Calorimetric Monitoring of the Sub-Tg Crystal Growth in Molecular Glasses: The Case of Amorphous Nifedipine
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LM2023037
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
40333594
PubMed Central
PMC12029594
DOI
10.3390/molecules30081679
PII: molecules30081679
Knihovny.cz E-resources
- Keywords
- DSC, GC growth, Raman microscopy, amorphous nifedipine, kinetic prediction,
- Publication type
- Journal Article MeSH
Non-isothermal differential scanning calorimetry (DSC) and Raman microscopy were used to study the crystallization behavior of the 20-50 μm amorphous nifedipine (NIF) powder. In particular, the study was focused on the diffusionless glass-crystal (GC) growth mode occurring below the glass transition temperature (Tg). The exothermic signal associated with the GC growth was indeed directly and reproducibly recorded at heating rates q+ ≤ 0.5 °C·min-1. During the GC growth, the αp polymorphic phase was exclusively formed, as confirmed via Raman microscopy. In addition to the freshly prepared NIF samples, the crystallization of the powders annealed for 7 h at 20 °C was also monitored-approx. 50-60% crystallinity was achieved. For the annealed NIF powders, the confocal Raman microscopy verified a proportional absence of the crystalline phase on the sample surface (indicating its dominant formation along the internal micro-cracks, which is characteristic of the GC growth). All DSC data were modeled in terms of the solid-state kinetic equation paired with the autocatalytic model; the kinetic complexity was described via reaction mechanism based on the overlap of 3-4 independent processes. The kinetic trends associated with decreasing q+ were identified, confirming the temperature-dependent kinetic behavior, and used to calculate a theoretical kinetic prediction conformable to the experimentally performed 7 h annealing at 20 °C. The theoretical model slightly underestimated the true extent of the GC growth, predicting the crystallinity to be 35-40% after 7 h (such accuracy is still extremely good in comparison with the standard kinetic approaches nowadays). Further research in the field of kinetic analysis should thus focus on the methodological ways of increasing the accuracy of considerably extrapolated kinetic predictions.
See more in PubMed
Chiang C., Lubach J., Chen T., Chin S., Ly J., Zhang W., Hou H.H., Nagapudi K. Development of an amorphous solid dispersion formulation for mitigating mechanical instability of crystalline form and improving bioavailability for early phase clinical studies. Mol. Pharm. 2023;20:2452–2464. doi: 10.1021/acs.molpharmaceut.2c01056. PubMed DOI
Dhoppalapudi S., Parupathi P. Hot melt extrusion: A single-step continuous manufacturing process for developing amorphous solid dispersions of poorly soluble drug substances. GSC Adv. Res. Rev. 2022;13:126–135. doi: 10.30574/gscarr.2022.13.2.0311. DOI
Fink E., Brunsteiner M., Mitsche S., Schröttner H., Paudel A., Zellnitz-Neugebauer S. Data-driven prediction of the formation of co-amorphous systems. Pharmaceutics. 2023;15:347. doi: 10.3390/pharmaceutics15020347. PubMed DOI PMC
Kim D., Kim Y., Tin Y., Soe M., Ko B., Park S., Lee J. Recent technologies for amorphization of poorly water-soluble drugs. Pharmaceutics. 2021;13:1318. doi: 10.3390/pharmaceutics13081318. PubMed DOI PMC
Mare E., Punia A., Lamm M., Rhodes T., Gormley A. Data-driven design of novel polymer excipients for pharmaceutical amorphous solid dispersions. Bioconj. Chem. 2024;35:1363–1372. doi: 10.1021/acs.bioconjchem.4c00294. PubMed DOI
Patil H., Vemula S., Narala S., Lakkala P., Munnangi S., Narala N., Jara M.O., Williams R.O., Terefe H., Repka M. Hot-melt extrusion: From theory to application in pharmaceutical formulation—Where are we now? AAPS PharmSciTech. 2024;25:37. doi: 10.1208/s12249-024-02749-2. PubMed DOI
Wang Y., Wang Y., Cheng J., Chen H., Xu J., Liu Z., Shi Q., Zhang C. Recent advances in the application of characterization techniques for studying physical stability of amorphous pharmaceutical solids. Crystals. 2021;11:1440. doi: 10.3390/cryst11121440. DOI
Papich M.G., Martinez M.N. Applying Biopharmaceutical Classification System (BCS) Criteria to Predict Oral Absorption of Drugs in Dogs: Challenges and Pitfalls. AAPS J. 2015;17:948–964. doi: 10.1208/s12248-015-9743-7. PubMed DOI PMC
ICH M9 Guideline on Biopharmaceutics Classification System-Based Biowaivers. [(accessed on 18 March 2025)]. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-m9-biopharmaceutics-classification-system-based-biowaivers-step-5_en.pdf.
