. 2022;27:5668. doi: 10.3390/molecules27175668. PubMed DOI PMC

Nitta K.-H., Ito K., Ito A. A Phenomenological Model for Enthalpy Recovery in Polystyrene Using Dynamic Mechanical Spectra. Polymers. 2023;15:3590. doi: 10.3390/polym15173590. PubMed DOI PMC

Bari R., Simon S.L. Determination of the non-linearity and activation energy parameters in the TNM model of structural recovery. J. Therm. Anal. Calorim. 2018;131:317–324. doi: 10.1007/s10973-017-6381-6. DOI

Málek J. Structural Relaxation Rate and Aging in Amorphous Solids. J. Phys. Chem. C. 2023;127:6080–6087. doi: 10.1021/acs.jpcc.3c00637. DOI

Hempel E., Kahle S., Unger R., Donth E. Systematic calorimetric study of glass transition in the homologous series of poly(n-alkyl methacrylate)s: Narayanaswamy parameters in the crossover region. Thermochim. Acta. 1999;329:97–108. doi: 10.1016/S0040-6031(99)00011-8. DOI

Svoboda R. Relaxation processes in Se-rich chalcogenide glasses: Effect of characteristic structural entities. Acta Mater. 2013;61:4354–4541. doi: 10.1016/j.actamat.2013.04.022. DOI

El Banna A.A., McKenna G.B. Challenging the Kauzmann paradox using an ultra-stable perfluoropolymer glass with a fictive temperature below the dynamic VFT temperature. Sci. Rep. 2023;13:4224. doi: 10.1038/s41598-023-31074-0. PubMed DOI PMC

Lancelotti R.F., Cassar D.R., Nalin M., Peitl O., Zanotto E.D. Is the structural relaxation of glasses controlled by equilibrium shear viscosity? J. Am. Ceram. Soc. 2021;104:2066–2076. doi: 10.1111/jace.17622. DOI

Novikov V.N., Sokolov A.P. Temperature Dependence of Structural Relaxation in Glass-Forming Liquids and Polymers. Entropy. 2022;24:1101. doi: 10.3390/e24081101. PubMed DOI PMC

Toda A. Isothermal enthalpy relaxation of amorphous polystyrene studied using temperature-modulated fast scanning calorimetry. Thermochim. Acta. 2023;721:179433. doi: 10.1016/j.tca.2023.179433. DOI

Boucher V.M., Cangialosi D., Alegria A., Colmenero J. Enthalpy Recovery of Glassy Polymers: Dramatic Deviations from the Extrapolated Liquid-like Behavior. Macromolecules. 2011;44:8333–8342. doi: 10.1021/ma2018233. DOI

Araujo A., Delpouve N., Domenek S., Guinault A., Golovchak R., Szatanik R., Ingram A., Fauchard C., Delbreilh L., Dargent E. Cooperativity Scaling and Free Volume in Plasticized Polylactide. Macromolecules. 2019;52:6107–6115. doi: 10.1021/acs.macromol.9b00464. DOI

Valenti S., del Valle L.J., Romanini M., Mitjana M., Puiggalí J., Tamarit J.L., Macovez R. Drug-Biopolymer Dispersions: Morphology- and Temperature-Dependent (Anti)Plasticizer Effect of the Drug and Component-Specific Johari–Goldstein Relaxations. Int. J. Mol. Sci. 2022;23:2456. doi: 10.3390/ijms23052456. PubMed DOI PMC

Guo W., Yamada R., Saida J. Unusual plasticization for structural relaxed bulk metallic glass. Mater. Sci. Eng. A. 2017;699:81–87. doi: 10.1016/j.msea.2017.05.083. DOI

Bogdanova E., Kocherbitov V. Assessment of activation energy of enthalpy relaxation in sucrose-water system: Effects of DSC cycle type and sample thermal history. J. Therm. Anal. Calorim. 2022;147:9695–9709. doi: 10.1007/s10973-022-11250-6. DOI

Klähn M., Krishnan R., Phang J.M., Lim F.C.H., van Herk A.M., Jana S. Effect of external and internal plasticization on the glass transition temperature of (Meth)acrylate polymers studied with molecular dynamics simulations and calorimetry. Polymer. 2019;179:121635. doi: 10.1016/j.polymer.2019.121635. DOI

Fu L., Engqvist H., Xia W. Glass-Ceramics in Dentistry: A Review. Materials. 2020;13:1049. doi: 10.3390/ma13051049. PubMed DOI PMC