Ansari M., Vo D., Choi H., Ryu J., Bae Y., Bukhari N., Zeb A., Kim J.-K., Maeng H. Formulation and evaluation of a self-microemulsifying drug delivery system of raloxifene with improved solubility and oral bioavailability. Pharmaceutics. 2023;15:2073. doi: 10.3390/pharmaceutics15082073. PubMed DOI PMC
Samineni R., Chimakurthy J., Konidala S. Emerging Role of Biopharmaceutical Classification and Biopharmaceutical Drug Disposition System in Dosage form Development: A Systematic Review. Turk. J. Pharm. Sci. 2022;19:706–713. doi: 10.4274/tjps.galenos.2021.73554. PubMed DOI PMC
Murdande S., Pikal M., Shanker R., Bogner R. Solubility advantage of amorphous pharmaceuticals: II. application of quantitative thermodynamic relationships for prediction of solubility enhancement in structurally diverse insoluble pharmaceuticals. Pharm. Res. 2010;27:2704–2714. doi: 10.1007/s11095-010-0269-5. PubMed DOI
Alonzo D., Zhang G., Zhou D., Gao Y., Taylor L. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm. Res. 2010;27:608–618. doi: 10.1007/s11095-009-0021-1. PubMed DOI
Qiang W., Löbmann K., McCoy C., Andrews G., Zhao M. Microwave-induced in situ amorphization: A new strategy for tackling the stability issue of amorphous solid dispersions. Pharmaceutics. 2020;12:655. doi: 10.3390/pharmaceutics12070655. PubMed DOI PMC
Fan W., Zhu W., Zhang X., Xu Y., Di L. Application of the combination of ball-milling and hot-melt extrusion in the development of an amorphous solid dispersion of a poorly water-soluble drug with high melting point. RSC Adv. 2019;9:22263–22273. doi: 10.1039/C9RA00810A. PubMed DOI PMC
Štukelj J., Svanbäck S., Agopov M., Löbmann K., Strachan C., Rades T., Yliruusi J. Direct measurement of amorphous solubility. Anal. Chem. 2019;91:7411–7417. doi: 10.1021/acs.analchem.9b01378. PubMed DOI PMC
Frank D., Matzger A. Effect of polymer hydrophobicity on the stability of amorphous solid dispersions and supersaturated solutions of a hydrophobic pharmaceutical. Mol. Pharm. 2019;16:682–688. doi: 10.1021/acs.molpharmaceut.8b00972. PubMed DOI PMC
Kaushal A.M., Gupta P., Bansal A.K. Amorphous drug delivery systems: Molecular aspects, design, and performance. Crit. Rev. Ther. Drug Carr. Syst. 2004;21:133–193. doi: 10.1615/CritRevTherDrugCarrierSyst.v21.i3.10. PubMed DOI
Karagianni A., Kachrimanis K., Nikolakakis I. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: Composition, preparation, characterization and formulations for oral delivery. Pharmaceutics. 2018;10:98. doi: 10.3390/pharmaceutics10030098. PubMed DOI PMC
Yu D.G., Li J.J., Williams G.R., Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J. Control Release. 2018;292:91–110. doi: 10.1016/j.jconrel.2018.08.016. PubMed DOI
Qian F., Jun H., Hussain M. Drug–polymer solubility and miscibility: Stability consideration and practical challenges in amorphous solid dispersion development. J. Pharm. Sci. 2010;99:2941–2947. doi: 10.1002/jps.22074. PubMed DOI
Lakshman J., Cao Y., Kowalski J., Serajuddin A. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol. Pharm. 2008;5:994–1002. doi: 10.1021/mp8001073. PubMed DOI
Mitra A., Zhu W., Kesisoglou F. Physiologically based absorption modeling for amorphous solid dispersion formulations. Mol. Pharm. 2016;13:3206–3215. doi: 10.1021/acs.molpharmaceut.6b00424. PubMed DOI
Narang A.S., Boddu S.H.S., editors. Excipient Applications in Formulation Design and Drug Delivery. Springer; London, UK: 2015.
Kawakami K. Crystallization Tendency of Pharmaceutical Glasses: Relevance to Compound Properties, Impact of Formulation Process, and Implications for Design of Amorphous Solid Dispersions. Pharmaceutics. 2019;11:202. doi: 10.3390/pharmaceutics11050202. PubMed DOI PMC
Baghel S., Cathcart H., O’Reilly N. Polymeric amorphous solid dispersions: A review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J. Pharm. Sci. 2016;105:2527–2544. doi: 10.1016/j.xphs.2015.10.008. PubMed DOI
Angell C.A., Ngai K.L., McKenna G.B., McMillan P.F., Martin S.W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 2000;88:3113–3157. doi: 10.1063/1.1286035. DOI
Richert R. Physical Aging and Heterogeneous Dynamics. Phys. Rev. Lett. 2010;104:085702. doi: 10.1103/PhysRevLett.104.085702. PubMed DOI
Sun Y., Zhu L., Kearns K.L., Ediger M.D., Yu L. Glasses crystallize rapidly at free surfaces by growing crystals upward. Proc. Natl. Acad. Sci. USA. 2011;108:5990–5995. doi: 10.1073/pnas.1017995108. PubMed DOI PMC
Wu T., Sun Y., Li N., de Villiers M.M., Yu L. Inhibiting Surface Crystallization of Amorphous Indomethacin by Nanocoating. Langmuir. 2007;23:5148–5153. doi: 10.1021/la070050i. PubMed DOI
Newman A., Zografi G. What We Need to Know about Solid-State Isothermal Crystallization of Organic Molecules from the Amorphous State below the Glass Transition Temperature. Mol. Pharm. 2020;17:1761–1777. doi: 10.1021/acs.molpharmaceut.0c00181. PubMed DOI
Musumeci D., Hasebe M., Yu L. Crystallization of Organic Glasses: How Does Liquid Flow Damage Surface Crystal Growth? Cryst. Growth Des. 2016;16:2931–2936. doi: 10.1021/acs.cgd.6b00268. DOI
Hasebe M., Musumeci D., Powell C.T., Cai T., Gunn E., Zhu L., Yu L. Fast Surface Crystal Growth on Molecular Glasses and Its Termination by the Onset of Fluidity. J. Phys. Chem. B. 2014;118:7638–7646. doi: 10.1021/jp503110g. PubMed DOI
Descamps M., Dudognon E. Crystallization from the Amorphous State: Nucleation–Growth Decoupling, Polymorphism Interplay, and the Role of Interfaces. J. Pharm. Sci. 2014;103:2615–2628. doi: 10.1002/jps.24016. PubMed DOI
Sun Y., Zhu L., Wu T., Cai T., Gunn E., Yu L. Stability of Amorphous Pharmaceutical Solids: Crystal Growth Mechanisms and Effect of Polymer Additives. AAPS J. 2012;14:380–388. doi: 10.1208/s12248-012-9345-6. PubMed DOI PMC
Zografi G., Newman A. Interrelationships Between Structure and the Properties of Amorphous Solids of Pharmaceutical Interest. J. Pharm. Sci. 2017;106:272. doi: 10.1016/j.xphs.2016.05.001. PubMed DOI
Krishna Kumar N.S., Suryanarayanan R. Crystallization Propensity of Amorphous Pharmaceuticals: Kinetics and Thermodynamics. Mol. Pharm. 2022;19:472–483. doi: 10.1021/acs.molpharmaceut.1c00839. PubMed DOI
Ghosh S., Das B.K., Dutta J. Role of Amorphous Drug Forms in Enhancing Bioavailability: A Review. Eur. J. Pharm. Sci. 2014;63:121–134.