Rawlings R.D., Wu J.P., Boccaccini A.R. Glass-ceramics: Their production from wastes—A Review. J. Mater. Sci. 2006;41:733–761. doi: 10.1007/s10853-006-6554-3. DOI

Davis M.J. Practical Aspects and Implications of Interfaces in Glass-Ceramics: A Review. Int. J. Mater. Res. 2008;99:120–128. doi: 10.3139/146.101599. DOI

Atiq O., Ricci E., Baschetti M.G., De Angelis M.G. Modelling solubility in semi-crystalline polymers: A critical comparative review. Fluid Phase Equilibria. 2022;556:113412. doi: 10.1016/j.fluid.2022.113412. DOI

Brinkmann M. Insights into the structural complexity of semi-crystalline polymer semiconductors: Electron diffraction contributions. Mater. Chem. Front. 2020;4:1916–1929. doi: 10.1039/D0QM00230E. DOI

Bigg D.M. Mechanical property enhancement of semi-crystalline polymers—A review. Polym. Eng. Sci. 1988;28:830–841. doi: 10.1002/pen.760281303. DOI

Mano J.F., Gómez Ribelles J.L., Alves N.M., Sanchez M.S. Glass transition dynamics and structural relaxation of PLLA studied by DSC: Influence of crystallinity. Polymer. 2005;46:8258–8265. doi: 10.1016/j.polymer.2005.06.096. DOI

Bier J.M., Verbeek C.J.R., Lay M.C. Thermal Transitions and Structural Relaxations in Protein-Based Thermoplastics. Macromol. Mater. Eng. 2014;299:524–539. doi: 10.1002/mame.201300248. DOI

Rault J. Origin of the Vogel–Fulcher–Tammann law in glass-forming materials: The α–β bifurcation. J. Non-Cryst. Solids. 2000;271:177–217. doi: 10.1016/S0022-3093(00)00099-5. DOI

Wang H., Zhang L., Peh K.W.E., Yu Q., Lu Y., Hua W., Men Y. Effect of Phase Separation and Crystallization on Enthalpy Relaxation in Thermoplastic Polyurethane. Macromolecules. 2022;55:8566–8576. doi: 10.1021/acs.macromol.2c01504. DOI

Monnier X., Delpouve N., Saiter-Fourcin A. Distinct dynamics of structural relaxation in the amorphous phase of poly(l-lactic acid) revealed by quiescent crystallization. Soft Matter. 2020;16:3224–3233. doi: 10.1039/C9SM02541C. PubMed DOI

Svoboda R., Machotová J., Krbal M., Jezbera D., Nalezinková M., Loskot J., Bezrouk A. Complex thermokinetic characterization of polydioxanone for medical applications: Conditions for material processing. Polymer. 2023;277:125978. doi: 10.1016/j.polymer.2023.125978. DOI

Svoboda R., Honcová P., Málek J. Apparent activation energy of structural relaxation for Se70Te30 glass. J. Non-Cryst. Solids. 2010;356:165–168. doi: 10.1016/j.jnoncrysol.2009.12.002. DOI

Ağagündüz D., Çelik M., Dazıroğlu M., Capasso R. Emergent drug and nutrition interactions in covid-19: A comprehensive narrative review. Nutrients. 2021;13:1550. doi: 10.3390/nu13051550. PubMed DOI PMC

Baraldi C., Pellesi L., Guerzoni S., Cainazzo M., Pini L. Therapeutical approaches to paroxysmal hemicrania, hemicrania continua and short lasting unilateral neuralgiform headache attacks: A critical appraisal. J. Headache Pain. 2017;18:71. doi: 10.1186/s10194-017-0777-3. PubMed DOI PMC

Seyberth H., Schlingmann K. Bartter- and gitelman-like syndromes: Salt-losing tubulopathies with loop or dct defects. Pediatr. Nephrol. 2011;26:1789–1802. doi: 10.1007/s00467-011-1871-4. PubMed DOI PMC

Duncan C., White A. Copper complexes as therapeutic agents. Metallomics. 2012;4:127–138. doi: 10.1039/C2MT00174H. PubMed DOI

Hasebe M., Musumeci D., Powell C., Cai T., Gunn E., Zhu L., Yu L. Fast surface crystal growth on molecular glasses and its termination by the onset of fluidity. J. Phys. Chem. B. 2014;118:7638–7646. doi: 10.1021/jp503110g. PubMed DOI