Khan D.I., Mavromatis A., Mallon P. Quality Assessment and Stability of Generic Formulations: A 2021 Perspective. J. Pharm. Sci. 2021;110:1100–1110.
Egan D.W., Callahan M.M., Sarin R. Crystallization-Induced Changes in Ritonavir: Mechanistic Insights into Drug Bioavailability. Mol. Pharm. 2015;12:391–396.
Shaw P.J., Collis J.A., Smith D.J. Evaluating the Impact of Amorphous State on the Pharmacokinetics of Chemotherapeutic Agents. Clin. Cancer Res. 2016;22:2876–2885.
Svoboda R., Koutná N., Hynková M., Pakosta M. In Situ Raman Spectroscopy as a Valuable Tool for Monitoring Crystallization Kinetics in Molecular Glasses. Molecules. 2024;29:4769. doi: 10.3390/molecules29194769. PubMed DOI PMC
Svoboda R., Kozlová K. Thermo-Structural Characterization of Phase Transitions in Amorphous Griseofulvin: From Sub-Tg Relaxation and Crystal Growth to High-Temperature Decomposition. Molecules. 2024;29:1516. doi: 10.3390/molecules29071516. PubMed DOI PMC
Svoboda R. Thermally Induced Phenomena in Amorphous Nifedipine: The Correlation Between the Structural Relaxation and Crystal Growth Kinetics. Molecules. 2025;30:175. doi: 10.3390/molecules30010175. PubMed DOI PMC
Mantas A., Mihranyan A. Immediate-Release Nifedipine Binary Dry Powder Mixtures with Nanocellulose Featuring Enhanced Solubility and Dissolution Rate. Pharmaceutics. 2019;11:37. doi: 10.3390/pharmaceutics11010037. PubMed DOI PMC
Aryana M., Winata I., Setiawan W. Magnesium sulphate and nifedipine in management of preterm premature rupture of membranes. Eur. J. Med. Health Sci. 2022;4:87–89. doi: 10.24018/ejmed.2022.4.4.1290. DOI
George R., Thomas C., Joy C., Varghese B., Undela K., Adela R. Comparative efficacy and safety of oral nifedipine with other antihypertensive medications in the management of hypertensive disorders of pregnancy: A systematic review and meta-analysis of randomized controlled trials. J. Hypertens. 2022;40:1876–1886. doi: 10.1097/HJH.0000000000003233. PubMed DOI
Salman N., Mumtaz A., Noreen S., Butt A., Ahmed M., Fatima T. Postpartum discharge on labetalol was associated with increase risk of readmission for hypertension compared with discharge on nifedipine. Pak. J. Med. Health Sci. 2023;17:597–598. doi: 10.53350/pjmhs2023171597. DOI
Cai T., Zhu L., Yu L. Crystallization of Organic Glasses: Effects of Polymer Additives on Bulk and Surface Crystal Growth in Amorphous Nifedipine. Pharm. Res. 2011;28:2458–2466. doi: 10.1007/s11095-011-0472-z. PubMed DOI
Gunn E., Guzei I.A., Cai T., Yu L. Polymorphism of Nifedipine: Crystal Structure and Reversible Transition of the Metastable β Polymorph. Cryst. Growth Des. 2012;12:2037–2043. doi: 10.1021/cg3000075. DOI
Klimakow M., Rademann K., Emmerling F. Toward Novel Pseudo-Polymorphs of Nifedipine: Elucidation of a Slow Crystallization Process. Cryst. Growth Des. 2010;10:2693–2698. doi: 10.1021/cg100186v. DOI
Cheng S., McKenna G.B. Nanoconfinement Effects on the Glass Transition and Crystallization Behaviors of Nifedipine. Mol. Pharm. 2019;16:856–866. doi: 10.1021/acs.molpharmaceut.8b01172. PubMed DOI
Zhu L., Wong L., Yu L. Surface-Enhanced Crystallization of Amorphous Nifedipine. Mol. Pharm. 2008;5:921–926. doi: 10.1021/mp8000638. PubMed DOI
Gui Y., Huang C., Shi C., Stelzer T., Geoff G., Zhang Z., Yu L. Polymorphic selectivity in crystal nucleation. J. Chem. Phys. 2022;156:144504. doi: 10.1063/5.0086308. PubMed DOI
Ishida H., Wu T., Yu L. Sudden rise of crystal growth rate of nifedipine near Tg without and with polyvinylpyrrolidone. J. Pharm. Sci. 2007;96:1131–1138. doi: 10.1002/jps.20925. PubMed DOI
Li W., Shi P., Du S., Wang L., Han D., Zhou L., Tang W., Gong J. Revealing the role of anisotropic solvent interaction in crystal habit formation of nifedipine. J. Cryst. Growth. 2020;552:125941. doi: 10.1016/j.jcrysgro.2020.125941. DOI
Gnutzmann T., Kahlau R., Scheifler S., Friedrichs F., Rossler E.A., Rademann K., Emmerling F. Crystal growth rates and molecular dynamics of nifedipine. CrystEngComm. 2013;15:4062–4069. doi: 10.1039/c2ce26911b. DOI
Chan K.L.A., Fleming O.S., Kazarian S.G., Vassou D., Chryssikos G.D., Gionis V. Polymorphism and devitrification of nifedipine under controlled humidity: A combined FT-Raman, IR and Raman microscopic investigation. J. Raman Spectrosc. 2004;35:353–359. doi: 10.1002/jrs.1139. DOI
Svoboda R., Pakosta M., Doležel P. How the presence of crystalline phase affects structural relaxation in molecular liquids: The case of amorphous indomethacin. Int. J. Mol. Sci. 2023;24:16275. doi: 10.3390/ijms242216275. PubMed DOI PMC
Šesták J. Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis. Elsevier; Amsterdam, The Netherlands: 2005.
Šesták J. Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis. Elsevier; Amsterdam, The Netherlands: 1984.
Brandová D., Svoboda R., Olmrová Zmrhalová Z., Chovanec J., Bulánek R. Crystallization kinetics of glassy materials: The ultimate complexity? J. Therm. Anal. Calorim. 2018;134:825–834. doi: 10.1007/s10973-018-7078-1. DOI
Svoboda R., Chovanec J., Slang S., Beneš L., Konrád P. Single-curve multivariate kinetic analysis: Application to the crystallization of commercial Fe-Si-Cr-B amorphous alloys. J. Alloys Compd. 2022;889:161672. doi: 10.1016/j.jallcom.2021.161672. DOI
Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957;29:1702–1706. doi: 10.1021/ac60131a045. DOI
Friedman H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C. 1964;6:183–195. doi: 10.1002/polc.5070060121. DOI
Flynn J.H., Wall L.A. General treatment of the thermogravimetry of polymers. J. Res. Nat. Bur. Stand. 1966;70:487. doi: 10.6028/jres.070A.043. PubMed DOI PMC
Svoboda R., Luciano G. Complex process activation energy evaluated by combined utilization of differential and integral isoconversional methods. J. Non-Cryst. Sol. 2020;535:120003. doi: 10.1016/j.jnoncrysol.2020.120003. DOI
Svoboda R., Macháčková J., Nevyhoštěná M., Komersová A. Thermal stability of amorphous nimesulide: From glass formation to crystal growth and thermal degradation. Phys. Chem. Chem. Phys. 2024;26:856–872. doi: 10.1039/D3CP02260A. PubMed DOI
Filho R.O.C., Franco P.I.B.M., Conceicao E.C., Leles M.I.G. Stability studies on nifedipine tablets using thermogravimetry and differential scanning calorimetry. J. Therm. Anal. Calorim. 2009;97:343–347. doi: 10.1007/s10973-009-0083-7. DOI
Shamsipur M., Hemmateenejad B., Akhond M., Javidnia K., Miri R. A study of the photo-degradation kinetics of nifedipine by multivariate curve resolution analysis. J. Pharm. Biomed. Anal. 2003;31:1013–1019. doi: 10.1016/S0731-7085(02)00710-0. PubMed DOI