Musumeci D., Hasebe M., Yu L. Crystallization of organic glasses: How does liquid flow damage surface crystal growth? Cryst. Growth Des. 2016;16:2931–2936. doi: 10.1021/acs.cgd.6b00268. DOI

Wu T., Sun Y., Li N., Villiers M., Yu L. Inhibiting surface crystallization of amorphous indomethacin by nanocoating. Langmuir. 2007;23:5148–5153. doi: 10.1021/la070050i. PubMed DOI

Svoboda R. Utilization of “q+/q− = const.” DSC cycles for enthalpy relaxation studies. Eur. Polym. J. 2014;59:180–188. doi: 10.1016/j.eurpolymj.2014.07.039. DOI

Svoboda R. Utilization of constant heating rate DSC cycles for enthalpy relaxation studies and their influenceability by error data-distortive operations. J. Non-Cryst. Sol. 2015;408:115–122. doi: 10.1016/j.jnoncrysol.2014.10.021. DOI

Wu T., Yu L. Origin of Enhanced Crystal Growth Kinetics near Tg Probed with Indomethacin Polymorphs. J. Phys. Chem. B. 2006;110:15694–15699. doi: 10.1021/jp062771g. PubMed DOI

Zhang W., Brian C.W., Yu L. Fast Surface Diffusion of Amorphous o-Terphenyl and Its Competition with Viscous Flow in Surface Evolution. J. Phys. Chem. B. 2015;119:5071–5078. doi: 10.1021/jp5127464. PubMed DOI

Svoboda R., Brandová D. Crystal growth from mechanically induced defects: A phenomenon observed for glassy materials. J. Therm. Anal. Calorim. 2017;127:799–808. doi: 10.1007/s10973-016-5529-0. DOI

Kong N., Kirichenko T., Hwang G., Banerjee S. Interstitial-based boron diffusion dynamics in amorphous silicon. Appl. Phys. Lett. 2008;93:082109. doi: 10.1063/1.2976556. DOI

Toninelli C., Wyart M., Biroli G., Bouchaud J. Dynamical susceptibility of glass formers: Contrasting the predictions of theoretical scenarios. Phys. Rev. E. 2005;71:041505. doi: 10.1103/PhysRevE.71.041505. PubMed DOI

Cipelletti L., Ramos L. Slow dynamics in glassy soft matter. J. Phys. Condens. Matter. 2005;17:253–285. doi: 10.1088/0953-8984/17/6/R01. DOI

Mattsson J., Wyss H.M., Fernández-Nieves A., Miyazaki K., Hu Z., Reichman D.R., Weitz D.A. Soft colloids make strong glasses. Nature. 2009;462:83–86. doi: 10.1038/nature08457. PubMed DOI

Svoboda R., Koutná N., Košťálová D., Krbal M., Komersová A. Indomethacin: Effect of diffusionless crystal growth on thermal stability during long-term storage. Molecules. 2023;28:1568. doi: 10.3390/molecules28041568. PubMed DOI PMC

Surwase S.A., Boetker J., Saville D., Boyd B., Gordon K., Peltonen L., Strachan C.J. Indomethacin: New Polymorphs of an Old Drug. Mol. Pharm. 2013;10:4472–4480. doi: 10.1021/mp400299a. PubMed DOI

Ueda H., Ida Y., Kadota K., Tozuka Y. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images. Int. J. Pharm. 2013;462:115–122. doi: 10.1016/j.ijpharm.2013.12.025. PubMed DOI

Shu H.-C., Gaur U., Wunderlich B. Heat capacity and chemical equilibria of liquid selenium. J. Polym. Sci. Polym. Phys. Ed. 1980;18:449–456. doi: 10.1002/pol.1980.180180305. DOI

Svoboda R., Málek J. Description of macroscopic relaxation dynamics in glasses. J. Non-Cryst. Solids. 2013;378:186–195. doi: 10.1016/j.jnoncrysol.2013.07.008. DOI

Svoboda R. Novel equation to determine activation energy of enthalpy relaxation. J. Therm. Anal. Calorim. 2015;121:895–899. doi: 10.1007/s10973-015-4619-8. DOI

Hodge I.M., Berens A.R. Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromolecules. 1982;15:762–770. doi: 10.1021/ma00231a016. DOI

Svoboda R., Málek J. Enthalpy relaxation in Ge–Se glassy system. J. Therm. Anal. 2012;113:831–842. doi: 10.1007/s10973-012-2829-x. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...